File size: 65,533 Bytes
45c0279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
---
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2231
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Brian Pugh Chief Information Officer, Comscore Français Amazon
    Simple Storage Service (Amazon S3) is an object storage service offering industry-leading
    scalability, data availability, security, and performance. Learn more » 2023 Español
    Then, Comscore can set up its own privacy controls, including a mutually agreed
    upon join key that gives collaborators the ability to match data tables and perform
    analyses using a double-blind method. This method means that all parties can protect
    sensitive data, such as cookies, first-party IDs, and IP addresses, and run queries
    on combined data to gain richer, more comprehensive insights. “Instead of ingesting
    all that information and doing the analysis behind our firewall, we can join those
    things in AWS Clean Rooms and get back what we need,” says Brian Pugh, chief information
    officer at Comscore. Additionally, Comscore can organize its analytics by demographics
    or other categories so that it can identify trends in how groups of people interact
    with certain media. Comscore can also connect AWS Clean Rooms with Amazon QuickSight—a
    solution that provides unified business intelligence at hyperscale—so that it
    can visualize its data in one place using interactive, customizable dashboards.
    日本語 About Comscore Get Started 한국어 Organizations of all sizes across all industries
    are transforming their businesses and delivering on their missions every day using
    AWS. Contact our experts and start your own AWS journey today. Industry Challenge
    AWS Clean Rooms helps customers and their partners more easily and securely collaborate
    and analyze their collective datasets—without sharing or copying one another’s
    underlying data. AWS Services Used 中文 (繁體) Bahasa Indonesia AWS Clean Rooms. .
    . helps Comscore to provide the best possible measurement and support to our data
    partners to trust that the data that they’re providing is safe and protected.
     Ρусский عربي Analytics and insights provider Comscore provides a wide range
    of data-driven solutions that support planning, transacting, and measuring media
    across channels. It serves media companies and advertisers, promoting transparency
    and trust within the industry. Benefits of Using AWS 中文 (简体) Comscore turned to
    Amazon Web Services (AWS) and chose AWS Clean Rooms to uphold privacy-enhanced
    collaborations with its partners. AWS Clean Rooms helps Comscore’s customers and
    partners to securely match, analyze, and collaborate on their combined datasets
    with ease and without sharing or revealing underlying data. Using this solution,
    Comscore can invite up to five collaborators into an AWS Clean Room and pull pre-encrypted
    data into a configured data table from Amazon Simple Storage Service (Amazon S3),
    an object storage service built to retrieve any amount of data from anywhere.
    Media ratings company Comscore can provide richer insights to advertisers while
    maintaining data privacy by securely collaborating on its data with third parties
    using AWS Clean Rooms. Amazon QuickSight powers data-driven organizations with
    unified business intelligence (BI) at hyperscale.
  sentences:
  - How does Comscore use AWS Clean Rooms to protect sensitive data while collaborating
    with third parties?
  - How did AWS help CEHC in building a cost-effective alternate production/DR environment
    in a fraction of the time compared to a traditional brick-and-mortar production
    build?
  - How does AWS aim to democratize access to generative AI applications for all builders
    through services like Amazon Bedrock?
- source_sentence: 'We convert the HTML pages on this site into smaller overlapping
    chunks (to retain some context continuity between chunks) of information and then
    convert these chunks into embeddings using the gpt-j-6b model and store the embeddings
    in OpenSearch Service. We implement the RAG functionality inside an AWS Lambda
    function with Amazon API Gateway to handle routing all requests to the Lambda.
    We implement a chatbot application in Streamlit which invokes the function via
    the API Gateway and the function does a similarity search in the OpenSearch Service
    index for the embeddings of user question. The matching documents (chunks) are
    added to the prompt as context by the Lambda function and then the function uses
    the flan-t5-xxl model deployed as a SageMaker endpoint to generate an answer to
    the user question. All the code for this post is available in the GitHub repo.
    The following figure represents the high-level architecture of the proposed solution.
