asmaa1's picture
Model save
b92fd18
|
raw
history blame
2.37 kB
metadata
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: videomae-base-finetuned-SLT-subset
    results: []

videomae-base-finetuned-SLT-subset

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1513
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 944

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.9224 0.06 59 3.7150 0.025
3.9538 1.06 118 3.7131 0.025
3.8824 2.06 177 3.6952 0.025
3.8135 3.06 236 3.6851 0.05
3.8444 4.06 295 3.6689 0.025
3.7715 5.06 354 3.6183 0.05
3.6616 6.06 413 3.4405 0.4
3.6175 7.06 472 3.0778 0.325
3.1062 8.06 531 2.0972 0.75
1.8942 9.06 590 1.2638 0.925
1.3975 10.06 649 0.7811 0.975
1.0269 11.06 708 0.4473 1.0
0.3623 12.06 767 0.3073 1.0
0.3611 13.06 826 0.2007 1.0
0.1881 14.06 885 0.1614 1.0
0.1773 15.06 944 0.1513 1.0

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3