anishareddyalla commited on
Commit
45c0279
1 Parent(s): 250373f

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,991 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-base-en-v1.5
3
+ datasets: []
4
+ language:
5
+ - en
6
+ library_name: sentence-transformers
7
+ license: apache-2.0
8
+ metrics:
9
+ - cosine_accuracy@1
10
+ - cosine_accuracy@3
11
+ - cosine_accuracy@5
12
+ - cosine_accuracy@10
13
+ - cosine_precision@1
14
+ - cosine_precision@3
15
+ - cosine_precision@5
16
+ - cosine_precision@10
17
+ - cosine_recall@1
18
+ - cosine_recall@3
19
+ - cosine_recall@5
20
+ - cosine_recall@10
21
+ - cosine_ndcg@10
22
+ - cosine_mrr@10
23
+ - cosine_map@100
24
+ pipeline_tag: sentence-similarity
25
+ tags:
26
+ - sentence-transformers
27
+ - sentence-similarity
28
+ - feature-extraction
29
+ - generated_from_trainer
30
+ - dataset_size:2231
31
+ - loss:MatryoshkaLoss
32
+ - loss:MultipleNegativesRankingLoss
33
+ widget:
34
+ - source_sentence: Brian Pugh Chief Information Officer, Comscore Français Amazon
35
+ Simple Storage Service (Amazon S3) is an object storage service offering industry-leading
36
+ scalability, data availability, security, and performance. Learn more » 2023 Español
37
+ Then, Comscore can set up its own privacy controls, including a mutually agreed
38
+ upon join key that gives collaborators the ability to match data tables and perform
39
+ analyses using a double-blind method. This method means that all parties can protect
40
+ sensitive data, such as cookies, first-party IDs, and IP addresses, and run queries
41
+ on combined data to gain richer, more comprehensive insights. “Instead of ingesting
42
+ all that information and doing the analysis behind our firewall, we can join those
43
+ things in AWS Clean Rooms and get back what we need,” says Brian Pugh, chief information
44
+ officer at Comscore. Additionally, Comscore can organize its analytics by demographics
45
+ or other categories so that it can identify trends in how groups of people interact
46
+ with certain media. Comscore can also connect AWS Clean Rooms with Amazon QuickSight—a
47
+ solution that provides unified business intelligence at hyperscale—so that it
48
+ can visualize its data in one place using interactive, customizable dashboards.
49
+ 日本語 About Comscore Get Started 한국어 Organizations of all sizes across all industries
50
+ are transforming their businesses and delivering on their missions every day using
51
+ AWS. Contact our experts and start your own AWS journey today. Industry Challenge
52
+ AWS Clean Rooms helps customers and their partners more easily and securely collaborate
53
+ and analyze their collective datasets—without sharing or copying one another’s
54
+ underlying data. AWS Services Used 中文 (繁體) Bahasa Indonesia AWS Clean Rooms. .
55
+ . helps Comscore to provide the best possible measurement and support to our data
56
+ partners to trust that the data that they’re providing is safe and protected.
57
+ ” Ρусский عربي Analytics and insights provider Comscore provides a wide range
58
+ of data-driven solutions that support planning, transacting, and measuring media
59
+ across channels. It serves media companies and advertisers, promoting transparency
60
+ and trust within the industry. Benefits of Using AWS 中文 (简体) Comscore turned to
61
+ Amazon Web Services (AWS) and chose AWS Clean Rooms to uphold privacy-enhanced
62
+ collaborations with its partners. AWS Clean Rooms helps Comscore’s customers and
63
+ partners to securely match, analyze, and collaborate on their combined datasets
64
+ with ease and without sharing or revealing underlying data. Using this solution,
65
+ Comscore can invite up to five collaborators into an AWS Clean Room and pull pre-encrypted
66
+ data into a configured data table from Amazon Simple Storage Service (Amazon S3),
67
+ an object storage service built to retrieve any amount of data from anywhere.
68
+ Media ratings company Comscore can provide richer insights to advertisers while
69
+ maintaining data privacy by securely collaborating on its data with third parties
70
+ using AWS Clean Rooms. Amazon QuickSight powers data-driven organizations with
71
+ unified business intelligence (BI) at hyperscale.
72
+ sentences:
73
+ - How does Comscore use AWS Clean Rooms to protect sensitive data while collaborating
74
+ with third parties?
75
+ - How did AWS help CEHC in building a cost-effective alternate production/DR environment
76
+ in a fraction of the time compared to a traditional brick-and-mortar production
77
+ build?
78
+ - How does AWS aim to democratize access to generative AI applications for all builders
79
+ through services like Amazon Bedrock?
80
+ - source_sentence: 'We convert the HTML pages on this site into smaller overlapping
81
+ chunks (to retain some context continuity between chunks) of information and then
82
+ convert these chunks into embeddings using the gpt-j-6b model and store the embeddings
83
+ in OpenSearch Service. We implement the RAG functionality inside an AWS Lambda
84
+ function with Amazon API Gateway to handle routing all requests to the Lambda.