    Figure 1: Architecture Step-by-step explanation: The User provides a question
    via the Streamlit web application. The Streamlit application invokes the API Gateway
    endpoint REST API. The API Gateway invokes the Lambda function. The function invokes
    the SageMaker endpoint to convert user question into embeddings. The function
    invokes invokes an OpenSearch Service API to find similar documents to the user
    question. The function creates a “prompt” with the user query and the “similar
    documents” as context and asks the SageMaker endpoint to generate a response.
    The response is provided from the function to the API Gateway. The API Gateway
    provides the response to the Streamlit application. The User is able to view the
    response on the Streamlit application, As illustrated in the architecture diagram,
    we use the following AWS services: SageMaker and Amazon SageMaker JumpStart for
    hosting the two LLMs. OpenSearch Service for storing the embeddings of the enterprise
    knowledge corpus and doing similarity search with user questions. Lambda for implementing
    the RAG functionality and exposing it as a REST endpoint via the API Gateway.
    Amazon SageMaker Processing jobs for large scale data ingestion into OpenSearch.
    Amazon SageMaker Studio for hosting the Streamlit application. AWS Identity and
    Access Management roles and policies for access management.'
  sentences:
  - How can model producers and application builders effectively fine-tune generative
    foundation models to be aligned with human preferences and perform specific tasks
    accurately?
  - How do retailers lose out on revenue due to issues with search functionality on
    their websites?
  - How is the RAG functionality implemented within the AWS architecture described
    for handling user questions and providing responses via the Streamlit application?
- source_sentence: 'Although Amazon EKS provided management capabilities, it was immediately
    apparent that we were managing infrastructure that wasn’t specifically tailored
    for inference. Forethought had to manage model inference on Amazon EKS ourselves,
    which was a burden on engineering efficiency. For example, in order to share expensive
    GPU resources between multiple models, we were responsible for allocating rigid
    memory fractions to models that were specified during deployment. We wanted to
    address the following key problems with our existing infrastructure: High cost
    – To ensure that each model had enough resources, we would be very conservative
    in how many models to fit per instance. This resulted in much higher costs for
    model hosting than necessary. Low reliability – Despite being conservative in
    our memory allocation, not all models have the same requirements, and occasionally
    some models would throw out of memory (OOM) errors. Inefficient management – We
    had to manage different deployment manifests for each type of model (such as classifiers,
    embeddings, and autocomplete), which was time-consuming and error-prone. We also
    had to maintain the logic to determine the memory allocation for different model
    types. Ultimately, we needed an inference platform to take on the heavy lifting
    of managing our models at runtime to improve the cost, reliability, and the management
    of serving our models. SageMaker MMEs allowed us to address these needs. Through
    its smart and dynamic model loading and unloading, and its scaling capabilities,
    SageMaker MMEs provided a significantly less expensive and more reliable solution
    for hosting our models. We are now able to fit many more models per instance and
    don’t have to worry about OOM errors because SageMaker MMEs handle loading and
    unloading models dynamically. In addition, deployments are now as simple as calling
    Boto3 SageMaker APIs and attaching the proper auto scaling policies. The following
    diagram illustrates our legacy architecture. To begin our migration to SageMaker
    MMEs, we identified the best use cases for MMEs and which of our models would
    benefit the most from this change. MMEs are best used for the following: Models
    that are expected to have low latency but can withstand a cold start time (when
    it’s first loaded in) Models that are called often and consistently Models that
    need partial GPU resources Models that share common requirements and inference
    logic We identified our embeddings models and autocomplete language models as
    the best candidates for our migration. To organize these models under MMEs, we
    would create one MME per model type, or task, one for our embeddings models, and
    another for autocomplete language models. We already had an API layer on top of
    our models for model management and inference. Our task at hand was to rework
    how this API was deploying and handling inference on models under the hood with
    SageMaker, with minimal changes to how clients and product teams interacted with
    the API. We also needed to package our models and custom inference logic to be
    compatible with NVIDIA Triton Inference Server using SageMaker MMEs.'
  sentences:
  - How did the company address the issues of high cost, low reliability, and inefficient
    management in managing model inference on Amazon EKS, and what solution did they
    implement to improve the cost, reliability, and management of serving their models?
