Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: Qwen/Qwen2-7B
trust_remote_code: true
chat_template: chatml

load_in_8bit: false
# load_in_4bit: true
strict: false

datasets:
  - path: arcee-ai/MyAlee-Education-Instructions-V2
    type: sharegpt
    field_messages: messages
  - path: Crystalcareai/Orca-Reka
    type: alpaca

dataset_prepared_path:
val_set_size: 0
output_dir: ./outputs/out

sequence_len: 16384
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

# adapter: qlora
# lora_model_dir:
# lora_r: 32
# lora_alpha: 64
# lora_dropout: 0.05
# lora_target_linear: true
# lora_fan_in_fan_out:

# wandb_project: qwen2-education
# wandb_entity:
# wandb_watch:
# wandb_name:
# wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 5
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 1e-5

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 0
saves_per_epoch: 1
max_total_saves: 2
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.1
# fsdp:
#   - full_shard
#   - auto_wrap
# fsdp_config:
#   fsdp_limit_all_gathers: true
#   fsdp_sync_module_states: true
#   fsdp_offload_params: true
#   fsdp_use_orig_params: false
#   fsdp_cpu_ram_efficient_loading: true
#   fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
#   fsdp_transformer_layer_cls_to_wrap: Qwen2DecoderLayer
#   fsdp_state_dict_type: FULL_STATE_DICT
special_tokens:
  pad_token: "<|endoftext|>"
  eos_token: "<|im_end|>"

outputs/out

This model is a fine-tuned version of Qwen/Qwen2-7B on the None dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 5

Training results

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
9
Safetensors
Model size
7.62B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for arcee-ai/MyAlee-Qwen-Instruct-v2-16k-v1

Base model

Qwen/Qwen2-7B
Finetuned
(44)
this model
Quantizations
2 models