nace-pl-v2 / README.md
annazdr's picture
Add new SentenceTransformer model.
d2bbe26 verified
|
raw
history blame
48.5 kB
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:12822
- loss:BatchAllTripletLoss
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
datasets: []
widget:
- source_sentence: parcel-packing and gift-wrapping
sentences:
- retail sale of cleaning products, e
- cafeterias
- ' '
- source_sentence: Sprzedaż detaliczna mięsa i wyrobów z mięsa
sentences:
- ' '
- ' revenues from sale of advertising space'
- g
- source_sentence: g
sentences:
- installation of the system and provision of training and support to users of the
system- activities of auditing and certification of computing and data processing
infrastructures and services
- ' revenues from sale of advertising space'
- 47.75 Retail sale of cosmetic and toilet articles
- source_sentence: lighterage, salvage activities
sentences:
- hairstyling
- ' this class also includes: cladding of metal pipes with plastics'
- usługi pośrednictwa w zakresie transportu pasażerskiego
- source_sentence: manufacture of glass mirrors
sentences:
- manufacture of electroplating machinery
- ' protective face shields/visors, of plastics, e'
- cow peas
pipeline_tag: sentence-similarity
---
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co./sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co./sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision bf3bf13ab40c3157080a7ab344c831b9ad18b5eb -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("annazdr/nace-pl-v2")
# Run inference
sentences = [
'manufacture of glass mirrors',
' protective face shields/visors, of plastics, e',
'manufacture of electroplating machinery',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 12,822 training samples
* Columns: <code>sentence_0</code> and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | label |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| type | string | int |
| details | <ul><li>min: 2 tokens</li><li>mean: 15.14 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>0: ~0.20%</li><li>1: ~0.10%</li><li>2: ~0.20%</li><li>4: ~0.30%</li><li>5: ~0.10%</li><li>6: ~0.10%</li><li>7: ~0.40%</li><li>9: ~0.10%</li><li>10: ~0.60%</li><li>11: ~0.20%</li><li>12: ~0.30%</li><li>13: ~0.30%</li><li>14: ~0.10%</li><li>15: ~0.10%</li><li>16: ~0.40%</li><li>17: ~0.10%</li><li>18: ~0.40%</li><li>20: ~0.40%</li><li>22: ~0.30%</li><li>23: ~0.30%</li><li>24: ~0.30%</li><li>25: ~0.40%</li><li>27: ~0.20%</li><li>28: ~0.10%</li><li>30: ~0.10%</li><li>32: ~0.10%</li><li>33: ~0.20%</li><li>34: ~0.10%</li><li>35: ~0.30%</li><li>37: ~0.30%</li><li>38: ~0.30%</li><li>39: ~0.30%</li><li>41: ~0.20%</li><li>42: ~0.10%</li><li>43: ~0.20%</li><li>44: ~0.50%</li><li>46: ~0.10%</li><li>48: ~0.20%</li><li>49: ~0.30%</li><li>50: ~0.30%</li><li>51: ~0.20%</li><li>52: ~0.40%</li><li>53: ~0.30%</li><li>54: ~0.20%</li><li>55: ~0.20%</li><li>56: ~0.20%</li><li>58: ~0.20%</li><li>59: ~0.10%</li><li>60: ~0.30%</li><li>61: ~0.20%</li><li>63: ~0.40%</li><li>64: ~0.30%</li><li>65: ~0.10%</li><li>66: ~0.70%</li><li>68: ~0.10%</li><li>69: ~0.20%</li><li>70: ~0.50%</li><li>71: ~0.30%</li><li>72: ~0.10%</li><li>73: ~0.40%</li><li>74: ~0.20%</li><li>75: ~0.30%</li><li>76: ~0.20%</li><li>78: ~0.10%</li><li>79: ~0.10%</li><li>80: ~0.10%</li><li>81: ~0.30%</li><li>82: ~0.30%</li><li>83: ~0.30%</li><li>84: ~0.10%</li><li>85: ~0.20%</li><li>86: ~0.20%</li><li>89: ~0.10%</li><li>90: ~0.10%</li><li>91: ~0.30%</li><li>92: ~0.20%</li><li>93: ~0.10%</li><li>94: ~0.30%</li><li>95: ~0.20%</li><li>96: ~0.20%</li><li>97: ~0.40%</li><li>98: ~0.70%</li><li>99: ~0.20%</li><li>100: ~0.50%</li><li>101: ~0.20%</li><li>102: ~0.10%</li><li>103: ~0.10%</li><li>104: ~0.20%</li><li>106: ~0.10%</li><li>108: ~0.20%</li><li>110: ~0.10%</li><li>111: ~0.10%</li><li>112: ~0.20%</li><li>115: ~0.10%</li><li>116: ~0.10%</li><li>119: ~0.30%</li><li>120: ~0.10%</li><li>121: ~0.20%</li><li>123: ~0.10%</li><li>125: ~0.20%</li><li>126: ~0.10%</li><li>127: ~0.20%</li><li>128: ~0.40%</li><li>130: ~0.20%</li><li>134: ~0.10%</li><li>135: ~0.10%</li><li>136: ~0.10%</li><li>138: ~0.10%</li><li>139: ~0.10%</li><li>140: ~0.20%</li><li>141: ~0.10%</li><li>142: ~0.10%</li><li>143: ~0.40%</li><li>144: ~0.10%</li><li>148: ~0.10%</li><li>149: ~0.10%</li><li>150: ~0.30%</li><li>151: ~0.10%</li><li>152: ~0.30%</li><li>153: ~0.40%</li><li>154: ~0.50%</li><li>156: ~0.10%</li><li>157: ~0.30%</li><li>158: ~0.20%</li><li>159: ~0.30%</li><li>160: ~0.10%</li><li>161: ~0.10%</li><li>162: ~0.10%</li><li>163: ~0.10%</li><li>165: ~0.10%</li><li>166: ~0.20%</li><li>167: ~0.20%</li><li>168: ~0.20%</li><li>170: ~0.10%</li><li>171: ~0.10%</li><li>172: ~0.10%</li><li>173: ~0.10%</li><li>174: ~0.20%</li><li>176: ~0.20%</li><li>178: ~0.10%</li><li>179: ~0.10%</li><li>181: ~0.10%</li><li>182: ~0.30%</li><li>183: ~0.30%</li><li>184: ~0.20%</li><li>185: ~0.30%</li><li>186: ~0.40%</li><li>187: ~0.20%</li><li>188: ~0.40%</li><li>189: ~0.20%</li><li>190: ~0.50%</li><li>191: ~0.30%</li><li>192: ~0.40%</li><li>193: ~0.10%</li><li>196: ~0.20%</li><li>197: ~0.20%</li><li>198: ~0.30%</li><li>199: ~0.60%</li><li>200: ~0.50%</li><li>201: ~0.10%</li><li>202: ~0.10%</li><li>203: ~0.30%</li><li>204: ~0.10%</li><li>205: ~0.30%</li><li>206: ~0.40%</li><li>208: ~0.20%</li><li>210: ~0.20%</li><li>211: ~0.40%</li><li>212: ~0.20%</li><li>214: ~0.30%</li><li>215: ~0.10%</li><li>217: ~0.30%</li><li>218: ~0.20%</li><li>220: ~0.30%</li><li>221: ~0.10%</li><li>222: ~0.20%</li><li>223: ~0.10%</li><li>225: ~0.10%</li><li>226: ~0.10%</li><li>227: ~0.20%</li><li>228: ~0.10%</li><li>230: ~0.10%</li><li>231: ~0.30%</li><li>233: ~0.10%</li><li>234: ~0.10%</li><li>235: ~0.20%</li><li>236: ~0.20%</li><li>237: ~0.20%</li><li>238: ~0.30%</li><li>239: ~0.10%</li><li>240: ~0.10%</li><li>241: ~0.20%</li><li>242: ~0.10%</li><li>243: ~0.40%</li><li>244: ~0.40%</li><li>245: ~0.20%</li><li>246: ~0.20%</li><li>247: ~0.30%</li><li>248: ~0.20%</li><li>249: ~0.20%</li><li>250: ~0.10%</li><li>253: ~0.30%</li><li>254: ~0.50%</li><li>255: ~0.30%</li><li>256: ~0.20%</li><li>257: ~0.20%</li><li>258: ~0.20%</li><li>259: ~0.10%</li><li>260: ~0.60%</li><li>261: ~0.10%</li><li>262: ~0.10%</li><li>264: ~0.30%</li><li>266: ~0.10%</li><li>267: ~0.10%</li><li>269: ~0.20%</li><li>271: ~0.10%</li><li>272: ~0.10%</li><li>273: ~0.10%</li><li>274: ~0.40%</li><li>275: ~0.10%</li><li>276: ~0.30%</li><li>277: ~0.20%</li><li>278: ~0.10%</li><li>279: ~0.20%</li><li>281: ~0.10%</li><li>283: ~0.40%</li><li>284: ~0.10%</li><li>285: ~0.20%</li><li>286: ~0.10%</li><li>287: ~0.20%</li><li>289: ~0.20%</li><li>290: ~0.20%</li><li>291: ~0.20%</li><li>292: ~0.30%</li><li>293: ~0.20%</li><li>294: ~0.20%</li><li>295: ~0.40%</li><li>296: ~0.20%</li><li>297: ~0.20%</li><li>298: ~0.10%</li><li>302: ~0.10%</li><li>303: ~0.10%</li><li>306: ~0.60%</li><li>307: ~0.50%</li><li>310: ~0.40%</li><li>311: ~0.40%</li><li>313: ~0.10%</li><li>314: ~0.40%</li><li>316: ~0.10%</li><li>319: ~0.20%</li><li>320: ~0.10%</li><li>322: ~0.50%</li><li>324: ~0.20%</li><li>325: ~0.30%</li><li>326: ~0.30%</li><li>327: ~0.10%</li><li>328: ~0.10%</li><li>329: ~0.10%</li><li>330: ~0.10%</li><li>331: ~0.10%</li><li>332: ~0.20%</li><li>334: ~0.10%</li><li>336: ~0.30%</li><li>337: ~0.50%</li><li>338: ~0.10%</li><li>341: ~0.10%</li><li>343: ~0.10%</li><li>344: ~0.20%</li><li>347: ~0.20%</li><li>348: ~0.10%</li><li>349: ~0.10%</li><li>350: ~0.50%</li><li>351: ~0.70%</li><li>352: ~0.20%</li><li>353: ~0.10%</li><li>354: ~0.20%</li><li>355: ~0.10%</li><li>356: ~0.10%</li><li>357: ~0.20%</li><li>358: ~0.30%</li><li>359: ~0.10%</li><li>360: ~0.20%</li><li>361: ~0.30%</li><li>362: ~0.10%</li><li>363: ~0.10%</li><li>364: ~0.10%</li><li>365: ~0.30%</li><li>368: ~0.30%</li><li>369: ~0.20%</li><li>372: ~0.30%</li><li>373: ~0.10%</li><li>374: ~0.30%</li><li>375: ~0.70%</li><li>376: ~0.10%</li><li>377: ~0.20%</li><li>378: ~0.20%</li><li>380: ~0.10%</li><li>381: ~0.10%</li><li>382: ~0.20%</li><li>383: ~0.10%</li><li>385: ~0.20%</li><li>393: ~0.10%</li><li>394: ~0.10%</li><li>395: ~0.20%</li><li>396: ~0.30%</li><li>398: ~0.10%</li><li>399: ~0.20%</li><li>401: ~0.20%</li><li>402: ~0.20%</li><li>404: ~0.40%</li><li>405: ~0.10%</li><li>407: ~0.20%</li><li>409: ~0.20%</li><li>410: ~0.10%</li><li>411: ~0.10%</li><li>412: ~0.10%</li><li>413: ~0.20%</li><li>414: ~0.20%</li><li>415: ~0.10%</li><li>416: ~0.10%</li><li>417: ~0.10%</li><li>418: ~0.10%</li><li>419: ~0.20%</li><li>420: ~0.10%</li><li>421: ~0.20%</li><li>423: ~0.30%</li><li>424: ~0.10%</li><li>425: ~0.10%</li><li>427: ~0.20%</li><li>428: ~0.10%</li><li>429: ~0.10%</li><li>430: ~0.10%</li><li>432: ~0.10%</li><li>434: ~0.10%</li><li>435: ~0.40%</li><li>436: ~0.20%</li><li>437: ~0.30%</li><li>438: ~0.20%</li><li>440: ~0.20%</li><li>441: ~0.30%</li><li>442: ~0.20%</li><li>443: ~0.10%</li><li>444: ~0.30%</li><li>445: ~0.20%</li><li>446: ~0.20%</li><li>448: ~0.20%</li><li>449: ~0.30%</li><li>451: ~0.20%</li><li>452: ~0.10%</li><li>454: ~0.20%</li><li>455: ~0.20%</li><li>456: ~0.10%</li><li>458: ~0.30%</li><li>459: ~0.10%</li><li>460: ~0.10%</li><li>462: ~0.10%</li><li>463: ~0.40%</li><li>464: ~0.10%</li><li>465: ~0.20%</li><li>466: ~0.10%</li><li>467: ~0.40%</li><li>468: ~0.10%</li><li>469: ~0.30%</li><li>471: ~0.10%</li><li>475: ~0.30%</li><li>476: ~0.50%</li><li>477: ~0.10%</li><li>479: ~0.40%</li><li>480: ~0.30%</li><li>482: ~0.10%</li><li>483: ~0.30%</li><li>484: ~0.10%</li><li>485: ~0.20%</li><li>486: ~0.10%</li><li>487: ~0.10%</li><li>490: ~0.30%</li><li>491: ~0.40%</li><li>492: ~0.40%</li><li>493: ~0.10%</li><li>494: ~0.10%</li><li>495: ~0.10%</li><li>498: ~0.20%</li><li>499: ~0.40%</li><li>500: ~0.30%</li><li>501: ~0.30%</li><li>502: ~0.30%</li><li>504: ~0.20%</li><li>505: ~0.20%</li><li>506: ~0.10%</li><li>507: ~0.20%</li><li>508: ~0.10%</li><li>511: ~0.10%</li><li>512: ~0.60%</li><li>513: ~0.10%</li><li>515: ~0.10%</li><li>516: ~0.30%</li><li>517: ~0.40%</li><li>519: ~0.30%</li><li>520: ~0.30%</li><li>521: ~0.10%</li><li>522: ~0.20%</li><li>523: ~0.10%</li><li>524: ~0.50%</li><li>525: ~0.60%</li><li>527: ~0.20%</li><li>528: ~0.10%</li><li>530: ~0.10%</li><li>533: ~0.40%</li><li>534: ~0.50%</li><li>535: ~0.40%</li><li>536: ~0.10%</li><li>537: ~0.20%</li><li>538: ~0.40%</li><li>539: ~0.10%</li><li>540: ~0.10%</li><li>542: ~0.30%</li><li>543: ~0.10%</li><li>544: ~0.10%</li><li>545: ~0.20%</li><li>546: ~0.20%</li><li>548: ~0.20%</li><li>549: ~0.20%</li><li>550: ~0.30%</li><li>551: ~0.30%</li><li>552: ~0.10%</li><li>554: ~0.10%</li><li>555: ~0.20%</li><li>557: ~0.20%</li><li>560: ~0.10%</li><li>561: ~0.20%</li><li>562: ~0.10%</li><li>564: ~0.40%</li><li>565: ~0.10%</li><li>566: ~0.10%</li><li>567: ~0.20%</li><li>570: ~0.10%</li><li>572: ~0.30%</li><li>573: ~0.10%</li><li>574: ~0.10%</li><li>575: ~0.10%</li><li>576: ~0.10%</li><li>577: ~0.20%</li><li>578: ~0.50%</li><li>579: ~0.40%</li><li>581: ~0.20%</li><li>585: ~0.40%</li><li>586: ~0.10%</li><li>587: ~0.20%</li><li>588: ~0.20%</li><li>590: ~0.20%</li><li>592: ~0.10%</li><li>595: ~0.10%</li><li>597: ~0.20%</li><li>600: ~0.10%</li><li>601: ~0.10%</li><li>603: ~0.10%</li><li>604: ~0.10%</li><li>608: ~0.10%</li><li>611: ~0.10%</li><li>612: ~0.20%</li><li>613: ~0.10%</li><li>619: ~0.20%</li><li>620: ~0.20%</li><li>622: ~0.10%</li><li>625: ~0.20%</li><li>629: ~0.10%</li><li>631: ~0.20%</li><li>632: ~0.10%</li><li>633: ~0.20%</li><li>634: ~0.10%</li><li>635: ~0.40%</li><li>640: ~0.10%</li><li>643: ~0.10%</li><li>645: ~0.10%</li><li>648: ~0.10%</li></ul> |
* Samples:
| sentence_0 | label |
|:----------------------------------------------------------------------------------|:-----------------|
| <code>swimming clubs</code> | <code>475</code> |
| <code> </code> | <code>581</code> |
| <code>this class includes: mining of ores valued chiefly for iron content</code> | <code>351</code> |
* Loss: [<code>BatchAllTripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchalltripletloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `num_train_epochs`: 4
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### BatchAllTripletLoss
```bibtex
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->