  - How can Aurora be configured to interface with Comprehend for analyzing text data?
  - How has the implementation of chatbots and voice bots powered by Amazon Lex improved
    the customer and agent experiences at WaFd Bank's contact center solution?
- source_sentence: 'In our current approach, we store these files in Amazon S3. Although
    these stored files aren’t accessible from the browser in our version of the code,
    you can modify the code to play previously generated audio files by fetching them
    from Amazon S3 (instead of regenerating the audio for the text again using Amazon
    Polly). We have more code examples for accessing Amazon Polly with Python in the
    AWS Code Library. Create the solution The entire solution is available from our
    Github repo. To create this solution in your account, follow the instructions
    in the README. md file. The solution includes an AWS CloudFormation template to
    provision your resources. Cleanup To clean up the resources created in this demo,
    perform the following steps: Delete the S3 buckets created to store the CloudFormation
    template (Bucket A), the source code (Bucket B) and the website ( pth-cf-text-highlighter-website-[Suffix]
    ). Delete the CloudFormation stack pth-cf. Delete the S3 bucket containing the
    speech files ( pth-speech-[Suffix] ). This bucket was created by the CloudFormation
    template to store the audio and speech marks files generated by Amazon Polly.
    Summary In this post, we showed an example of a solution that can highlight text
    as it’s being spoken using Amazon Polly. It was developed using the Amazon Polly
    speech marks feature, which provides us markers for the place each word or sentence
    begins in an audio file. The solution is available as a CloudFormation template.
    It can be deployed as is to any web application that performs text-to-speech conversion.
    This would be useful for adding visual capabilities to audio in books, avatars
    with lip-sync capabilities (using viseme speech marks), websites, and blogs, and
    for aiding people with hearing impairments. It can be extended to perform additional
    tasks besides highlighting text. For example, the browser can show images, play
    music, and perform other animations on the front end while the text is being spoken.
    This capability can be useful for creating dynamic audio books, educational content,
    and richer text-to-speech applications. We welcome you to try out this solution
    and learn more about the relevant AWS services from the following links.'
  sentences:
  - How has the TRRF platform improved patient care for individuals with Angelman
    Syndrome, according to Megan Cross of the Foundation for Angelman Syndrome (FAST)?
  - How does Amazon SageMaker Ground Truth Plus help users prepare high-quality training
    datasets for generative AI applications, specifically in terms of removing the
    heavy lifting associated with data labeling applications and managing the labeling
    workforce?
  - How can the solution of highlighting text as it's being spoken using Amazon Polly
    be extended to perform additional tasks, and what are some examples of these tasks?
- source_sentence: CU Coventry’s bachelor of science in cloud computing course officially
    began in September 2020 and has already seen success from the program’s industry-driven
    framework. Overview Validate technical skills and cloud expertise to grow your
    career and business. Learn more » Get Started on AWS services using AWS Academy
    Learner Labs Build your cloud skills at your own pace, on your own time, and completely
    for free. Looking ahead, Coventry University Group plans to expand bachelor of
    science degree in cloud computing courses to its campuses in London and Wroclaw.
    “The ability to have hands-on experience with AWS services—the same ones that
    companies use in the real world—is invaluable,” said Tomasz, a student of the
    Cloud Computing Course. “Once we join the workforce, we can apply our skill sets
    and hit the ground running.  Türkçe English Students successfully engaging in
    the program graduate with in-demand skills for careers in the cloud, including
    valuable experience with AWS services through AWS Academy Learner Labs. AWS Academy
    provides higher education institutions with ready-to-teach cloud computing curriculum
    to prepare students for AWS Certifications, which validate technical skills and
    cloud expertise for in-demand cloud jobs. “The most important thing is for the
    modules to reflect what the industry needs. We want students to add value to the
    global workforce,” says Flood. Taking advantage of AWS Education Programs, CU
    Coventry’s BSc degree in cloud computing innovates on AWS to track the IT industry’s
    rapid pace. AWS Certification Deutsch Coventry University Group is based in the
    United Kingdom with more than 30,000 students and more than 200 undergraduate
    and postgraduate degrees across its schools, faculties, and campuses. Tiếng Việt
    AWS Training and Certification Italiano ไทย Outcome | Looking to the Future of
    Coventry University Group’s Cloud Computing Program Learn more » Increases employability
    Coventry University Group used AWS Education Programs to create a comprehensive
    and flexible degree to help students meet growing IT industry cloud skills demand.
