whisper-base-zh-20230711 - au2a

This model is a fine-tuned version of openai/whisper-base on the some hakka audio dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4551
  • Cer: 16.9978

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000

Training results

Training Loss Epoch Step Validation Loss Cer
0.4673 0.65 1000 0.6526 25.0548
0.2203 1.29 2000 0.4985 19.8459
0.1446 1.94 3000 0.4557 18.0026
0.0956 2.59 4000 0.4438 16.9676
0.0527 3.24 5000 0.4450 17.0998
0.0423 3.88 6000 0.4441 17.7797
0.027 4.53 7000 0.4474 16.9260
0.0177 5.18 8000 0.4515 16.5861
0.0165 5.83 9000 0.4537 16.8392
0.0129 6.47 10000 0.4551 16.9978

Framework versions

  • Transformers 4.30.2
  • Pytorch 1.11.0+cu113
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
84
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.