Multilingual mPNet finetuned for cross-lingual similarity
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Languages: en, ar, pt, es, de, th
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("aryasuneesh/paraphrase-multilingual-mpnet-base-v2-7")
# Run inference
sentences = [
"So Let's - Circle Back - to how YOU got your JOB - Jen Psaki",
"Jen Psaki said, 'If you don’t buy anything, you won’t experience inflation’",
'NAIA reverts to MIA, its old name',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
eval-similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.9494 |
spearman_cosine | 0.8549 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 178,008 training samples
- Columns:
text1
,text2
, andlabel
- Approximate statistics based on the first 1000 samples:
text1 text2 label type string string float details - min: 5 tokens
- mean: 65.05 tokens
- max: 128 tokens
- min: 4 tokens
- mean: 21.88 tokens
- max: 128 tokens
- min: 0.0
- mean: 0.46
- max: 1.0
- Samples:
text1 text2 label CONFIRM THAT THE UNITED STATES CARRIED CARRIED OUT A MILITARY ATTACK ON KABUL
صورة لانفجار عبوة ناسفة استهدفت سيارة عسكرية جنوب غربي مدينة الرقة السوريّة.
0.0
Lisboa grita Fora Bolsonaro durante show de Gustavo Lima De arrepiarl [USER] LISBOA, PORTUGAL
Lisbon screams Fora Bolsonaro during concert by Gustavo Lima
0.0
Singapore stops the vaccination after 48 people died The Telegraph Singapore halts use of flu vaccines after 48 die in South Korea [USER].06flatearth
Singapore halts the rollout of influenza vaccination due to deaths in South Korea
1.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
Unnamed Dataset
- Size: 44,503 evaluation samples
- Columns:
text1
,text2
, andlabel
- Approximate statistics based on the first 1000 samples:
text1 text2 label type string string float details - min: 7 tokens
- mean: 66.12 tokens
- max: 128 tokens
- min: 4 tokens
- mean: 22.01 tokens
- max: 128 tokens
- min: 0.0
- mean: 0.48
- max: 1.0
- Samples:
text1 text2 label 141 UN PUEBLO QUE ELIGE A CORRUPTOS, LADRONES Y TRAIDORES NO ES VÍCTIMA, ES COMPLICE. GEORGE ORWELL or [USER] periodismo • poder para la gente
“A people who elect corrupts, imposters, thieves and traitors, are not victims. You are an accomplice!”
0.0
Watch Full Video [URL] Nasir Chenyoti, the one who spread smiles on people's faces, is fighting a life and death battle today.
Pakistani comic Nasir Chinyoti burned in an accident
1.0
at des Bezirkec Potsdam Abt. Veterinarsenen 1500 Heinrich-enn-Allee 107 III-15-01-Br 25. Juli 1985 04.07.1985 Information zum Infektionszeitpunkt und zur Übertragung der Coronavirueinfektion in Krein Brandenburg Ier 03.07.1985 gibt es in Kreis 7 staatliche ban. genossenschaftliche und 24 individuelle Coronavirus infektions-Bestunde (siehe Anlage). - Fia Fratinfektion hat vermutlich in der FA wollin stattgefunden (Blutentnahme v. 22.5.85, Feststellung 30.5.85). Von Galten der Betriebsleitung wird eine Einschleppung tiber 1KVE-Fahrzeuge der TVB Conthin vermutet.
Dieses Dokument beweist, dass das Corona-Virus schon in der DDR existierte
1.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64learning_rate
: 2e-05weight_decay
: 0.01num_train_epochs
: 5lr_scheduler_type
: cosinewarmup_ratio
: 0.1fp16
: Truefp16_full_eval
: Truedataloader_num_workers
: 4load_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Truetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 4dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | eval-similarity_spearman_cosine |
---|---|---|---|---|
0.1247 | 347 | 0.1578 | - | - |
0.2495 | 694 | 0.1356 | - | - |
0.2498 | 695 | - | 0.1248 | 0.7041 |
0.3742 | 1041 | 0.1206 | - | - |
0.4989 | 1388 | 0.1121 | - | - |
0.4996 | 1390 | - | 0.1026 | 0.7569 |
0.6237 | 1735 | 0.1028 | - | - |
0.7484 | 2082 | 0.093 | - | - |
0.7495 | 2085 | - | 0.0862 | 0.7896 |
0.8731 | 2429 | 0.0889 | - | - |
0.9978 | 2776 | 0.083 | - | - |
0.9993 | 2780 | - | 0.0739 | 0.8097 |
1.1226 | 3123 | 0.0648 | - | - |
1.2473 | 3470 | 0.062 | - | - |
1.2491 | 3475 | - | 0.0662 | 0.8174 |
1.3720 | 3817 | 0.0595 | - | - |
1.4968 | 4164 | 0.0567 | - | - |
1.4989 | 4170 | - | 0.0585 | 0.8277 |
1.6215 | 4511 | 0.0553 | - | - |
1.7462 | 4858 | 0.0513 | - | - |
1.7487 | 4865 | - | 0.0518 | 0.8355 |
1.8710 | 5205 | 0.0497 | - | - |
1.9957 | 5552 | 0.0465 | - | - |
1.9986 | 5560 | - | 0.0462 | 0.8409 |
2.1204 | 5899 | 0.0336 | - | - |
2.2451 | 6246 | 0.0319 | - | - |
2.2484 | 6255 | - | 0.0433 | 0.8438 |
2.3699 | 6593 | 0.0311 | - | - |
2.4946 | 6940 | 0.0304 | - | - |
2.4982 | 6950 | - | 0.0401 | 0.8457 |
2.6193 | 7287 | 0.0306 | - | - |
2.7441 | 7634 | 0.0302 | - | - |
2.7480 | 7645 | - | 0.0356 | 0.8492 |
2.8688 | 7981 | 0.0275 | - | - |
2.9935 | 8328 | 0.0281 | - | - |
2.9978 | 8340 | - | 0.0330 | 0.8509 |
3.1183 | 8675 | 0.0198 | - | - |
3.2430 | 9022 | 0.0198 | - | - |
3.2477 | 9035 | - | 0.0315 | 0.8520 |
3.3677 | 9369 | 0.0183 | - | - |
3.4925 | 9716 | 0.0182 | - | - |
3.4975 | 9730 | - | 0.0303 | 0.8526 |
3.6172 | 10063 | 0.0189 | - | - |
3.7419 | 10410 | 0.018 | - | - |
3.7473 | 10425 | - | 0.0289 | 0.8539 |
3.8666 | 10757 | 0.0171 | - | - |
3.9914 | 11104 | 0.0178 | - | - |
3.9971 | 11120 | - | 0.0274 | 0.8546 |
4.1161 | 11451 | 0.014 | - | - |
4.2408 | 11798 | 0.0142 | - | - |
4.2469 | 11815 | - | 0.0269 | 0.8547 |
4.3656 | 12145 | 0.0137 | - | - |
4.4903 | 12492 | 0.0135 | - | - |
4.4968 | 12510 | - | 0.0266 | 0.8548 |
4.6150 | 12839 | 0.0136 | - | - |
4.7398 | 13186 | 0.0138 | - | - |
4.7466 | 13205 | - | 0.0265 | 0.8549 |
4.8645 | 13533 | 0.0135 | - | - |
4.9892 | 13880 | 0.0136 | - | - |
4.9964 | 13900 | - | 0.0265 | 0.8549 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.2.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 36
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for aryasuneesh/paraphrase-multilingual-mpnet-base-v2-7
Evaluation results
- Pearson Cosine on eval similarityself-reported0.949
- Spearman Cosine on eval similarityself-reported0.855