    Both the 3-year bachelor of science degree in cloud computing and its accelerated
    version were developed in collaboration with AWS. These programs were designed
    by working backwards from the cloud skills employers are currently seeking in
    the UK and across the global labor market. “The approach gave us insights into
    what skill gaps were lacking in the industry. From there, we designed the courses,
    with the AWS team providing helpful inputs,” says Flood. “For example, the AWS
    team pointed out that there was an industry need for serverless computing skills,
    and we integrated that into our curriculum.  Português.
  sentences:
  - How did Read use Amazon Web Services (AWS) and NVIDIA Riva to improve the performance
    of its transcription tool while keeping costs low?
  - How does RUSH University System for Health use HECAP and Amazon HealthLake to
    address healthcare disparities and improve patient outcomes for residents of Chicago's
    West Side?
  - How does CU Coventry's Bachelor of Science in Cloud Computing program incorporate
    AWS services and industry-driven insights to prepare students for in-demand cloud
    jobs?
model-index:
- name: BGE base Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.4596774193548387
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8024193548387096
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8991935483870968
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9596774193548387
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.4596774193548387
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2674731182795699
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17983870967741938
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0959677419354839
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.4596774193548387
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8024193548387096
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8991935483870968
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9596774193548387
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7184810942825108
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6395305299539169
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6408821665935496
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.46774193548387094
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7983870967741935
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8951612903225806
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9596774193548387
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.46774193548387094
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2661290322580645
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17903225806451614
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0959677419354839
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.46774193548387094
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7983870967741935
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8951612903225806
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9596774193548387
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7213571757198337
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6433467741935482
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6448406697096213
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.4596774193548387
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7983870967741935
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9112903225806451
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9637096774193549
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.4596774193548387
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2661290322580645
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.18225806451612905
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0963709677419355
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.4596774193548387
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7983870967741935
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9112903225806451
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9637096774193549
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7207090934241043
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6410682283666154
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6422448191163128
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.4314516129032258
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7580645161290323
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8830645161290323
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9475806451612904
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.4314516129032258
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.25268817204301075
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17661290322580647
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09475806451612905
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.4314516129032258
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7580645161290323
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8830645161290323
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9475806451612904
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.6948316840385708
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6124535970302099
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6145615813099632
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.4032258064516129
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7459677419354839
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8709677419354839
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9516129032258065
