results / README.md
ardi555's picture
ardi555/bert_base_uncased_reuters21578_reducedto15
83caf32 verified
metadata
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: results
    results: []

results

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0488
  • Accuracy: 0.8207
  • Precision: 0.9268
  • Recall: 0.8840
  • F1: 0.9030

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.0242 0.9971 173 0.0552 0.8452 0.8964 0.8905 0.8883
0.0298 2.0 347 0.0488 0.8207 0.9268 0.8840 0.9030
0.0236 2.9971 520 0.0484 0.8214 0.9338 0.8680 0.8971
0.0298 4.0 694 0.0498 0.8251 0.9357 0.8719 0.9004
0.0232 4.9971 867 0.0477 0.8281 0.9381 0.8732 0.9020

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1