metadata
language:
- mr
license: apache-2.0
tags:
- generated_from_trainer
- robust-speech-event
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_8_0
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-300m-mr
results:
- task:
type: automatic-speech-recognition
name: Speech Recognition
dataset:
type: mozilla-foundation/common_voice_8_0
name: Common Voice 8
args: mr
metrics:
- type: wer
value: 32.811
name: Test WER
- name: Test CER
type: cer
value: 7.692
wav2vec2-large-xls-r-300m-mr
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:
- Loss: 0.5479
- Wer: 0.5740
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 200
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
3.7378 | 18.18 | 400 | 3.5047 | 1.0 |
3.1707 | 36.36 | 800 | 2.6166 | 0.9912 |
1.4942 | 54.55 | 1200 | 0.5778 | 0.6927 |
1.2058 | 72.73 | 1600 | 0.5168 | 0.6362 |
1.0558 | 90.91 | 2000 | 0.5105 | 0.6069 |
0.9488 | 109.09 | 2400 | 0.5151 | 0.6089 |
0.8588 | 127.27 | 2800 | 0.5157 | 0.5989 |
0.7991 | 145.45 | 3200 | 0.5179 | 0.5740 |
0.7545 | 163.64 | 3600 | 0.5348 | 0.5740 |
0.7144 | 181.82 | 4000 | 0.5518 | 0.5724 |
0.7041 | 200.0 | 4400 | 0.5479 | 0.5740 |
Framework versions
- Transformers 4.16.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.1
- Tokenizers 0.11.0
Evaluation Commands
- To evaluate on
mozilla-foundation/common_voice_8_0
with splittest
python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-mr --dataset mozilla-foundation/common_voice_8_0 --config mr --split test
Inference With LM
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "anuragshas/wav2vec2-large-xls-r-300m-mr"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "mr", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
# => "या पानास लेखाचे स्वरूप यायला हावे"
Eval results on Common Voice 8 "test" (WER):
Without LM | With LM (run ./eval.py ) |
---|---|
49.177 | 32.811 |