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.4032258064516129
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.24865591397849462
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17419354838709677
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09516129032258065
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.4032258064516129
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7459677419354839
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8709677419354839
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9516129032258065
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.6800470209866719
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5919978878648234
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5935355054811555
      name: Cosine Map@100
---

# BGE base Financial Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("anishareddyalla/bge-base-aws-case-studies")
# Run inference
sentences = [
    'CU Coventry’s bachelor of science in cloud computing course officially began in September 2020 and has already seen success from the program’s industry-driven framework. Overview Validate technical skills and cloud expertise to grow your career and business. Learn more » Get Started on AWS services using AWS Academy Learner Labs Build your cloud skills at your own pace, on your own time, and completely for free. Looking ahead, Coventry University Group plans to expand bachelor of science degree in cloud computing courses to its campuses in London and Wroclaw. “The ability to have hands-on experience with AWS services—the same ones that companies use in the real world—is invaluable,” said Tomasz, a student of the Cloud Computing Course. “Once we join the workforce, we can apply our skill sets and hit the ground running. ” Türkçe English Students successfully engaging in the program graduate with in-demand skills for careers in the cloud, including valuable experience with AWS services through AWS Academy Learner Labs. AWS Academy provides higher education institutions with ready-to-teach cloud computing curriculum to prepare students for AWS Certifications, which validate technical skills and cloud expertise for in-demand cloud jobs. “The most important thing is for the modules to reflect what the industry needs. We want students to add value to the global workforce,” says Flood. Taking advantage of AWS Education Programs, CU Coventry’s BSc degree in cloud computing innovates on AWS to track the IT industry’s rapid pace. AWS Certification Deutsch Coventry University Group is based in the United Kingdom with more than 30,000 students and more than 200 undergraduate and postgraduate degrees across its schools, faculties, and campuses. Tiếng Việt AWS Training and Certification Italiano ไทย Outcome | Looking to the Future of Coventry University Group’s Cloud Computing Program Learn more » Increases employability Coventry University Group used AWS Education Programs to create a comprehensive and flexible degree to help students meet growing IT industry cloud skills demand. Both the 3-year bachelor of science degree in cloud computing and its accelerated version were developed in collaboration with AWS. These programs were designed by working backwards from the cloud skills employers are currently seeking in the UK and across the global labor market. “The approach gave us insights into what skill gaps were lacking in the industry. From there, we designed the courses, with the AWS team providing helpful inputs,” says Flood. “For example, the AWS team pointed out that there was an industry need for serverless computing skills, and we integrated that into our curriculum. ” Português.',
    "How does CU Coventry's Bachelor of Science in Cloud Computing program incorporate AWS services and industry-driven insights to prepare students for in-demand cloud jobs?",
    "How does RUSH University System for Health use HECAP and Amazon HealthLake to address healthcare disparities and improve patient outcomes for residents of Chicago's West Side?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.4597     |
| cosine_accuracy@3   | 0.8024     |
| cosine_accuracy@5   | 0.8992     |
| cosine_accuracy@10  | 0.9597     |
| cosine_precision@1  | 0.4597     |
| cosine_precision@3  | 0.2675     |
| cosine_precision@5  | 0.1798     |
| cosine_precision@10 | 0.096      |
| cosine_recall@1     | 0.4597     |
| cosine_recall@3     | 0.8024     |
| cosine_recall@5     | 0.8992     |
| cosine_recall@10    | 0.9597     |
| cosine_ndcg@10      | 0.7185     |
| cosine_mrr@10       | 0.6395     |
| **cosine_map@100**  | **0.6409** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.4677     |
| cosine_accuracy@3   | 0.7984     |
| cosine_accuracy@5   | 0.8952     |
| cosine_accuracy@10  | 0.9597     |
| cosine_precision@1  | 0.4677     |
| cosine_precision@3  | 0.2661     |
| cosine_precision@5  | 0.179      |
| cosine_precision@10 | 0.096      |
| cosine_recall@1     | 0.4677     |
| cosine_recall@3     | 0.7984     |
| cosine_recall@5     | 0.8952     |
| cosine_recall@10    | 0.9597     |
| cosine_ndcg@10      | 0.7214     |
| cosine_mrr@10       | 0.6433     |
| **cosine_map@100**  | **0.6448** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.4597     |
| cosine_accuracy@3   | 0.7984     |
| cosine_accuracy@5   | 0.9113     |
| cosine_accuracy@10  | 0.9637     |
| cosine_precision@1  | 0.4597     |
| cosine_precision@3  | 0.2661     |
| cosine_precision@5  | 0.1823     |
| cosine_precision@10 | 0.0964     |
| cosine_recall@1     | 0.4597     |
| cosine_recall@3     | 0.7984     |
| cosine_recall@5     | 0.9113     |
| cosine_recall@10    | 0.9637     |