85
+ We implement a chatbot application in Streamlit which invokes the function via
86
+ the API Gateway and the function does a similarity search in the OpenSearch Service
87
+ index for the embeddings of user question. The matching documents (chunks) are
88
+ added to the prompt as context by the Lambda function and then the function uses
89
+ the flan-t5-xxl model deployed as a SageMaker endpoint to generate an answer to
90
+ the user question. All the code for this post is available in the GitHub repo.
91
+ The following figure represents the high-level architecture of the proposed solution.
92
+ Figure 1: Architecture Step-by-step explanation: The User provides a question
93
+ via the Streamlit web application. The Streamlit application invokes the API Gateway
94
+ endpoint REST API. The API Gateway invokes the Lambda function. The function invokes
95
+ the SageMaker endpoint to convert user question into embeddings. The function
96
+ invokes invokes an OpenSearch Service API to find similar documents to the user
97
+ question. The function creates a “prompt” with the user query and the “similar
98
+ documents” as context and asks the SageMaker endpoint to generate a response.
99
+ The response is provided from the function to the API Gateway. The API Gateway
100
+ provides the response to the Streamlit application. The User is able to view the
101
+ response on the Streamlit application, As illustrated in the architecture diagram,
102
+ we use the following AWS services: SageMaker and Amazon SageMaker JumpStart for
103
+ hosting the two LLMs. OpenSearch Service for storing the embeddings of the enterprise
104
+ knowledge corpus and doing similarity search with user questions. Lambda for implementing
105
+ the RAG functionality and exposing it as a REST endpoint via the API Gateway.
106
+ Amazon SageMaker Processing jobs for large scale data ingestion into OpenSearch.
107
+ Amazon SageMaker Studio for hosting the Streamlit application. AWS Identity and
108
+ Access Management roles and policies for access management.'
109
+ sentences:
110
+ - How can model producers and application builders effectively fine-tune generative
111
+ foundation models to be aligned with human preferences and perform specific tasks
112
+ accurately?
113
+ - How do retailers lose out on revenue due to issues with search functionality on
114
+ their websites?
115
+ - How is the RAG functionality implemented within the AWS architecture described
116
+ for handling user questions and providing responses via the Streamlit application?
117
+ - source_sentence: 'Although Amazon EKS provided management capabilities, it was immediately
118
+ apparent that we were managing infrastructure that wasn’t specifically tailored
119
+ for inference. Forethought had to manage model inference on Amazon EKS ourselves,
120
+ which was a burden on engineering efficiency. For example, in order to share expensive
121
+ GPU resources between multiple models, we were responsible for allocating rigid
122
+ memory fractions to models that were specified during deployment. We wanted to
123
+ address the following key problems with our existing infrastructure: High cost
124
+ – To ensure that each model had enough resources, we would be very conservative
125
+ in how many models to fit per instance. This resulted in much higher costs for
126
+ model hosting than necessary. Low reliability – Despite being conservative in
127
+ our memory allocation, not all models have the same requirements, and occasionally
128
+ some models would throw out of memory (OOM) errors. Inefficient management – We
129
+ had to manage different deployment manifests for each type of model (such as classifiers,
130
+ embeddings, and autocomplete), which was time-consuming and error-prone. We also
131
+ had to maintain the logic to determine the memory allocation for different model
132
+ types. Ultimately, we needed an inference platform to take on the heavy lifting
133
+ of managing our models at runtime to improve the cost, reliability, and the management
134
+ of serving our models. SageMaker MMEs allowed us to address these needs. Through
135
+ its smart and dynamic model loading and unloading, and its scaling capabilities,
136
+ SageMaker MMEs provided a significantly less expensive and more reliable solution
137
+ for hosting our models. We are now able to fit many more models per instance and
138
+ don’t have to worry about OOM errors because SageMaker MMEs handle loading and
139
+ unloading models dynamically. In addition, deployments are now as simple as calling
140
+ Boto3 SageMaker APIs and attaching the proper auto scaling policies. The following
141
+ diagram illustrates our legacy architecture. To begin our migration to SageMaker
142
+ MMEs, we identified the best use cases for MMEs and which of our models would
143
+ benefit the most from this change. MMEs are best used for the following: Models
144
+ that are expected to have low latency but can withstand a cold start time (when
145
+ it’s first loaded in) Models that are called often and consistently Models that
146
+ need partial GPU resources Models that share common requirements and inference
147
+ logic We identified our embeddings models and autocomplete language models as
148
+ the best candidates for our migration. To organize these models under MMEs, we
149
+ would create one MME per model type, or task, one for our embeddings models, and
150
+ another for autocomplete language models. We already had an API layer on top of
151
+ our models for model management and inference. Our task at hand was to rework
152
+ how this API was deploying and handling inference on models under the hood with
153
+ SageMaker, with minimal changes to how clients and product teams interacted with
154
+ the API. We also needed to package our models and custom inference logic to be
155
+ compatible with NVIDIA Triton Inference Server using SageMaker MMEs.'
