aruca's picture
End of training
c57b64e verified
metadata
base_model: google/pegasus-x-base
tags:
  - generated_from_trainer
model-index:
  - name: pegasusx-AMI-text-summarizer
    results: []

pegasusx-AMI-text-summarizer

This model is a fine-tuned version of google/pegasus-x-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9024

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 35

Training results

Training Loss Epoch Step Validation Loss
4.6836 0.77 10 4.2972
4.6013 1.53 20 4.1099
4.5902 2.3 30 3.9257
4.3479 3.06 40 3.8087
4.1995 3.83 50 3.6779
4.0121 4.59 60 3.5480
3.8925 5.36 70 3.4199
3.7548 6.12 80 3.2936
3.4644 6.89 90 3.1752
3.2484 7.66 100 3.0529
3.2456 8.42 110 2.9345
3.2281 9.19 120 2.8282
2.9944 9.95 130 2.7188
2.8439 10.72 140 2.6208
2.8192 11.48 150 2.5434
2.631 12.25 160 2.4852
2.5715 13.01 170 2.4277
2.5404 13.78 180 2.3876
2.4297 14.55 190 2.3507
2.4243 15.31 200 2.3110
2.4517 16.08 210 2.2733
2.3127 16.84 220 2.2454
2.3058 17.61 230 2.2127
2.1694 18.37 240 2.1808
2.1908 19.14 250 2.1532
2.1474 19.9 260 2.1234
2.1264 20.67 270 2.1139
2.0156 21.44 280 2.0933
2.0264 22.2 290 2.0611
2.0338 22.97 300 2.0448
2.055 23.73 310 2.0302
1.7735 24.5 320 2.0117
1.8999 25.26 330 2.0005
1.8606 26.03 340 1.9795
1.7847 26.79 350 1.9744
1.7478 27.56 360 1.9614
1.8806 28.33 370 1.9514
1.6817 29.09 380 1.9436
1.689 29.86 390 1.9351
1.649 30.62 400 1.9292
1.715 31.39 410 1.9181
1.5847 32.15 420 1.9077
1.6016 32.92 430 1.9112
1.532 33.68 440 1.9018
1.4849 34.45 450 1.9024

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2