|
--- |
|
license: llama3 |
|
base_model: |
|
- meta-llama/Meta-Llama-3-8B-Instruct |
|
language: |
|
- en |
|
- ko |
|
tags: |
|
- facebook |
|
- meta |
|
- llama |
|
- llama-3 |
|
- llama-3-ko |
|
--- |
|
<p align="left"> |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/646484cfb90150b2706df03b/BEOyMpnnY9VY2KXlc3V2F.png" width="20%"/> |
|
<p> |
|
|
|
# Llama-3-MAAL-8B-Instruct-v0.1 |
|
we release MAAL, Multilingual Adaptive Augmentation Language-model which comprises a groundbreaking fusion of multilingual capabilities and adaptive augmentation techniques. |
|
|
|
- **Developed by:** [maum.ai Brain NLP](https://maum-ai.github.io). Jaeyoon Jung, Jinjoo Lee, Yongjae Lee, Dongjun Lee, Woosung Joo |
|
- **Language(s) (NLP):** Korean, English (currently, bilingual) |
|
|
|
## Model Description |
|
|
|
Version 0.1 uses cross-lingual training to transfer instruction-following capabilities from English to Korean. |
|
|
|
- We Trained this model on an 8 H100-80G for 1 day with cross-lingual training dataset |
|
- we recommend using the fixed system prompt for the model unless you fine-tune it |
|
``` |
|
๋๋ ๋ง์์์ด์์ด์ ์ฑ๋ด MAAL์ด๋ค. ๊ณ ๊ฐ์ ์ง๋ฌธ์ ์น์ ํ๊ฒ ๋ตํ์ฌ๋ผ. |
|
``` |
|
|
|
## sample inference code (GPU) |
|
|
|
``` |
|
import transformers |
|
import torch |
|
model_id = "maum-ai/Llama-3-MAAL-8B-Instruct-v0.1" |
|
model = transformers.AutoModelForCausalLM.from_pretrained(model_id).to("cuda") |
|
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id) |
|
streamer = transformers.TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
# we recommend using the fixed prompt for the model unless you fine-tune it |
|
prompt = "๋๋ ๋ง์์์ด์์ด์ ์ฑ๋ด MAAL์ด๋ค. ๊ณ ๊ฐ์ ์ง๋ฌธ์ ์น์ ํ๊ฒ ๋ตํ์ฌ๋ผ." |
|
instruction = "์ฌ๊ณผ ํ ๋ฐ์ค์๋ ์ฌ๊ณผ๊ฐ 30๊ฐ ๋ค์ด์๋๋ฐ, ์ฒ์์๋ ์ฌ๊ณผ 3๋ฐ์ค๊ฐ ์์๊ณ , ๋ด๊ฐ ์ฌ๊ณผ 5๊ฐ๋ฅผ ๋จน์์ด. ๋จ์ ์ฌ๊ณผ๋ ์ด ๋ช๊ฐ์ผ?" |
|
messages = [ |
|
{"role": "system", "content": f"{prompt}"}, |
|
{"role": "user", "content": f"{instruction}"} |
|
] |
|
inputs = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=True, |
|
return_tensors='pt').to("cuda") |
|
outputs = model.generate(inputs, streamer=streamer, max_new_tokens=1024, pad_token_id=tokenizer.eos_token_id) |
|
``` |
|
|
|
## Evaluation Results |
|
|
|
As the main goal of version 0.1 is to **transfer instruction-following capabilities from English to Korean** without utilizing continuous pre-training, etc., we select [**LogicKor**](https://github.com/StableFluffy/LogicKor) as our evaluation method to assess the Korean instruction skills. |
|
|
|
We compare our model with a similar parameter model (less than 13B) that has been fine-tuned on the Korean dataset. \* denotes our self-report result. |
|
|
|
|Model|single-turn(โ)|multi-turn(โ)|average(โ)| |
|
|-|-|-|-| |
|
|maum-ai/Llama-3-MAAL-8B-Instruct-v0.1*|**5.80**|4.66|**5.23**| |
|
|maywell/Synatra-kiqu-10.7B|5.71|4.73|5.22| |
|
|yanolja/EEVE-Korean-Instruct-10.8B-v1.0|5.78|3.92|4.85| |
|
|nlpai-lab/KULLM3|4.61|**4.83**|4.72| |
|
|MLP-KTLim/llama3-Bllossom*|2.11|1.57|1.84| |
|
|
|
## Limitations |
|
Due to this model being trained on a small dataset, it has several limitations. |
|
- Hard to generate diverse Korean texts |
|
- lack of Korean knowledge & Culture (localization) |
|
- Not work with Image inputs and video inputs |
|
|
|
## Todo |
|
we will solve these limitations one by one by upgrading this model like as... |
|
- Enhance the Korean generation through Vocabulary Expansion & Continuous pre-training. (more Korean corpus!) |
|
- Localize with cultural adaptation method and additional Korean knowledge data. [*similar idea*](https://aclanthology.org/2023.emnlp-main.18/) |
|
- Develop a Vision Language Model that can handle both video and image inputs. [*similar idea*](https://github.com/PKU-YuanGroup/Video-LLaVA) |