metadata
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: w2v-bert-2.0-Fleurs_AMMI_AFRIVOICE_LRSC-ln-20hrs-v2
results: []
w2v-bert-2.0-Fleurs_AMMI_AFRIVOICE_LRSC-ln-20hrs-v2
This model is a fine-tuned version of facebook/w2v-bert-2.0 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7994
- Wer: 0.2042
- Cer: 0.0647
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 80
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
2.2265 | 1.0 | 356 | 0.4952 | 0.3304 | 0.1008 |
0.5303 | 2.0 | 712 | 0.3928 | 0.2891 | 0.0862 |
0.4278 | 3.0 | 1068 | 0.3568 | 0.2574 | 0.0769 |
0.3675 | 4.0 | 1424 | 0.3322 | 0.2385 | 0.0735 |
0.3271 | 5.0 | 1780 | 0.3118 | 0.2411 | 0.0776 |
0.2848 | 6.0 | 2136 | 0.3208 | 0.2092 | 0.0659 |
0.2556 | 7.0 | 2492 | 0.3289 | 0.2090 | 0.0658 |
0.2265 | 8.0 | 2848 | 0.3280 | 0.2324 | 0.0812 |
0.2043 | 9.0 | 3204 | 0.3279 | 0.2206 | 0.0700 |
0.1865 | 10.0 | 3560 | 0.3551 | 0.2132 | 0.0676 |
0.1658 | 11.0 | 3916 | 0.3360 | 0.2108 | 0.0697 |
0.1521 | 12.0 | 4272 | 0.3539 | 0.2347 | 0.0785 |
0.1408 | 13.0 | 4628 | 0.3642 | 0.2124 | 0.0708 |
0.128 | 14.0 | 4984 | 0.3877 | 0.2141 | 0.0689 |
0.1159 | 15.0 | 5340 | 0.4239 | 0.1999 | 0.0635 |
0.1073 | 16.0 | 5696 | 0.4337 | 0.2142 | 0.0700 |
0.0975 | 17.0 | 6052 | 0.4401 | 0.2022 | 0.0653 |
0.0899 | 18.0 | 6408 | 0.4767 | 0.2101 | 0.0662 |
0.0857 | 19.0 | 6764 | 0.4927 | 0.2041 | 0.0677 |
0.0783 | 20.0 | 7120 | 0.5006 | 0.2091 | 0.0677 |
0.0714 | 21.0 | 7476 | 0.5030 | 0.2140 | 0.0709 |
0.0667 | 22.0 | 7832 | 0.5110 | 0.2144 | 0.0691 |
0.0665 | 23.0 | 8188 | 0.5129 | 0.2136 | 0.0669 |
0.0586 | 24.0 | 8544 | 0.5906 | 0.1980 | 0.0632 |
0.0527 | 25.0 | 8900 | 0.6139 | 0.2019 | 0.0631 |
0.0471 | 26.0 | 9256 | 0.5897 | 0.2127 | 0.0677 |
0.0425 | 27.0 | 9612 | 0.6123 | 0.2037 | 0.0655 |
0.0374 | 28.0 | 9968 | 0.5954 | 0.2154 | 0.0697 |
0.035 | 29.0 | 10324 | 0.6249 | 0.2017 | 0.0634 |
0.0311 | 30.0 | 10680 | 0.6401 | 0.2056 | 0.0649 |
0.0274 | 31.0 | 11036 | 0.6688 | 0.2105 | 0.0668 |
0.0243 | 32.0 | 11392 | 0.6783 | 0.2122 | 0.0661 |
0.0223 | 33.0 | 11748 | 0.6974 | 0.2062 | 0.0652 |
0.0188 | 34.0 | 12104 | 0.7393 | 0.2069 | 0.0662 |
0.0177 | 35.0 | 12460 | 0.7598 | 0.2065 | 0.0645 |
0.0168 | 36.0 | 12816 | 0.7584 | 0.2058 | 0.0640 |
0.0137 | 37.0 | 13172 | 0.8009 | 0.2052 | 0.0645 |
0.0122 | 38.0 | 13528 | 0.7671 | 0.2045 | 0.0644 |
0.0105 | 39.0 | 13884 | 0.7994 | 0.2042 | 0.0647 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.1.0+cu118
- Datasets 3.1.0
- Tokenizers 0.20.3