from transformers import PretrainedConfig from transformers.utils import logging from transformers.modeling_rope_utils import rope_config_validation logger = logging.get_logger(__name__) class PureQwen2Config(PretrainedConfig): model_type = "pure_qwen2" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=151936, hidden_size=4096, intermediate_size=22016, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=32, hidden_act="silu", max_position_embeddings=32768, initializer_range=0.02, rms_norm_eps=1e-6, use_cache=True, tie_word_embeddings=False, rope_theta=10000.0, rope_scaling=None, use_sliding_window=False, sliding_window=4096, max_window_layers=28, attention_dropout=0.0, svd_rank=5, # A slightly overestimated rank of token embedding matrix num_pc_to_remove=1, # Number of principal component to remove center=False, # If True, centre the input token embedding matrix num_iters=2, # Number of subspace iterations to conduct alpha=1, # Feature expression factor in parameter-free self-attention module disable_pcr=False, disable_pfsa=False, disable_covariance=True, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.use_sliding_window = use_sliding_window self.sliding_window = sliding_window if use_sliding_window else None self.max_window_layers = max_window_layers # for backward compatibility if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.attention_dropout = attention_dropout # Validate the correctness of rotary position embeddings parameters # BC: if there is a 'type' field, move it to 'rope_type'. if self.rope_scaling is not None and "type" in self.rope_scaling: self.rope_scaling["rope_type"] = self.rope_scaling["type"] rope_config_validation(self) self.svd_rank = svd_rank self.num_pc_to_remove = num_pc_to_remove self.center = center self.num_iters = num_iters self.alpha = alpha self.disable_pcr = disable_pcr self.disable_pfsa = disable_pfsa self.disable_covariance = disable_covariance super().__init__( tie_word_embeddings=tie_word_embeddings, **kwargs, )