added finetuning and trainer scripts
Browse files- finetuning.py +70 -0
- trainer.py +38 -0
finetuning.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
from trl import SFTTrainer
|
3 |
+
from peft import LoraConfig
|
4 |
+
import torch
|
5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, BitsAndBytesConfig
|
6 |
+
|
7 |
+
#Check if you do not have any import issue to use the Fast Mamba Kernel
|
8 |
+
#Will (very appropriately) break before loading the weights.
|
9 |
+
import mamba_ssm
|
10 |
+
|
11 |
+
#With 4bit quants have to manually correct modeling_jamba.py on l. 1070:
|
12 |
+
#if not is_fast_path_available or "cuda" not in self.x_proj.weight.device.type:
|
13 |
+
#becoming:
|
14 |
+
#if not is_fast_path_available:
|
15 |
+
|
16 |
+
quantization_config = BitsAndBytesConfig(
|
17 |
+
load_in_4bit=True,
|
18 |
+
llm_int4_skip_modules=["mamba"] #Maybe not necessary (per axoltl) but to test.
|
19 |
+
)
|
20 |
+
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained("jamba")
|
22 |
+
|
23 |
+
dataset = load_dataset("VishnuPJ/Malayalam_CultureX_IndicCorp_SMC", split="train")
|
24 |
+
training_args = TrainingArguments(
|
25 |
+
output_dir="./results",
|
26 |
+
num_train_epochs=1,
|
27 |
+
per_device_train_batch_size=1,
|
28 |
+
gradient_accumulation_steps=4,
|
29 |
+
optim = "adamw_8bit",
|
30 |
+
max_grad_norm = 0.3,
|
31 |
+
weight_decay = 0.001,
|
32 |
+
warmup_ratio = 0.03,
|
33 |
+
gradient_checkpointing=True,
|
34 |
+
logging_dir='./logs',
|
35 |
+
logging_steps=1,
|
36 |
+
max_steps=50,
|
37 |
+
group_by_length=True,
|
38 |
+
lr_scheduler_type = "linear",
|
39 |
+
learning_rate=2e-3
|
40 |
+
)
|
41 |
+
lora_config = LoraConfig(
|
42 |
+
lora_alpha=16,
|
43 |
+
lora_dropout=0.05,
|
44 |
+
init_lora_weights=False,
|
45 |
+
r=8,
|
46 |
+
target_modules=["embed_tokens", "x_proj", "in_proj", "out_proj"],
|
47 |
+
task_type="CAUSAL_LM",
|
48 |
+
bias="none"
|
49 |
+
)
|
50 |
+
|
51 |
+
model = AutoModelForCausalLM.from_pretrained(
|
52 |
+
"jamba",
|
53 |
+
trust_remote_code=True,
|
54 |
+
device_map='auto',
|
55 |
+
attn_implementation="flash_attention_2",
|
56 |
+
quantization_config=quantization_config,
|
57 |
+
use_mamba_kernels=True
|
58 |
+
)
|
59 |
+
|
60 |
+
trainer = SFTTrainer(
|
61 |
+
model=model,
|
62 |
+
tokenizer=tokenizer,
|
63 |
+
args=training_args,
|
64 |
+
peft_config=lora_config,
|
65 |
+
train_dataset=dataset,
|
66 |
+
max_seq_length = 256,
|
67 |
+
dataset_text_field="quote",
|
68 |
+
)
|
69 |
+
|
70 |
+
trainer.train()
|
trainer.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Load model directly
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments
|
3 |
+
|
4 |
+
tokenizer = AutoTokenizer.from_pretrained("ai21labs/Jamba-tiny-random")
|
5 |
+
model = AutoModelForCausalLM.from_pretrained("ai21labs/Jamba-tiny-random", trust_remote_code=True)
|
6 |
+
|
7 |
+
from datasets import load_dataset
|
8 |
+
from trl import SFTTrainer
|
9 |
+
from peft import LoraConfig
|
10 |
+
|
11 |
+
dataset=load_dataset("rajeshradhakrishnan/malayalam_wiki")
|
12 |
+
|
13 |
+
training_args = TrainingArguments(
|
14 |
+
output_dir="./results",
|
15 |
+
num_train_epochs=3,
|
16 |
+
per_device_train_batch_size=3,
|
17 |
+
logging_dir='./logs',
|
18 |
+
logging_steps=10,
|
19 |
+
learning_rate=2e-3
|
20 |
+
)
|
21 |
+
|
22 |
+
lora_config = LoraConfig(
|
23 |
+
r=8,
|
24 |
+
target_modules=["embed_tokens", "x_proj", "in_proj", "out_proj"],
|
25 |
+
task_type="CAUSAL_LM",
|
26 |
+
bias="none"
|
27 |
+
)
|
28 |
+
|
29 |
+
trainer = SFTTrainer(
|
30 |
+
model=model,
|
31 |
+
tokenizer=tokenizer,
|
32 |
+
args=training_args,
|
33 |
+
peft_config=lora_config,
|
34 |
+
train_dataset=dataset["train"],
|
35 |
+
dataset_text_field="text",
|
36 |
+
)
|
37 |
+
|
38 |
+
trainer.train()
|