metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-small-Fleurs_AMMI_AFRIVOICE_LRSC-ln-10hrs-v1
results: []
whisper-small-Fleurs_AMMI_AFRIVOICE_LRSC-ln-10hrs-v1
This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9113
- Wer: 0.2693
- Cer: 0.1004
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use adamw_hf with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
2.662 | 1.0 | 384 | 1.1130 | 0.9642 | 0.4862 |
0.9465 | 2.0 | 768 | 0.7685 | 0.7183 | 0.3554 |
0.6467 | 3.0 | 1152 | 0.6290 | 0.7266 | 0.3898 |
0.4612 | 4.0 | 1536 | 0.5702 | 0.6397 | 0.3367 |
0.3264 | 5.0 | 1920 | 0.5509 | 0.6423 | 0.3565 |
0.2166 | 6.0 | 2304 | 0.5555 | 0.9089 | 0.5573 |
0.136 | 7.0 | 2688 | 0.5589 | 0.9389 | 0.5901 |
0.0854 | 8.0 | 3072 | 0.5840 | 0.9759 | 0.5946 |
0.0535 | 9.0 | 3456 | 0.6099 | 0.7188 | 0.4253 |
0.0401 | 10.0 | 3840 | 0.6250 | 0.8047 | 0.4718 |
0.0305 | 11.0 | 4224 | 0.6397 | 0.5552 | 0.3004 |
0.0234 | 12.0 | 4608 | 0.6584 | 0.4350 | 0.2223 |
0.0179 | 13.0 | 4992 | 0.6768 | 0.4224 | 0.1984 |
0.0141 | 14.0 | 5376 | 0.6962 | 0.4579 | 0.2346 |
0.0109 | 15.0 | 5760 | 0.7025 | 0.4128 | 0.1926 |
0.0096 | 16.0 | 6144 | 0.6962 | 0.3778 | 0.1732 |
0.0069 | 17.0 | 6528 | 0.7180 | 0.3991 | 0.1853 |
0.0061 | 18.0 | 6912 | 0.7368 | 0.3223 | 0.1319 |
0.0045 | 19.0 | 7296 | 0.7343 | 0.3606 | 0.1692 |
0.0054 | 20.0 | 7680 | 0.7521 | 0.2899 | 0.1133 |
0.0039 | 21.0 | 8064 | 0.7545 | 0.3050 | 0.1204 |
0.0052 | 22.0 | 8448 | 0.7758 | 0.2871 | 0.1105 |
0.0041 | 23.0 | 8832 | 0.7674 | 0.2952 | 0.1189 |
0.0045 | 24.0 | 9216 | 0.7896 | 0.2945 | 0.1143 |
0.0033 | 25.0 | 9600 | 0.7860 | 0.2891 | 0.1149 |
0.0026 | 26.0 | 9984 | 0.8004 | 0.2691 | 0.0999 |
0.0029 | 27.0 | 10368 | 0.8039 | 0.2696 | 0.0999 |
0.0036 | 28.0 | 10752 | 0.8287 | 0.2634 | 0.0939 |
0.0027 | 29.0 | 11136 | 0.7887 | 0.2707 | 0.1002 |
0.0032 | 30.0 | 11520 | 0.8300 | 0.2734 | 0.1032 |
0.0029 | 31.0 | 11904 | 0.8122 | 0.2628 | 0.0954 |
0.0032 | 32.0 | 12288 | 0.8459 | 0.2664 | 0.0962 |
0.0031 | 33.0 | 12672 | 0.8250 | 0.2741 | 0.1075 |
0.0023 | 34.0 | 13056 | 0.8579 | 0.2649 | 0.0966 |
0.0023 | 35.0 | 13440 | 0.8535 | 0.2606 | 0.0961 |
0.0018 | 36.0 | 13824 | 0.8601 | 0.2571 | 0.0930 |
0.0028 | 37.0 | 14208 | 0.8426 | 0.2603 | 0.0969 |
0.0021 | 38.0 | 14592 | 0.8617 | 0.2591 | 0.0967 |
0.0016 | 39.0 | 14976 | 0.8570 | 0.2572 | 0.0930 |
0.0022 | 40.0 | 15360 | 0.8496 | 0.2581 | 0.0926 |
0.0015 | 41.0 | 15744 | 0.8533 | 0.2578 | 0.0958 |
0.0014 | 42.0 | 16128 | 0.8752 | 0.2520 | 0.0891 |
0.0014 | 43.0 | 16512 | 0.8737 | 0.2552 | 0.0918 |
0.0013 | 44.0 | 16896 | 0.8928 | 0.2616 | 0.0974 |
0.0026 | 45.0 | 17280 | 0.9111 | 0.2613 | 0.0957 |
0.0029 | 46.0 | 17664 | 0.8834 | 0.2672 | 0.0999 |
0.0018 | 47.0 | 18048 | 0.8904 | 0.2555 | 0.0916 |
0.0014 | 48.0 | 18432 | 0.9028 | 0.2541 | 0.0893 |
0.0013 | 49.0 | 18816 | 0.8990 | 0.2558 | 0.0904 |
0.0014 | 50.0 | 19200 | 0.9087 | 0.2564 | 0.0927 |
0.0014 | 51.0 | 19584 | 0.9115 | 0.2610 | 0.0934 |
0.0007 | 52.0 | 19968 | 0.9291 | 0.2592 | 0.0938 |
0.0011 | 53.0 | 20352 | 0.9081 | 0.2603 | 0.0970 |
0.0014 | 54.0 | 20736 | 0.9113 | 0.2693 | 0.1004 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.1.0+cu118
- Datasets 3.1.0
- Tokenizers 0.20.3