bert-finetuned-nli / README.md
athrado's picture
Training in progress epoch 3
32ed4d1
|
raw
history blame
2.14 kB
metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_keras_callback
model-index:
  - name: athrado/bert-finetuned-nli
    results: []

athrado/bert-finetuned-nli

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0960
  • Train Accuracy: 0.9694
  • Validation Loss: 0.4772
  • Validation Accuracy: 0.8626
  • Epoch: 3

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 2775, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Epoch
0.5305 0.7885 0.4253 0.8222 0
0.3041 0.8887 0.3962 0.8404 1
0.1947 0.9344 0.3971 0.8444 2
0.0960 0.9694 0.4772 0.8626 3

Framework versions

  • Transformers 4.31.0
  • TensorFlow 2.13.0
  • Datasets 2.14.1
  • Tokenizers 0.13.3