bert-finetuned-nli / README.md
athrado's picture
Training in progress epoch 4
eee43c6
|
raw
history blame
2.2 kB
metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_keras_callback
model-index:
  - name: athrado/bert-finetuned-nli
    results: []

athrado/bert-finetuned-nli

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0616
  • Train Accuracy: 0.9800
  • Validation Loss: 0.4822
  • Validation Accuracy: 0.8788
  • Epoch: 4

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 2775, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Epoch
0.5542 0.7587 0.4403 0.8343 0
0.3344 0.8761 0.3706 0.8626 1
0.2097 0.9270 0.3300 0.8869 2
0.1169 0.9624 0.4229 0.8808 3
0.0616 0.9800 0.4822 0.8788 4

Framework versions

  • Transformers 4.31.0
  • TensorFlow 2.13.0
  • Tokenizers 0.13.3