bryan-NM / README.md
asquevedos's picture
Model save
e6e3704 verified
|
raw
history blame
3.25 kB
metadata
license: mit
base_model: roberta-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: bryan-NM
    results: []

bryan-NM

This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6055
  • Accuracy: 0.5427
  • F1: 0.5374
  • Precision: 0.5365
  • Recall: 0.5427

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
2.5019 1.0 3538 2.4996 0.3528 0.2684 0.2489 0.3528
2.1176 2.0 7076 2.1051 0.4478 0.3790 0.3630 0.4478
1.865 3.0 10614 1.9322 0.4827 0.4286 0.4186 0.4827
1.6961 4.0 14152 1.8417 0.5057 0.4681 0.4666 0.5057
1.5709 5.0 17690 1.8285 0.5149 0.4812 0.4826 0.5149
1.3717 6.0 21228 1.8153 0.5219 0.4938 0.5049 0.5219
1.2889 7.0 24766 1.8005 0.5369 0.5089 0.5040 0.5369
1.1258 8.0 28304 1.8269 0.5311 0.5103 0.5090 0.5311
1.0029 9.0 31842 1.8697 0.5421 0.5274 0.5289 0.5421
0.9032 10.0 35380 1.9533 0.5393 0.5255 0.5271 0.5393
0.7787 11.0 38918 2.0320 0.5371 0.5242 0.5245 0.5371
0.7137 12.0 42456 2.0956 0.5425 0.5331 0.5335 0.5425
0.6612 13.0 45994 2.1384 0.5419 0.5294 0.5291 0.5419
0.5733 14.0 49532 2.2058 0.5385 0.5289 0.5273 0.5385
0.5251 15.0 53070 2.2882 0.5397 0.5304 0.5276 0.5397
0.4666 16.0 56608 2.3806 0.5393 0.5327 0.5337 0.5393
0.4345 17.0 60146 2.4534 0.5485 0.5379 0.5366 0.5485
0.3668 18.0 63684 2.5234 0.5433 0.5368 0.5370 0.5433
0.3695 19.0 67222 2.5849 0.5417 0.5377 0.5381 0.5417
0.3226 20.0 70760 2.6055 0.5427 0.5374 0.5365 0.5427

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2