bert-finetuned-nli / README.md
athrado's picture
Update README.me
25c8264
|
raw
history blame
2.47 kB
metadata
license: apache-2.0
tags:
  - generated_from_keras_callback
model-index:
  - name: athrado/bert-finetuned-nli
    results: []

athrado/bert-finetuned-nli

This model is a fine-tuned version of bert-base-uncased on the sick dataset for natural language inference. It achieves the following results on the evaluation set:

  • Train Loss: 0.0671
  • Train Accuracy: 0.9806
  • Validation Loss: 0.5285
  • Validation Accuracy: 0.8424
  • Epoch: 4

Model description

Example model for educational purposes: fine-tuning the bert-base-uncased model for natural language inference.

Intended uses & limitations

  • Learning about transformer model and fine-tuning
  • Natural language inference fine-tuned on small dataset

Training and evaluation data

The model is evaluated using the sick validation. We report accuracy, and in addition we computed a weighted F1-score of 0.842.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 2775, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Epoch
0.5345 0.7810 0.4586 0.8283 0
0.3253 0.8797 0.3890 0.8404 1
0.2070 0.9290 0.4210 0.8303 2
0.1171 0.9610 0.5200 0.8424 3
0.0671 0.9806 0.5285 0.8424 4

Framework versions

  • Transformers 4.30.2
  • TensorFlow 2.12.0
  • Datasets 2.13.1
  • Tokenizers 0.13.3