156
+ sentences:
157
+ - How did the company address the issues of high cost, low reliability, and inefficient
158
+ management in managing model inference on Amazon EKS, and what solution did they
159
+ implement to improve the cost, reliability, and management of serving their models?
160
+ - How can Aurora be configured to interface with Comprehend for analyzing text data?
161
+ - How has the implementation of chatbots and voice bots powered by Amazon Lex improved
162
+ the customer and agent experiences at WaFd Bank's contact center solution?
163
+ - source_sentence: 'In our current approach, we store these files in Amazon S3. Although
164
+ these stored files aren’t accessible from the browser in our version of the code,
165
+ you can modify the code to play previously generated audio files by fetching them
166
+ from Amazon S3 (instead of regenerating the audio for the text again using Amazon
167
+ Polly). We have more code examples for accessing Amazon Polly with Python in the
168
+ AWS Code Library. Create the solution The entire solution is available from our
169
+ Github repo. To create this solution in your account, follow the instructions
170
+ in the README. md file. The solution includes an AWS CloudFormation template to
171
+ provision your resources. Cleanup To clean up the resources created in this demo,
172
+ perform the following steps: Delete the S3 buckets created to store the CloudFormation
173
+ template (Bucket A), the source code (Bucket B) and the website ( pth-cf-text-highlighter-website-[Suffix]
174
+ ). Delete the CloudFormation stack pth-cf. Delete the S3 bucket containing the
175
+ speech files ( pth-speech-[Suffix] ). This bucket was created by the CloudFormation
176
+ template to store the audio and speech marks files generated by Amazon Polly.
177
+ Summary In this post, we showed an example of a solution that can highlight text
178
+ as it’s being spoken using Amazon Polly. It was developed using the Amazon Polly
179
+ speech marks feature, which provides us markers for the place each word or sentence
180
+ begins in an audio file. The solution is available as a CloudFormation template.
181
+ It can be deployed as is to any web application that performs text-to-speech conversion.
182
+ This would be useful for adding visual capabilities to audio in books, avatars
183
+ with lip-sync capabilities (using viseme speech marks), websites, and blogs, and
184
+ for aiding people with hearing impairments. It can be extended to perform additional
185
+ tasks besides highlighting text. For example, the browser can show images, play
186
+ music, and perform other animations on the front end while the text is being spoken.
187
+ This capability can be useful for creating dynamic audio books, educational content,
188
+ and richer text-to-speech applications. We welcome you to try out this solution
189
+ and learn more about the relevant AWS services from the following links.'
190
+ sentences:
191
+ - How has the TRRF platform improved patient care for individuals with Angelman
192
+ Syndrome, according to Megan Cross of the Foundation for Angelman Syndrome (FAST)?
193
+ - How does Amazon SageMaker Ground Truth Plus help users prepare high-quality training
194
+ datasets for generative AI applications, specifically in terms of removing the
195
+ heavy lifting associated with data labeling applications and managing the labeling
196
+ workforce?
197
+ - How can the solution of highlighting text as it's being spoken using Amazon Polly
198
+ be extended to perform additional tasks, and what are some examples of these tasks?
199
+ - source_sentence: CU Coventry’s bachelor of science in cloud computing course officially
200
+ began in September 2020 and has already seen success from the program’s industry-driven
201
+ framework. Overview Validate technical skills and cloud expertise to grow your
202
+ career and business. Learn more » Get Started on AWS services using AWS Academy
203
+ Learner Labs Build your cloud skills at your own pace, on your own time, and completely
204
+ for free. Looking ahead, Coventry University Group plans to expand bachelor of
205
+ science degree in cloud computing courses to its campuses in London and Wroclaw.
206
+ “The ability to have hands-on experience with AWS services—the same ones that
207
+ companies use in the real world—is invaluable,” said Tomasz, a student of the
208
+ Cloud Computing Course. “Once we join the workforce, we can apply our skill sets
209
+ and hit the ground running. ” Türkçe English Students successfully engaging in
210
+ the program graduate with in-demand skills for careers in the cloud, including
211
+ valuable experience with AWS services through AWS Academy Learner Labs. AWS Academy
212
+ provides higher education institutions with ready-to-teach cloud computing curriculum
213
+ to prepare students for AWS Certifications, which validate technical skills and
214
+ cloud expertise for in-demand cloud jobs. “The most important thing is for the
215
+ modules to reflect what the industry needs. We want students to add value to the
216
+ global workforce,” says Flood. Taking advantage of AWS Education Programs, CU
217
+ Coventry’s BSc degree in cloud computing innovates on AWS to track the IT industry’s
218
+ rapid pace. AWS Certification Deutsch Coventry University Group is based in the
219
+ United Kingdom with more than 30,000 students and more than 200 undergraduate
220
+ and postgraduate degrees across its schools, faculties, and campuses. Tiếng Việt
221
+ AWS Training and Certification Italiano ไทย Outcome | Looking to the Future of
222
+ Coventry University Group’s Cloud Computing Program Learn more » Increases employability
223
+ Coventry University Group used AWS Education Programs to create a comprehensive
224
+ and flexible degree to help students meet growing IT industry cloud skills demand.
