|
--- |
|
tags: |
|
- vision |
|
- ocr |
|
- trocr |
|
- pytorch |
|
license: apache-2.0 |
|
datasets: |
|
- custom-captcha-dataset |
|
metrics: |
|
- cer |
|
model_name: anuashok/ocr-captcha-v3 |
|
base_model: |
|
- microsoft/trocr-base-printed |
|
--- |
|
|
|
# anuashok/ocr-captcha-v3 |
|
|
|
This model is a fine-tuned version of [microsoft/trocr-base-printed](https://huggingface.co./microsoft/trocr-base-printed) on Captchas of the type shown below |
|
|
|
|
|
 |
|
|
|
|
|
|
|
 |
|
|
|
|
|
## Training Summary |
|
|
|
- **CER (Character Error Rate)**: 0.01394585726004922 |
|
- **Hyperparameters**: |
|
- **Learning Rate**: 1.5078922700531405e-05 |
|
- **Batch Size**: 16 |
|
- **Num Epochs**: 7 |
|
- **Warmup Ratio**: 0.14813004670666596 |
|
- **Weight Decay**: 0.017176551931326833 |
|
- **Num Beams**: 2 |
|
- **Length Penalty**: 1.3612823161368288 |
|
|
|
## Usage |
|
|
|
```python |
|
from transformers import VisionEncoderDecoderModel, TrOCRProcessor |
|
import torch |
|
from PIL import Image |
|
|
|
# Load model and processor |
|
processor = TrOCRProcessor.from_pretrained("anuashok/ocr-captcha-v3") |
|
model = VisionEncoderDecoderModel.from_pretrained("anuashok/ocr-captcha-v3") |
|
|
|
# Load image |
|
image = Image.open('path_to_your_image.jpg').convert("RGB") |
|
# Load and preprocess image for display |
|
image = Image.open(image_path).convert("RGBA") |
|
# Create white background |
|
background = Image.new("RGBA", image.size, (255, 255, 255)) |
|
combined = Image.alpha_composite(background, image).convert("RGB") |
|
|
|
# Prepare image |
|
pixel_values = processor(combined, return_tensors="pt").pixel_values |
|
|
|
# Generate text |
|
generated_ids = model.generate(pixel_values) |
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
print(generated_text) |