Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: jingyeom/seal3.1.6n_7b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 9d75585004ec1a4d_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/9d75585004ec1a4d_train_data.json
  type:
    field_instruction: instruction
    field_output: output
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: ardaspear/f7e42723-d67a-4df1-b6e8-db2914ccca27
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 8
mlflow_experiment_name: /tmp/9d75585004ec1a4d_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: 0e0b69fa-19af-40d3-bac3-527bf1c51922
wandb_project: Gradients-On-Five
wandb_run: your_name
wandb_runid: 0e0b69fa-19af-40d3-bac3-527bf1c51922
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null

f7e42723-d67a-4df1-b6e8-db2914ccca27

This model is a fine-tuned version of jingyeom/seal3.1.6n_7b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1439

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 50

Training results

Training Loss Epoch Step Validation Loss
No log 0.0023 1 2.1090
2.0311 0.0114 5 1.8216
1.5429 0.0227 10 1.3752
1.2802 0.0341 15 1.2539
1.2372 0.0454 20 1.2034
1.1511 0.0568 25 1.1746
1.1164 0.0681 30 1.1583
1.111 0.0795 35 1.1508
1.0635 0.0909 40 1.1462
1.1512 0.1022 45 1.1442
1.1739 0.1136 50 1.1439

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
8
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for ardaspear/f7e42723-d67a-4df1-b6e8-db2914ccca27

Adapter
(21)
this model