225
+ Both the 3-year bachelor of science degree in cloud computing and its accelerated
226
+ version were developed in collaboration with AWS. These programs were designed
227
+ by working backwards from the cloud skills employers are currently seeking in
228
+ the UK and across the global labor market. “The approach gave us insights into
229
+ what skill gaps were lacking in the industry. From there, we designed the courses,
230
+ with the AWS team providing helpful inputs,” says Flood. “For example, the AWS
231
+ team pointed out that there was an industry need for serverless computing skills,
232
+ and we integrated that into our curriculum. ” Português.
233
+ sentences:
234
+ - How did Read use Amazon Web Services (AWS) and NVIDIA Riva to improve the performance
235
+ of its transcription tool while keeping costs low?
236
+ - How does RUSH University System for Health use HECAP and Amazon HealthLake to
237
+ address healthcare disparities and improve patient outcomes for residents of Chicago's
238
+ West Side?
239
+ - How does CU Coventry's Bachelor of Science in Cloud Computing program incorporate
240
+ AWS services and industry-driven insights to prepare students for in-demand cloud
241
+ jobs?
242
+ model-index:
243
+ - name: BGE base Financial Matryoshka
244
+ results:
245
+ - task:
246
+ type: information-retrieval
247
+ name: Information Retrieval
248
+ dataset:
249
+ name: dim 768
250
+ type: dim_768
251
+ metrics:
252
+ - type: cosine_accuracy@1
253
+ value: 0.4596774193548387
254
+ name: Cosine Accuracy@1
255
+ - type: cosine_accuracy@3
256
+ value: 0.8024193548387096
257
+ name: Cosine Accuracy@3
258
+ - type: cosine_accuracy@5
259
+ value: 0.8991935483870968
260
+ name: Cosine Accuracy@5
261
+ - type: cosine_accuracy@10
262
+ value: 0.9596774193548387
263
+ name: Cosine Accuracy@10
264
+ - type: cosine_precision@1
265
+ value: 0.4596774193548387
266
+ name: Cosine Precision@1
267
+ - type: cosine_precision@3
268
+ value: 0.2674731182795699
269
+ name: Cosine Precision@3
270
+ - type: cosine_precision@5
271
+ value: 0.17983870967741938
272
+ name: Cosine Precision@5
273
+ - type: cosine_precision@10
274
+ value: 0.0959677419354839
275
+ name: Cosine Precision@10
276
+ - type: cosine_recall@1
277
+ value: 0.4596774193548387
278
+ name: Cosine Recall@1
279
+ - type: cosine_recall@3
280
+ value: 0.8024193548387096
281
+ name: Cosine Recall@3
282
+ - type: cosine_recall@5
283
+ value: 0.8991935483870968
284
+ name: Cosine Recall@5
285
+ - type: cosine_recall@10
286
+ value: 0.9596774193548387
287
+ name: Cosine Recall@10
288
+ - type: cosine_ndcg@10
289
+ value: 0.7184810942825108
290
+ name: Cosine Ndcg@10
291
+ - type: cosine_mrr@10
292
+ value: 0.6395305299539169
293
+ name: Cosine Mrr@10
294
+ - type: cosine_map@100
295
+ value: 0.6408821665935496
296
+ name: Cosine Map@100
297
+ - task:
298
+ type: information-retrieval
299
+ name: Information Retrieval
300
+ dataset:
301
+ name: dim 512
302
+ type: dim_512
303
+ metrics:
304
+ - type: cosine_accuracy@1
305
+ value: 0.46774193548387094
306
+ name: Cosine Accuracy@1
307
+ - type: cosine_accuracy@3
308
+ value: 0.7983870967741935
309
+ name: Cosine Accuracy@3
310
+ - type: cosine_accuracy@5
311
+ value: 0.8951612903225806
312
+ name: Cosine Accuracy@5
313
+ - type: cosine_accuracy@10
314
+ value: 0.9596774193548387
315
+ name: Cosine Accuracy@10
316
+ - type: cosine_precision@1
317
+ value: 0.46774193548387094
318
+ name: Cosine Precision@1
319
+ - type: cosine_precision@3
320
+ value: 0.2661290322580645
321
+ name: Cosine Precision@3
322
+ - type: cosine_precision@5
323
+ value: 0.17903225806451614
324
+ name: Cosine Precision@5
325
+ - type: cosine_precision@10
326
+ value: 0.0959677419354839
327
+ name: Cosine Precision@10
328
+ - type: cosine_recall@1
329
+ value: 0.46774193548387094
330
+ name: Cosine Recall@1
331
+ - type: cosine_recall@3
332
+ value: 0.7983870967741935
333
+ name: Cosine Recall@3
334
+ - type: cosine_recall@5
335
+ value: 0.8951612903225806
336
+ name: Cosine Recall@5
337
+ - type: cosine_recall@10
338
+ value: 0.9596774193548387
339
+ name: Cosine Recall@10
340
+ - type: cosine_ndcg@10
341
+ value: 0.7213571757198337
342
+ name: Cosine Ndcg@10
343
+ - type: cosine_mrr@10
344
+ value: 0.6433467741935482
345
+ name: Cosine Mrr@10
346
+ - type: cosine_map@100
347
+ value: 0.6448406697096213
348
+ name: Cosine Map@100
349
+ - task:
350
+ type: information-retrieval
351
+ name: Information Retrieval
352
+ dataset:
353
+ name: dim 256
354
+ type: dim_256
355
+ metrics:
356
+ - type: cosine_accuracy@1
357
+ value: 0.4596774193548387
358
+ name: Cosine Accuracy@1
359
+ - type: cosine_accuracy@3
360
+ value: 0.7983870967741935
361
+ name: Cosine Accuracy@3
