# Load model directly | |
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments | |
tokenizer = AutoTokenizer.from_pretrained("ai21labs/Jamba-tiny-random") | |
model = AutoModelForCausalLM.from_pretrained("ai21labs/Jamba-tiny-random", trust_remote_code=True) | |
from datasets import load_dataset | |
from trl import SFTTrainer | |
from peft import LoraConfig | |
dataset=load_dataset("rajeshradhakrishnan/malayalam_wiki") | |
training_args = TrainingArguments( | |
output_dir="./results", | |
num_train_epochs=3, | |
per_device_train_batch_size=3, | |
logging_dir='./logs', | |
logging_steps=10, | |
learning_rate=2e-3 | |
) | |
lora_config = LoraConfig( | |
r=8, | |
target_modules=["embed_tokens", "x_proj", "in_proj", "out_proj"], | |
task_type="CAUSAL_LM", | |
bias="none" | |
) | |
trainer = SFTTrainer( | |
model=model, | |
tokenizer=tokenizer, | |
args=training_args, | |
peft_config=lora_config, | |
train_dataset=dataset["train"], | |
dataset_text_field="text", | |
) | |
trainer.train() |