|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
tags: |
|
- distilabel |
|
- dpo |
|
- rlaif |
|
- rlhf |
|
- merge |
|
- mergekit |
|
datasets: |
|
- argilla/distilabel-intel-orca-dpo-pairs |
|
model-index: |
|
- name: distilabeled-Marcoro14-7B-slerp-full |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 70.65 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=argilla/distilabeled-Marcoro14-7B-slerp-full |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 87.55 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=argilla/distilabeled-Marcoro14-7B-slerp-full |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 65.33 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=argilla/distilabeled-Marcoro14-7B-slerp-full |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 64.21 |
|
source: |
|
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=argilla/distilabeled-Marcoro14-7B-slerp-full |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 82.0 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=argilla/distilabeled-Marcoro14-7B-slerp-full |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 70.66 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=argilla/distilabeled-Marcoro14-7B-slerp-full |
|
name: Open LLM Leaderboard |
|
--- |
|
# ⚗️ distilabeled Marcoro14 7B Slerp |
|
|
|
|
|
<p align="center"> |
|
<a href="https://github.com/argilla-io/distilabel"> |
|
<img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/> |
|
</a> |
|
</p> |
|
|
|
|
|
## Introduction |
|
|
|
This model is a new DPO fine-tune of our new open dataset [argilla/distilabel-intel-orca-dpo-pairs](https://huggingface.co./datasets/argilla/distilabel-intel-orca-dpo-pairs), on the [mlabonne/Marcoro14-7B-slerp](https://huggingface.co./mlabonne/Marcoro14-7B-slerp) model. You can find more information of the "distilabeled" dataset used at this repo [argilla/distilabeled-Hermes-2.5-Mistral-7B](https://huggingface.co./argilla/distilabeled-Hermes-2.5-Mistral-7B/blob/main/README.md#introduction), and visit [distilabel](https://github.com/argilla-io/distilabel). |
|
|
|
The difference between this model and [argilla/distilabeled-Marcoro14-7B-slerp](https://huggingface.co./argilla/distilabeled-Marcoro14-7B-slerp) |
|
is that this model has been fine-tuned for a whole epoch instead instead of 200 steps, so it has seen the whole dataset. |
|
|
|
## Training details |
|
|
|
As we did with [Notus](https://argilla.io/blog/notus7b/), we wanted a reproducible recipe to test the impact of data quality. |
|
|
|
And we're lucky to have so many amazing folks in the open community contributing reproducible, easy-to-use training scripts and recipes. This time, [Maxime Labonne](https://twitter.com/maximelabonne) had shared a [Colab](https://colab.research.google.com/drive/15iFBr1xWgztXvhrj5I9fBv20c7CFOPBE?usp=sharing) to fine-tune OpenHermes with DPO and the original Intel's dataset, perfect! We just updated the base model to [mlabonne/Marcoro14-7B-slerp](https://huggingface.co./mlabonne/Marcoro14-7B-slerp), and applied the same dataset recipe we used for [argilla/distilabeled-Hermes-2.5-Mistral-7B](https://huggingface.co./argilla/distilabeled-Hermes-2.5-Mistral-7B/blob/main/README.md#introduction): |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
# Instead of this: |
|
# dataset = load_dataset("Intel/orca_dpo_pairs", split="train") |
|
|
|
# we did this |
|
dataset = load_dataset("argilla/distilabel-intel-orca-dpo-pairs", split="train") |
|
|
|
dataset = dataset.filter( |
|
lambda r: |
|
r["status"] != "tie" and |
|
r["chosen_score"] >= 8 and |
|
not r["in_gsm8k_train"] |
|
) |
|
``` |
|
|
|
## Benchmark results |
|
For benchmarking we used the famous "Nous" or "Teknium" benchmark. You can find below an overview, including our first experiment with a less ambitious dataset filtering (removing ties and `score>5`). |
|
|
|
For running the benchmark we used another awesome contribution from Maxime: [LLM AutoEval](https://github.com/mlabonne/llm-autoeval), check it out! |
|
|
|
| Model |AGIEval|GPT4ALL|TruthfulQA|Bigbench|Average| |
|
|-------------------------|------:|------:|---------:|-------:|------:| |
|
|[argilla/distilabeled-Marcoro14-7B-slerp-full](https://huggingface.co./argilla/distilabeled-Marcoro14-7B-slerp-full)| 45.17| **76.59**| 64.68| **48.15**| **58.65**| |
|
|[argilla/distilabeled-Marcoro14-7B-slerp](https://huggingface.co./argilla/distilabeled-Marcoro14-7B-slerp)| **45.4**| 76.47| **65.46**| 47.19| 58.63| |
|
|[Marcoro14-7B-slerp](https://huggingface.co./mlabonne/Marcoro14-7B-slerp) | 44.66| 76.24| 64.15| 45.64| 57.67| |
|
|[argilla/distilabeled-Hermes-2.5-Mistral-7B](https://huggingface.co./argilla/distilabeled-Hermes-2.5-Mistral-7B) | 44.64 | 73.35 | 55.96 | 42.21 | 54.04 | |
|
|
|
### Training Hardware |
|
|
|
We used 1 x A100 80GB in runpod for less than 2 hours. |
|
|
|
## Acknowledgements |
|
|
|
We'd like to thank the amazing open community and in particular: |
|
|
|
* The Intel team for publishing a great open dataset and show how well it worked in the first place |
|
* Teknium and NousResearch for their awesome work and models. |
|
* Maxime for sharing such great resources. |
|
|
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_argilla__distilabeled-Marcoro14-7B-slerp-full) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |73.40| |
|
|AI2 Reasoning Challenge (25-Shot)|70.65| |
|
|HellaSwag (10-Shot) |87.55| |
|
|MMLU (5-Shot) |65.33| |
|
|TruthfulQA (0-shot) |64.21| |
|
|Winogrande (5-shot) |82.00| |
|
|GSM8k (5-shot) |70.66| |
|
|
|
|