362
+ - type: cosine_accuracy@5
363
+ value: 0.9112903225806451
364
+ name: Cosine Accuracy@5
365
+ - type: cosine_accuracy@10
366
+ value: 0.9637096774193549
367
+ name: Cosine Accuracy@10
368
+ - type: cosine_precision@1
369
+ value: 0.4596774193548387
370
+ name: Cosine Precision@1
371
+ - type: cosine_precision@3
372
+ value: 0.2661290322580645
373
+ name: Cosine Precision@3
374
+ - type: cosine_precision@5
375
+ value: 0.18225806451612905
376
+ name: Cosine Precision@5
377
+ - type: cosine_precision@10
378
+ value: 0.0963709677419355
379
+ name: Cosine Precision@10
380
+ - type: cosine_recall@1
381
+ value: 0.4596774193548387
382
+ name: Cosine Recall@1
383
+ - type: cosine_recall@3
384
+ value: 0.7983870967741935
385
+ name: Cosine Recall@3
386
+ - type: cosine_recall@5
387
+ value: 0.9112903225806451
388
+ name: Cosine Recall@5
389
+ - type: cosine_recall@10
390
+ value: 0.9637096774193549
391
+ name: Cosine Recall@10
392
+ - type: cosine_ndcg@10
393
+ value: 0.7207090934241043
394
+ name: Cosine Ndcg@10
395
+ - type: cosine_mrr@10
396
+ value: 0.6410682283666154
397
+ name: Cosine Mrr@10
398
+ - type: cosine_map@100
399
+ value: 0.6422448191163128
400
+ name: Cosine Map@100
401
+ - task:
402
+ type: information-retrieval
403
+ name: Information Retrieval
404
+ dataset:
405
+ name: dim 128
406
+ type: dim_128
407
+ metrics:
408
+ - type: cosine_accuracy@1
409
+ value: 0.4314516129032258
410
+ name: Cosine Accuracy@1
411
+ - type: cosine_accuracy@3
412
+ value: 0.7580645161290323
413
+ name: Cosine Accuracy@3
414
+ - type: cosine_accuracy@5
415
+ value: 0.8830645161290323
416
+ name: Cosine Accuracy@5
417
+ - type: cosine_accuracy@10
418
+ value: 0.9475806451612904
419
+ name: Cosine Accuracy@10
420
+ - type: cosine_precision@1
421
+ value: 0.4314516129032258
422
+ name: Cosine Precision@1
423
+ - type: cosine_precision@3
424
+ value: 0.25268817204301075
425
+ name: Cosine Precision@3
426
+ - type: cosine_precision@5
427
+ value: 0.17661290322580647
428
+ name: Cosine Precision@5
429
+ - type: cosine_precision@10
430
+ value: 0.09475806451612905
431
+ name: Cosine Precision@10
432
+ - type: cosine_recall@1
433
+ value: 0.4314516129032258
434
+ name: Cosine Recall@1
435
+ - type: cosine_recall@3
436
+ value: 0.7580645161290323
437
+ name: Cosine Recall@3
438
+ - type: cosine_recall@5
439
+ value: 0.8830645161290323
440
+ name: Cosine Recall@5
441
+ - type: cosine_recall@10
442
+ value: 0.9475806451612904
443
+ name: Cosine Recall@10
444
+ - type: cosine_ndcg@10
445
+ value: 0.6948316840385708
446
+ name: Cosine Ndcg@10
447
+ - type: cosine_mrr@10
448
+ value: 0.6124535970302099
449
+ name: Cosine Mrr@10
450
+ - type: cosine_map@100
451
+ value: 0.6145615813099632
452
+ name: Cosine Map@100
453
+ - task:
454
+ type: information-retrieval
455
+ name: Information Retrieval
456
+ dataset:
457
+ name: dim 64
458
+ type: dim_64
459
+ metrics:
460
+ - type: cosine_accuracy@1
461
+ value: 0.4032258064516129
462
+ name: Cosine Accuracy@1
463
+ - type: cosine_accuracy@3
464
+ value: 0.7459677419354839
465
+ name: Cosine Accuracy@3
466
+ - type: cosine_accuracy@5
467
+ value: 0.8709677419354839
468
+ name: Cosine Accuracy@5
469
+ - type: cosine_accuracy@10
470
+ value: 0.9516129032258065
471
+ name: Cosine Accuracy@10
472
+ - type: cosine_precision@1
473
+ value: 0.4032258064516129
474
+ name: Cosine Precision@1
475
+ - type: cosine_precision@3
476
+ value: 0.24865591397849462
477
+ name: Cosine Precision@3
478
+ - type: cosine_precision@5
479
+ value: 0.17419354838709677
480
+ name: Cosine Precision@5
481
+ - type: cosine_precision@10
482
+ value: 0.09516129032258065
483
+ name: Cosine Precision@10
484
+ - type: cosine_recall@1
485
+ value: 0.4032258064516129
486
+ name: Cosine Recall@1
487
+ - type: cosine_recall@3
488
+ value: 0.7459677419354839
489
+ name: Cosine Recall@3
490
+ - type: cosine_recall@5
491
+ value: 0.8709677419354839
492
+ name: Cosine Recall@5
493
+ - type: cosine_recall@10
494
+ value: 0.9516129032258065
495
+ name: Cosine Recall@10
496
+ - type: cosine_ndcg@10
497
+ value: 0.6800470209866719
498
+ name: Cosine Ndcg@10
499
+ - type: cosine_mrr@10
500
+ value: 0.5919978878648234
501
+ name: Cosine Mrr@10
502
+ - type: cosine_map@100
503
+ value: 0.5935355054811555
504
+ name: Cosine Map@100
505
+ ---
506
+
507
+ # BGE base Financial Matryoshka
508
+
509
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
510
+
511
+ ## Model Details
512
+
513
+ ### Model Description
514
+ - **Model Type:** Sentence Transformer
515
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
516
+ - **Maximum Sequence Length:** 512 tokens
517
+ - **Output Dimensionality:** 768 tokens
518
+ - **Similarity Function:** Cosine Similarity
519