| cosine_ndcg@10      | 0.7207     |
| cosine_mrr@10       | 0.6411     |
| **cosine_map@100**  | **0.6422** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.4315     |
| cosine_accuracy@3   | 0.7581     |
| cosine_accuracy@5   | 0.8831     |
| cosine_accuracy@10  | 0.9476     |
| cosine_precision@1  | 0.4315     |
| cosine_precision@3  | 0.2527     |
| cosine_precision@5  | 0.1766     |
| cosine_precision@10 | 0.0948     |
| cosine_recall@1     | 0.4315     |
| cosine_recall@3     | 0.7581     |
| cosine_recall@5     | 0.8831     |
| cosine_recall@10    | 0.9476     |
| cosine_ndcg@10      | 0.6948     |
| cosine_mrr@10       | 0.6125     |
| **cosine_map@100**  | **0.6146** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.4032     |
| cosine_accuracy@3   | 0.746      |
| cosine_accuracy@5   | 0.871      |
| cosine_accuracy@10  | 0.9516     |
| cosine_precision@1  | 0.4032     |
| cosine_precision@3  | 0.2487     |
| cosine_precision@5  | 0.1742     |
| cosine_precision@10 | 0.0952     |
| cosine_recall@1     | 0.4032     |
| cosine_recall@3     | 0.746      |
| cosine_recall@5     | 0.871      |
| cosine_recall@10    | 0.9516     |
| cosine_ndcg@10      | 0.68       |
| cosine_mrr@10       | 0.592      |
| **cosine_map@100**  | **0.5935** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 2,231 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                            | anchor                                                                             |
  |:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                              | string                                                                             |
  | details | <ul><li>min: 3 tokens</li><li>mean: 434.98 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 33.46 tokens</li><li>max: 65 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | anchor                                                                                                                                                                                                                                                           |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>”.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <code>What specific event or topic is being discussed in the given information?</code>                                                                                                                                                                           |
  | <code>On AWS, Rackspace solved a major industry challenge with a solution that saved time, cut costs, and reduced complexity for its customers and itself. “When things go wrong, customers expect Rackspace to step in and act swiftly to solve their problem,” says Prewitt. “Using AWS Systems Manager, we can do that much more quickly. ” Português Rackspace needed a solution that could run both on premises and on the cloud. “We wanted one tool to use across the full suite of solutions that Rackspace manages,” says Gignac. AWS Systems Manager met that requirement and offered programmability. “That’s a key differentiator of AWS: we can use AWS Systems Manager to run shell scripts on individual VMs and do advanced orchestration,” Gignac continues. .</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <code>How did Rackspace use AWS Systems Manager to solve major industry challenges and improve their ability to quickly address customer issues?</code>                                                                                                          |
  | <code>Français Shortly after the onset of the pandemic in early 2020, Valant began offering a telehealth solution to provide virtual capabilities to practices and their patients. The solution was based on a digital communications platform that lacked a multi-user experience and many other requested features. “The platform we used offered peer-to-peer video only, and we needed group capabilities, chat, screen and file sharing, and a whiteboard,” says James Jay, chief technology officer at Valant Medical Solutions. “In behavioral health, it’s common to have parents, spouses, or other guests attend sessions, and we saw a significant demand from practices for multi-user functionality, as well as other features critical to engaging effectively with patients. We also had strong demand to integrate co-payment collection into telehealth check-in workflows in advance of sessions. ” 2023 Amazon Simple Email Service Español by using voice, video, messaging, and automated reminders Valant Medical Solutions, Inc. provides electronic health record software to behavioral health providers and practices. To add enhanced telehealth capabilities and improve patient communication, the company turned to Amazon Web Services to add capabilities in voice, video, messaging, and email through AWS Communication Developer Services to build a new telehealth solution for more than 2,500 behavioral health practices. AWS Communication Developer Services (CDS) are cloud-based APIs and SDKs that help builders add communication capabilities into their apps or websites with minimal coding. 日本語 Valant Medical Solutions, Inc. designs and develops web-based electronic health record (EHR) software to help behavioral health providers and practices streamline administration tasks and improve patient outcomes. More than 20,000 behavioral health professionals in group and solo private practices across the United States use the Valant platform to treat individuals seeking behavioral healthcare. The Valant IO system has extensive capabilities to enable providers to deliver value-based care through measurement-based assessment and ongoing outcome assessments. 