Edit model card

XLS-R-300M - Hausa

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6094
  • Wer: 0.5234

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 13
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Wer
2.9599 6.56 400 2.8650 1.0
2.7357 13.11 800 2.7377 0.9951
1.3012 19.67 1200 0.6686 0.7111
1.0454 26.23 1600 0.5686 0.6137
0.9069 32.79 2000 0.5576 0.5815
0.82 39.34 2400 0.5502 0.5591
0.7413 45.9 2800 0.5970 0.5586
0.6872 52.46 3200 0.5817 0.5428
0.634 59.02 3600 0.5636 0.5314
0.6022 65.57 4000 0.5780 0.5229
0.5705 72.13 4400 0.6036 0.5323
0.5408 78.69 4800 0.6119 0.5336
0.5225 85.25 5200 0.6105 0.5270
0.5265 91.8 5600 0.6034 0.5231
0.5154 98.36 6000 0.6094 0.5234

Framework versions

  • Transformers 4.16.1
  • Pytorch 1.10.0+cu111
  • Datasets 1.18.2
  • Tokenizers 0.11.0

Evaluation Commands

  1. To evaluate on mozilla-foundation/common_voice_8_0 with split test
python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-ha-cv8 --dataset mozilla-foundation/common_voice_8_0 --config ha --split test

Inference With LM

import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "anuragshas/wav2vec2-large-xls-r-300m-ha-cv8"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "ha", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
    logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
# => "kakin hade ya ke da kyautar"

Eval results on Common Voice 8 "test" (WER):

Without LM With LM (run ./eval.py)
47.821 36.295
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train anuragshas/wav2vec2-large-xls-r-300m-ha-cv8

Evaluation results