Hierarchical Decision Transformer for Hopper

This model extends the Decision Transformer architecture with hierarchical clustering capabilities for improved long-horizon task performance on the Hopper-v3 environment.

Model Description

  • Model Type: Hierarchical Decision Transformer
  • Training Environment: Hopper-v3
  • Input: State observations (11 dimensions), desired returns
  • Output: Actions (3 dimensions)
  • Architecture Features:
    • Hierarchical clustering head for subtask identification
    • Subgoal-based weighting
    • Multi-task capabilities

Usage

from transformers import DecisionTransformerModel
model = DecisionTransformerModel.from_pretrained("anna4142/hierarchical-decision-transformer")
Downloads last month
4
Safetensors
Model size
1.26M params
Tensor type
F32
·
Video Preview
loading