|
--- |
|
license: apache-2.0 |
|
base_model: google-bert/bert-base-multilingual-uncased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: bert-base-multilingual-uncased-thesis_arian |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-base-multilingual-uncased-thesis_arian |
|
|
|
This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co./google-bert/bert-base-multilingual-uncased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1946 |
|
- Accuracy: 0.9677 |
|
- Macro f1 score: 0.9677 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro f1 score | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------------:| |
|
| 0.216 | 1.0 | 102 | 0.2649 | 0.9097 | 0.9094 | |
|
| 0.1246 | 2.0 | 204 | 0.1364 | 0.9398 | 0.9398 | |
|
| 0.0888 | 3.0 | 306 | 0.1634 | 0.9462 | 0.9462 | |
|
| 0.0522 | 4.0 | 408 | 0.1550 | 0.9656 | 0.9656 | |
|
| 0.0227 | 5.0 | 510 | 0.2073 | 0.9591 | 0.9591 | |
|
| 0.0065 | 6.0 | 612 | 0.2140 | 0.9677 | 0.9677 | |
|
| 0.0028 | 7.0 | 714 | 0.2005 | 0.9656 | 0.9656 | |
|
| 0.0017 | 8.0 | 816 | 0.1946 | 0.9677 | 0.9677 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.19.0 |
|
- Tokenizers 0.15.2 |
|
|