+ <!-- - **Training Dataset:** Unknown -->
520
+ - **Language:** en
521
+ - **License:** apache-2.0
522
+
523
+ ### Model Sources
524
+
525
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
526
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
527
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
528
+
529
+ ### Full Model Architecture
530
+
531
+ ```
532
+ SentenceTransformer(
533
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
534
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
535
+ (2): Normalize()
536
+ )
537
+ ```
538
+
539
+ ## Usage
540
+
541
+ ### Direct Usage (Sentence Transformers)
542
+
543
+ First install the Sentence Transformers library:
544
+
545
+ ```bash
546
+ pip install -U sentence-transformers
547
+ ```
548
+
549
+ Then you can load this model and run inference.
550
+ ```python
551
+ from sentence_transformers import SentenceTransformer
552
+
553
+ # Download from the 🤗 Hub
554
+ model = SentenceTransformer("anishareddyalla/bge-base-aws-case-studies")
555
+ # Run inference
556
+ sentences = [
557
+ 'CU Coventry’s bachelor of science in cloud computing course officially began in September 2020 and has already seen success from the program’s industry-driven framework. Overview Validate technical skills and cloud expertise to grow your career and business. Learn more » Get Started on AWS services using AWS Academy Learner Labs Build your cloud skills at your own pace, on your own time, and completely for free. Looking ahead, Coventry University Group plans to expand bachelor of science degree in cloud computing courses to its campuses in London and Wroclaw. “The ability to have hands-on experience with AWS services—the same ones that companies use in the real world—is invaluable,” said Tomasz, a student of the Cloud Computing Course. “Once we join the workforce, we can apply our skill sets and hit the ground running. ” Türkçe English Students successfully engaging in the program graduate with in-demand skills for careers in the cloud, including valuable experience with AWS services through AWS Academy Learner Labs. AWS Academy provides higher education institutions with ready-to-teach cloud computing curriculum to prepare students for AWS Certifications, which validate technical skills and cloud expertise for in-demand cloud jobs. “The most important thing is for the modules to reflect what the industry needs. We want students to add value to the global workforce,” says Flood. Taking advantage of AWS Education Programs, CU Coventry’s BSc degree in cloud computing innovates on AWS to track the IT industry’s rapid pace. AWS Certification Deutsch Coventry University Group is based in the United Kingdom with more than 30,000 students and more than 200 undergraduate and postgraduate degrees across its schools, faculties, and campuses. Tiếng Việt AWS Training and Certification Italiano ไทย Outcome | Looking to the Future of Coventry University Group’s Cloud Computing Program Learn more » Increases employability Coventry University Group used AWS Education Programs to create a comprehensive and flexible degree to help students meet growing IT industry cloud skills demand. Both the 3-year bachelor of science degree in cloud computing and its accelerated version were developed in collaboration with AWS. These programs were designed by working backwards from the cloud skills employers are currently seeking in the UK and across the global labor market. “The approach gave us insights into what skill gaps were lacking in the industry. From there, we designed the courses, with the AWS team providing helpful inputs,” says Flood. “For example, the AWS team pointed out that there was an industry need for serverless computing skills, and we integrated that into our curriculum. ” Português.',
558
+ "How does CU Coventry's Bachelor of Science in Cloud Computing program incorporate AWS services and industry-driven insights to prepare students for in-demand cloud jobs?",
559
+ "How does RUSH University System for Health use HECAP and Amazon HealthLake to address healthcare disparities and improve patient outcomes for residents of Chicago's West Side?",
560
+ ]
561
+ embeddings = model.encode(sentences)
562
+ print(embeddings.shape)
563
+ # [3, 768]
564
+
565
+ # Get the similarity scores for the embeddings
566
+ similarities = model.similarity(embeddings, embeddings)
567
+ print(similarities.shape)
568
+ # [3, 3]
569
+ ```
570
+
571
+ <!--
572
+ ### Direct Usage (Transformers)
573
+
574
+ <details><summary>Click to see the direct usage in Transformers</summary>
575
+
576
+ </details>
577
+ -->
578
+
579
+ <!--
580
+ ### Downstream Usage (Sentence Transformers)
581
+
582
+ You can finetune this model on your own dataset.
