whisper-large-v2-ur / README.md
anuragshas's picture
update model card README.md
1b392e5
|
raw
history blame
2.06 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - common_voice_11_0
metrics:
  - wer
model-index:
  - name: openai/whisper-large-v2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_11_0
          type: common_voice_11_0
          config: ur
          split: test
          args: ur
        metrics:
          - name: Wer
            type: wer
            value: 23.893256903830512

openai/whisper-large-v2

This model is a fine-tuned version of openai/whisper-large-v2 on the common_voice_11_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6123
  • Wer: 23.8933

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Wer
0.1935 1.1 200 0.4241 29.6526
0.0649 3.09 400 0.4683 26.0622
0.0156 5.08 600 0.5444 25.8104
0.0039 7.08 800 0.5947 23.5021
0.0019 9.07 1000 0.6123 23.8933

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2