Edit model card

w266_model2_BERT_LSTM_1

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6673
  • Accuracy: {'accuracy': 0.586}
  • F1: {'f1': 0.5941271393567649}
  • Precision: {'precision': 0.6305594263991693}
  • Recall: {'recall': 0.586}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5.0

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 125 2.7886 {'accuracy': 0.563} {'f1': 0.5737642190234387} {'precision': 0.6070380044002861} {'recall': 0.563}
No log 2.0 250 3.2762 {'accuracy': 0.567} {'f1': 0.5732065475023022} {'precision': 0.6124992011023714} {'recall': 0.567}
No log 3.0 375 3.1370 {'accuracy': 0.57} {'f1': 0.5799666523302439} {'precision': 0.6122839339063632} {'recall': 0.57}
0.0465 4.0 500 3.3590 {'accuracy': 0.569} {'f1': 0.5796357806282344} {'precision': 0.6093440842818532} {'recall': 0.5689999999999998}
0.0465 5.0 625 3.4285 {'accuracy': 0.57} {'f1': 0.580483223593091} {'precision': 0.618976915416096} {'recall': 0.57}

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.2
  • Tokenizers 0.13.3
Downloads last month
4
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for arindamatcalgm/w266_model2_BERT_LSTM_1

Finetuned
(2085)
this model