583
+
584
+ <details><summary>Click to expand</summary>
585
+
586
+ </details>
587
+ -->
588
+
589
+ <!--
590
+ ### Out-of-Scope Use
591
+
592
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
593
+ -->
594
+
595
+ ## Evaluation
596
+
597
+ ### Metrics
598
+
599
+ #### Information Retrieval
600
+ * Dataset: `dim_768`
601
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
602
+
603
+ | Metric | Value |
604
+ |:--------------------|:-----------|
605
+ | cosine_accuracy@1 | 0.4597 |
606
+ | cosine_accuracy@3 | 0.8024 |
607
+ | cosine_accuracy@5 | 0.8992 |
608
+ | cosine_accuracy@10 | 0.9597 |
609
+ | cosine_precision@1 | 0.4597 |
610
+ | cosine_precision@3 | 0.2675 |
611
+ | cosine_precision@5 | 0.1798 |
612
+ | cosine_precision@10 | 0.096 |
613
+ | cosine_recall@1 | 0.4597 |
614
+ | cosine_recall@3 | 0.8024 |
615
+ | cosine_recall@5 | 0.8992 |
616
+ | cosine_recall@10 | 0.9597 |
617
+ | cosine_ndcg@10 | 0.7185 |
618
+ | cosine_mrr@10 | 0.6395 |
619
+ | **cosine_map@100** | **0.6409** |
620
+
621
+ #### Information Retrieval
622
+ * Dataset: `dim_512`
623
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
624
+
625
+ | Metric | Value |
626
+ |:--------------------|:-----------|
627
+ | cosine_accuracy@1 | 0.4677 |
628
+ | cosine_accuracy@3 | 0.7984 |
629
+ | cosine_accuracy@5 | 0.8952 |
630
+ | cosine_accuracy@10 | 0.9597 |
631
+ | cosine_precision@1 | 0.4677 |
632
+ | cosine_precision@3 | 0.2661 |
633
+ | cosine_precision@5 | 0.179 |
634
+ | cosine_precision@10 | 0.096 |
635
+ | cosine_recall@1 | 0.4677 |
636
+ | cosine_recall@3 | 0.7984 |
637
+ | cosine_recall@5 | 0.8952 |
638
+ | cosine_recall@10 | 0.9597 |
639
+ | cosine_ndcg@10 | 0.7214 |
640
+ | cosine_mrr@10 | 0.6433 |
641
+ | **cosine_map@100** | **0.6448** |
642
+
643
+ #### Information Retrieval
644
+ * Dataset: `dim_256`
645
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
646
+
647
+ | Metric | Value |
648
+ |:--------------------|:-----------|
649
+ | cosine_accuracy@1 | 0.4597 |
650
+ | cosine_accuracy@3 | 0.7984 |
651
+ | cosine_accuracy@5 | 0.9113 |
652
+ | cosine_accuracy@10 | 0.9637 |
653
+ | cosine_precision@1 | 0.4597 |
654
+ | cosine_precision@3 | 0.2661 |
655
+ | cosine_precision@5 | 0.1823 |
656
+ | cosine_precision@10 | 0.0964 |
657
+ | cosine_recall@1 | 0.4597 |
658
+ | cosine_recall@3 | 0.7984 |
659
+ | cosine_recall@5 | 0.9113 |
660
+ | cosine_recall@10 | 0.9637 |
661
+ | cosine_ndcg@10 | 0.7207 |
662
+ | cosine_mrr@10 | 0.6411 |
663
+ | **cosine_map@100** | **0.6422** |
664
+
665
+ #### Information Retrieval
666
+ * Dataset: `dim_128`
667
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
668
+
669
+ | Metric | Value |
670
+ |:--------------------|:-----------|
671
+ | cosine_accuracy@1 | 0.4315 |
672
+ | cosine_accuracy@3 | 0.7581 |
673
+ | cosine_accuracy@5 | 0.8831 |
674
+ | cosine_accuracy@10 | 0.9476 |
675
+ | cosine_precision@1 | 0.4315 |
676
+ | cosine_precision@3 | 0.2527 |
677
+ | cosine_precision@5 | 0.1766 |
678
+ | cosine_precision@10 | 0.0948 |
679
+ | cosine_recall@1 | 0.4315 |
680
+ | cosine_recall@3 | 0.7581 |
681
+ | cosine_recall@5 | 0.8831 |
682
+ | cosine_recall@10 | 0.9476 |
683
+ | cosine_ndcg@10 | 0.6948 |
684
+ | cosine_mrr@10 | 0.6125 |
685
+ | **cosine_map@100** | **0.6146** |
686
+
687
+ #### Information Retrieval
688
+ * Dataset: `dim_64`
689
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
690
+
691
+ | Metric | Value |
692
+ |:--------------------|:-----------|
693
+ | cosine_accuracy@1 | 0.4032 |
694
+ | cosine_accuracy@3 | 0.746 |
695
+ | cosine_accuracy@5 | 0.871 |
696
+ | cosine_accuracy@10 | 0.9516 |
697
+ | cosine_precision@1 | 0.4032 |
698
+ | cosine_precision@3 | 0.2487 |
699
+ | cosine_precision@5 | 0.1742 |
700
+ | cosine_precision@10 | 0.0952 |
701
+ | cosine_recall@1 | 0.4032 |
702
+ | cosine_recall@3 | 0.746 |
703
+ | cosine_recall@5 | 0.871 |
704
+ | cosine_recall@10 | 0.9516 |
705
+ | cosine_ndcg@10 | 0.68 |
706