5% Get Started 한국어 Overview | Opportunity | Solution | Outcome | AWS Services Used With the new Valant solution, practices can better engage their patients and communicate with them more frequently through automated reminders for appointments, insurance, no-show follow up, and more. Each practice has the option to deliver all communications via SMS, voice, and emails. Additionally, Valant has grown its overall business by 21 percent and increased add-on revenue by more than 100 percent. business growth Valant Uses AWS Communication Developer Services to Help Behavioral Health Practices Drive Better Patient Engagement Opportunity | Looking to Add More Features to a Telehealth Solution AWS Services Used Amazon Chime SDK As a result of key features built over the last 12 months, Valant has increased its overall business by more than 20 percent. The new telehealth and patient communications features are a big driver of the success. “Because of our new telehealth and automated reminders, which offer more robust features such as group meetings, our clients have seen a revenue increase,” says Jay. “We’ve had an incredible adoption of these new tools, which is also helping us grow our market share and customer satisfaction.</code> | <code>How has the implementation of the new telehealth solution with enhanced communication capabilities through AWS Communication Developer Services impacted Valant Medical Solutions, specifically in terms of business growth and revenue generation?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 10
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step  | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:-----:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| **0.9143** | **4** | **-**         | **0.6055**             | **0.6308**             | **0.646**              | **0.5623**            | **0.6339**             |
| 1.8286     | 8     | -             | 0.6255                 | 0.6505                 | 0.6517                 | 0.5791                | 0.6558                 |
| 2.2857     | 10    | 2.0293        | -                      | -                      | -                      | -                     | -                      |
| 2.9714     | 13    | -             | 0.6096                 | 0.6472                 | 0.6471                 | 0.5935                | 0.6490                 |
| 3.8857     | 17    | -             | 0.6125                 | 0.6410                 | 0.6468                 | 0.6020                | 0.6422                 |
| 4.5714     | 20    | 0.5008        | -                      | -                      | -                      | -                     | -                      |
| 4.8        | 21    | -             | 0.6156                 | 0.6351                 | 0.6409                 | 0.6014                | 0.6391                 |
| 5.9429     | 26    | -             | 0.6143                 | 0.6350                 | 0.6367                 | 0.6015                | 0.6406                 |
| 6.8571     | 30    | 0.2964        | 0.6167                 | 0.6371                 | 0.6390                 | 0.5981                | 0.6387                 |
| 8.0        | 35    | -             | 0.6138                 | 0.6364                 | 0.6391                 | 0.5986                | 0.6392                 |
| 8.9143     | 39    | -             | 0.6173                 | 0.6378                 | 0.6389                 | 0.6021                | 0.6394                 |
| 9.1429     | 40    | 0.2382        | 0.6161                 | 0.6376                 | 0.6391                 | 0.5982                | 0.6398                 |
| **0.9143** | **4** | **-**         | **0.6273**             | **0.6535**             | **0.6608**             | **0.5949**            | **0.66**               |
| 1.8286     | 8     | -             | 0.6177                 | 0.6439                 | 0.6515                 | 0.6074                | 0.6508                 |
| 2.2857     | 10    | 0.554         | -                      | -                      | -                      | -                     | -                      |
| 2.9714     | 13    | -             | 0.6070                 | 0.6300                 | 0.6339                 | 0.5923                | 0.6366                 |
| 3.8857     | 17    | -             | 0.6071                 | 0.6332                 | 0.6362                 | 0.5976                | 0.6362                 |
| 4.5714     | 20    | 0.2694        | -                      | -                      | -                      | -                     | -                      |
| 4.8        | 21    | -             | 0.6124                 | 0.6397                 | 0.6455                 | 0.5988                | 0.6404                 |
| 5.9429     | 26    | -             | 0.6155                 | 0.6411                 | 0.6446                 | 0.6007                | 0.6429                 |
| 6.8571     | 30    | 0.1746        | 0.6167                 | 0.6429                 | 0.6467                 | 0.5942                | 0.6424                 |
| 8.0        | 35    | -             | 0.6166                 | 0.6398                 | 0.6462                 | 0.5928                | 0.6429                 |
| 8.9143     | 39    | -             | 0.6108                 | 0.6426                 | 0.6448                 | 0.5943                | 0.6432                 |
| 9.1429     | 40    | 0.1419        | 0.6146                 | 0.6422                 | 0.6448                 | 0.5935                | 0.6409                 |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->