slm-segformer-080823-b1

This model is a fine-tuned version of nvidia/mit-b1 on patches from sketched boundaries during the SmartLandMaps project. It achieves the following results on the evaluation set:

  • Train Loss: 0.0257
  • Validation Loss: 0.0271
  • Validation Mean Iou: 0.8583
  • Validation Mean Accuracy: 0.9196
  • Validation Overall Accuracy: 0.9888
  • Validation Per Category Iou: [0.98849374 0.72800628]
  • Validation Per Category Accuracy: [0.99410982 0.84499592]
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 6e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Validation Mean Iou Validation Mean Accuracy Validation Overall Accuracy Validation Per Category Iou Validation Per Category Accuracy Epoch
0.1099 0.0958 0.8134 0.9461 0.9824 [0.98176563 0.64502586] [0.98511039 0.90705184] 0
0.0478 0.0523 0.8440 0.9449 0.9865 [0.9860406 0.7019479] [0.98964683 0.90022015] 1
0.0379 0.0409 0.8476 0.9325 0.9873 [0.98687303 0.70826431] [0.99144882 0.87350047] 2
0.0336 0.0331 0.8551 0.9394 0.9880 [0.98757544 0.72269531] [0.99166337 0.88706795] 3
0.0310 0.0329 0.8541 0.9426 0.9878 [0.98735586 0.72081351] [0.99118853 0.89409615] 4
0.0292 0.0317 0.8516 0.9348 0.9877 [0.98729336 0.71599644] [0.99171219 0.87789181] 5
0.0282 0.0296 0.8572 0.9336 0.9884 [0.98798391 0.72647977] [0.99252058 0.87472321] 6
0.0271 0.0319 0.8476 0.9253 0.9875 [0.98709267 0.70802268] [0.99221744 0.85835533] 7
0.0267 0.0295 0.8549 0.9298 0.9882 [0.98782022 0.72192985] [0.9926388 0.86691624] 8
0.0257 0.0271 0.8583 0.9196 0.9888 [0.98849374 0.72800628] [0.99410982 0.84499592] 9

Framework versions

  • Transformers 4.31.0
  • TensorFlow 2.12.0
  • Tokenizers 0.13.3
Downloads last month
13
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for aurioldegbelo/slm-segformer-080823-b1

Base model

nvidia/mit-b1
Finetuned
(16)
this model