metadata
license: llama3.1
base_model: Crystalcareai/Meta-llama-3.1-8b-instruct
tags:
- generated_from_trainer
model-index:
- name: outputs/out-myalee
results: []
See axolotl config
axolotl version: 0.4.1
base_model: Crystalcareai/Meta-llama-3.1-8b-instruct
model_type: AutoTokenizer
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: /workspace/data/myalee
type: alpaca
- path: mlabonne/FineTome-100k
type: sharegpt
chat_template: llama3
dataset_prepared_path: last_run_prepared
# val_set_size: 0.05
output_dir: ./outputs/out-myalee
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
unfrozen_parameters:
- ^lm_head.weight$
- ^model.embed_tokens.weight$
# input_layernorm layers
- model.layers.0.input_layernorm
- model.layers.1.input_layernorm
- model.layers.2.input_layernorm
- model.layers.3.input_layernorm
- model.layers.4.input_layernorm
- model.layers.5.input_layernorm
- model.layers.6.input_layernorm
- model.layers.7.input_layernorm
- model.layers.8.input_layernorm
- model.layers.9.input_layernorm
- model.layers.10.input_layernorm
- model.layers.11.input_layernorm
- model.layers.12.input_layernorm
- model.layers.13.input_layernorm
- model.layers.14.input_layernorm
- model.layers.15.input_layernorm
# lm_head layers
# mlp.down_proj layers
- model.layers.1.mlp.down_proj
- model.layers.0.mlp.down_proj
- model.layers.30.mlp.down_proj
- model.layers.2.mlp.down_proj
- model.layers.21.mlp.down_proj
- model.layers.22.mlp.down_proj
- model.layers.29.mlp.down_proj
- model.layers.5.mlp.down_proj
- model.layers.4.mlp.down_proj
- model.layers.20.mlp.down_proj
- model.layers.23.mlp.down_proj
- model.layers.19.mlp.down_proj
- model.layers.3.mlp.down_proj
- model.layers.17.mlp.down_proj
- model.layers.6.mlp.down_proj
- model.layers.31.mlp.down_proj
# mlp.gate_proj layers
- model.layers.1.mlp.gate_proj
- model.layers.2.mlp.gate_proj
- model.layers.3.mlp.gate_proj
- model.layers.4.mlp.gate_proj
- model.layers.0.mlp.gate_proj
- model.layers.25.mlp.gate_proj
- model.layers.26.mlp.gate_proj
- model.layers.5.mlp.gate_proj
- model.layers.24.mlp.gate_proj
- model.layers.28.mlp.gate_proj
- model.layers.23.mlp.gate_proj
- model.layers.27.mlp.gate_proj
- model.layers.21.mlp.gate_proj
- model.layers.22.mlp.gate_proj
- model.layers.29.mlp.gate_proj
- model.layers.20.mlp.gate_proj
# mlp.up_proj layers
- model.layers.4.mlp.up_proj
- model.layers.3.mlp.up_proj
- model.layers.0.mlp.up_proj
- model.layers.5.mlp.up_proj
- model.layers.7.mlp.up_proj
- model.layers.6.mlp.up_proj
- model.layers.2.mlp.up_proj
- model.layers.1.mlp.up_proj
- model.layers.8.mlp.up_proj
- model.layers.12.mlp.up_proj
- model.layers.14.mlp.up_proj
- model.layers.9.mlp.up_proj
- model.layers.15.mlp.up_proj
- model.layers.17.mlp.up_proj
- model.layers.13.mlp.up_proj
- model.layers.19.mlp.up_proj
# model.embed_tokens layers
# model.norm layers
# post_attention_layernorm layers
- model.layers.0.post_attention_layernorm
- model.layers.1.post_attention_layernorm
- model.layers.2.post_attention_layernorm
- model.layers.3.post_attention_layernorm
- model.layers.4.post_attention_layernorm
- model.layers.5.post_attention_layernorm
- model.layers.6.post_attention_layernorm
- model.layers.7.post_attention_layernorm
- model.layers.8.post_attention_layernorm
- model.layers.9.post_attention_layernorm
- model.layers.10.post_attention_layernorm
- model.layers.11.post_attention_layernorm
- model.layers.12.post_attention_layernorm
- model.layers.13.post_attention_layernorm
- model.layers.14.post_attention_layernorm
- model.layers.15.post_attention_layernorm
# self_attn.k_proj layers
- model.layers.29.self_attn.k_proj
- model.layers.25.self_attn.k_proj
- model.layers.23.self_attn.k_proj
- model.layers.28.self_attn.k_proj
- model.layers.21.self_attn.k_proj
- model.layers.19.self_attn.k_proj
- model.layers.22.self_attn.k_proj
- model.layers.20.self_attn.k_proj
- model.layers.24.self_attn.k_proj
- model.layers.31.self_attn.k_proj
- model.layers.27.self_attn.k_proj
- model.layers.26.self_attn.k_proj
- model.layers.17.self_attn.k_proj
- model.layers.11.self_attn.k_proj
- model.layers.18.self_attn.k_proj
- model.layers.14.self_attn.k_proj
# self_attn.o_proj layers
- model.layers.14.self_attn.o_proj
- model.layers.7.self_attn.o_proj
- model.layers.5.self_attn.o_proj
- model.layers.11.self_attn.o_proj
- model.layers.6.self_attn.o_proj
- model.layers.24.self_attn.o_proj
- model.layers.9.self_attn.o_proj
- model.layers.13.self_attn.o_proj
- model.layers.10.self_attn.o_proj
- model.layers.12.self_attn.o_proj
- model.layers.8.self_attn.o_proj
- model.layers.25.self_attn.o_proj
- model.layers.21.self_attn.o_proj
- model.layers.23.self_attn.o_proj
- model.layers.15.self_attn.o_proj
- model.layers.16.self_attn.o_proj
# self_attn.q_proj layers
- model.layers.8.self_attn.q_proj
- model.layers.13.self_attn.q_proj
- model.layers.9.self_attn.q_proj
- model.layers.14.self_attn.q_proj
- model.layers.10.self_attn.q_proj
- model.layers.11.self_attn.q_proj
- model.layers.0.self_attn.q_proj
- model.layers.15.self_attn.q_proj
- model.layers.1.self_attn.q_proj
- model.layers.6.self_attn.q_proj
- model.layers.5.self_attn.q_proj
- model.layers.7.self_attn.q_proj
- model.layers.12.self_attn.q_proj
- model.layers.16.self_attn.q_proj
- model.layers.17.self_attn.q_proj
- model.layers.26.self_attn.q_proj
# self_attn.v_proj layers
- model.layers.26.self_attn.v_proj
- model.layers.17.self_attn.v_proj
- model.layers.3.self_attn.v_proj
- model.layers.28.self_attn.v_proj
- model.layers.29.self_attn.v_proj
- model.layers.21.self_attn.v_proj
- model.layers.15.self_attn.v_proj
- model.layers.16.self_attn.v_proj
- model.layers.20.self_attn.v_proj
- model.layers.25.self_attn.v_proj
- model.layers.6.self_attn.v_proj
- model.layers.23.self_attn.v_proj
- model.layers.4.self_attn.v_proj
- model.layers.1.self_attn.v_proj
- model.layers.22.self_attn.v_proj
- model.layers.14.self_attn.v_proj
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 4
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 25
# evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
outputs/out-myalee
This model is a fine-tuned version of Crystalcareai/Meta-llama-3.1-8b-instruct on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 25
- num_epochs: 4
Training results
Framework versions
- Transformers 4.43.1
- Pytorch 2.3.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1