chef-gpt-base
GPT-2 architecture trained to generate recipes based on ingredients. Visit website.
Model description
This is GPT-2 pretrained on a custom dataset of recipies in Bulgarian. You can find the dataset here.
Usage
import re
# Using this library to beautifully print the long recipe string.
from pprint import pprint
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the model and tokenizer:
MODEL_ID = "auhide/chef-gpt-base"
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
chef_gpt = AutoModelForCausalLM.from_pretrained(MODEL_ID)
# Prepare the input:
ingredients = [
"1 ч.ч. брашно",
"4 яйца",
"1 кофичка кисело мляко",
"1/4 ч.л. сода",
]
input_text = f"[ING]{'[EOL]'.join(ingredients)}[REC]"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
# Generate text:
output = chef_gpt.generate(input_ids, max_length=150)
recipe = tokenizer.batch_decode(output)[0]
# Get the generated recipe - it is up until the 1st [SEP] token.
recipe = re.findall(r"\[REC\](.+?)\[SEP\]", recipe)[0]
print("Съставки/Ingredients:")
pprint(ingredients)
print("\nРецепта/Recipe:")
pprint(recipe)
Съставки/Ingredients:
['1 ч.ч. брашно', '4 яйца', '1 кофичка кисело мляко', '1/4 ч.л. сода']
Рецепта/Recipe:
('В дълбока купа се разбиват яйцата. Добавя се киселото мляко, в което '
'предварително е сложена содата, и се разбива. Добавя се брашното и се омесва '
'тесто. Ако е много гъсто се добавя още малко брашно, ако е много гъсто се '
'добавя още малко брашно. Фурната се загрява предварително на 180С градуса. '
'Когато тестото е готово, се вади от фурната и се разделя на три части.')
Additional tokens
- [ING] - ingredients token; denotes the begining of the tokens representing the ingredients
- [EOL] - end-of-line token; equivalent to a newline
- [REC] - recipe token; denotes the begining of the recipe
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.