gabrielmbmb's picture
gabrielmbmb HF staff
Adding Evaluation Results (#1)
7797fde verified
---
language:
- en
license: apache-2.0
tags:
- distilabel
- dpo
- rlaif
- rlhf
- merge
- mergekit
datasets:
- argilla/distilabel-intel-orca-dpo-pairs
model-index:
- name: distilabeled-Marcoro14-7B-slerp-full
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 70.65
name: normalized accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=argilla/distilabeled-Marcoro14-7B-slerp-full
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.55
name: normalized accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=argilla/distilabeled-Marcoro14-7B-slerp-full
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.33
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=argilla/distilabeled-Marcoro14-7B-slerp-full
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 64.21
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=argilla/distilabeled-Marcoro14-7B-slerp-full
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 82.0
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=argilla/distilabeled-Marcoro14-7B-slerp-full
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 70.66
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=argilla/distilabeled-Marcoro14-7B-slerp-full
name: Open LLM Leaderboard
---
# ⚗️ distilabeled Marcoro14 7B Slerp
<p align="center">
<a href="https://github.com/argilla-io/distilabel">
<img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/>
</a>
</p>
## Introduction
This model is a new DPO fine-tune of our new open dataset [argilla/distilabel-intel-orca-dpo-pairs](https://huggingface.co./datasets/argilla/distilabel-intel-orca-dpo-pairs), on the [mlabonne/Marcoro14-7B-slerp](https://huggingface.co./mlabonne/Marcoro14-7B-slerp) model. You can find more information of the "distilabeled" dataset used at this repo [argilla/distilabeled-Hermes-2.5-Mistral-7B](https://huggingface.co./argilla/distilabeled-Hermes-2.5-Mistral-7B/blob/main/README.md#introduction), and visit [distilabel](https://github.com/argilla-io/distilabel).
The difference between this model and [argilla/distilabeled-Marcoro14-7B-slerp](https://huggingface.co./argilla/distilabeled-Marcoro14-7B-slerp)
is that this model has been fine-tuned for a whole epoch instead instead of 200 steps, so it has seen the whole dataset.
## Training details
As we did with [Notus](https://argilla.io/blog/notus7b/), we wanted a reproducible recipe to test the impact of data quality.
And we're lucky to have so many amazing folks in the open community contributing reproducible, easy-to-use training scripts and recipes. This time, [Maxime Labonne](https://twitter.com/maximelabonne) had shared a [Colab](https://colab.research.google.com/drive/15iFBr1xWgztXvhrj5I9fBv20c7CFOPBE?usp=sharing) to fine-tune OpenHermes with DPO and the original Intel's dataset, perfect! We just updated the base model to [mlabonne/Marcoro14-7B-slerp](https://huggingface.co./mlabonne/Marcoro14-7B-slerp), and applied the same dataset recipe we used for [argilla/distilabeled-Hermes-2.5-Mistral-7B](https://huggingface.co./argilla/distilabeled-Hermes-2.5-Mistral-7B/blob/main/README.md#introduction):
```python
from datasets import load_dataset
# Instead of this:
# dataset = load_dataset("Intel/orca_dpo_pairs", split="train")
# we did this
dataset = load_dataset("argilla/distilabel-intel-orca-dpo-pairs", split="train")
dataset = dataset.filter(
lambda r:
r["status"] != "tie" and
r["chosen_score"] >= 8 and
not r["in_gsm8k_train"]
)
```
## Benchmark results
For benchmarking we used the famous "Nous" or "Teknium" benchmark. You can find below an overview, including our first experiment with a less ambitious dataset filtering (removing ties and `score>5`).
For running the benchmark we used another awesome contribution from Maxime: [LLM AutoEval](https://github.com/mlabonne/llm-autoeval), check it out!
| Model |AGIEval|GPT4ALL|TruthfulQA|Bigbench|Average|
|-------------------------|------:|------:|---------:|-------:|------:|
|[argilla/distilabeled-Marcoro14-7B-slerp-full](https://huggingface.co./argilla/distilabeled-Marcoro14-7B-slerp-full)| 45.17| **76.59**| 64.68| **48.15**| **58.65**|
|[argilla/distilabeled-Marcoro14-7B-slerp](https://huggingface.co./argilla/distilabeled-Marcoro14-7B-slerp)| **45.4**| 76.47| **65.46**| 47.19| 58.63|
|[Marcoro14-7B-slerp](https://huggingface.co./mlabonne/Marcoro14-7B-slerp) | 44.66| 76.24| 64.15| 45.64| 57.67|
|[argilla/distilabeled-Hermes-2.5-Mistral-7B](https://huggingface.co./argilla/distilabeled-Hermes-2.5-Mistral-7B) | 44.64 | 73.35 | 55.96 | 42.21 | 54.04 |
### Training Hardware
We used 1 x A100 80GB in runpod for less than 2 hours.
## Acknowledgements
We'd like to thank the amazing open community and in particular:
* The Intel team for publishing a great open dataset and show how well it worked in the first place
* Teknium and NousResearch for their awesome work and models.
* Maxime for sharing such great resources.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_argilla__distilabeled-Marcoro14-7B-slerp-full)
| Metric |Value|
|---------------------------------|----:|
|Avg. |73.40|
|AI2 Reasoning Challenge (25-Shot)|70.65|
|HellaSwag (10-Shot) |87.55|
|MMLU (5-Shot) |65.33|
|TruthfulQA (0-shot) |64.21|
|Winogrande (5-shot) |82.00|
|GSM8k (5-shot) |70.66|