metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: athrado/bert-finetuned-nli
results: []
athrado/bert-finetuned-nli
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0960
- Train Accuracy: 0.9694
- Validation Loss: 0.4772
- Validation Accuracy: 0.8626
- Epoch: 3
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 2775, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
---|---|---|---|---|
0.5305 | 0.7885 | 0.4253 | 0.8222 | 0 |
0.3041 | 0.8887 | 0.3962 | 0.8404 | 1 |
0.1947 | 0.9344 | 0.3971 | 0.8444 | 2 |
0.0960 | 0.9694 | 0.4772 | 0.8626 | 3 |
Framework versions
- Transformers 4.31.0
- TensorFlow 2.13.0
- Datasets 2.14.1
- Tokenizers 0.13.3