+ | cosine_mrr@10 | 0.592 |
707
+ | **cosine_map@100** | **0.5935** |
708
+
709
+ <!--
710
+ ## Bias, Risks and Limitations
711
+
712
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
713
+ -->
714
+
715
+ <!--
716
+ ### Recommendations
717
+
718
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
719
+ -->
720
+
721
+ ## Training Details
722
+
723
+ ### Training Dataset
724
+
725
+ #### Unnamed Dataset
726
+
727
+
728
+ * Size: 2,231 training samples
729
+ * Columns: <code>positive</code> and <code>anchor</code>
730
+ * Approximate statistics based on the first 1000 samples:
731
+ | | positive | anchor |
732
+ |:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
733
+ | type | string | string |
734
+ | details | <ul><li>min: 3 tokens</li><li>mean: 434.98 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 33.46 tokens</li><li>max: 65 tokens</li></ul> |
735
+ * Samples:
736
+ | positive | anchor |
737
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
738
+ | <code>”.</code> | <code>What specific event or topic is being discussed in the given information?</code> |
739
+ | <code>On AWS, Rackspace solved a major industry challenge with a solution that saved time, cut costs, and reduced complexity for its customers and itself. “When things go wrong, customers expect Rackspace to step in and act swiftly to solve their problem,” says Prewitt. “Using AWS Systems Manager, we can do that much more quickly. ” Português Rackspace needed a solution that could run both on premises and on the cloud. “We wanted one tool to use across the full suite of solutions that Rackspace manages,” says Gignac. AWS Systems Manager met that requirement and offered programmability. “That’s a key differentiator of AWS: we can use AWS Systems Manager to run shell scripts on individual VMs and do advanced orchestration,” Gignac continues. .</code> | <code>How did Rackspace use AWS Systems Manager to solve major industry challenges and improve their ability to quickly address customer issues?</code> |
740
+ | <code>Français Shortly after the onset of the pandemic in early 2020, Valant began offering a telehealth solution to provide virtual capabilities to practices and their patients. The solution was based on a digital communications platform that lacked a multi-user experience and many other requested features. “The platform we used offered peer-to-peer video only, and we needed group capabilities, chat, screen and file sharing, and a whiteboard,” says James Jay, chief technology officer at Valant Medical Solutions. “In behavioral health, it’s common to have parents, spouses, or other guests attend sessions, and we saw a significant demand from practices for multi-user functionality, as well as other features critical to engaging effectively with patients. We also had strong demand to integrate co-payment collection into telehealth check-in workflows in advance of sessions. ” 2023 Amazon Simple Email Service Español by using voice, video, messaging, and automated reminders Valant Medical Solutions, Inc. provides electronic health record software to behavioral health providers and practices. To add enhanced telehealth capabilities and improve patient communication, the company turned to Amazon Web Services to add capabilities in voice, video, messaging, and email through AWS Communication Developer Services to build a new telehealth solution for more than 2,500 behavioral health practices. AWS Communication Developer Services (CDS) are cloud-based APIs and SDKs that help builders add communication capabilities into their apps or websites with minimal coding. 日本語 Valant Medical Solutions, Inc. designs and develops web-based electronic health record (EHR) software to help behavioral health providers and practices streamline administration tasks and improve patient outcomes. More than 20,000 behavioral health professionals in group and solo private practices across the United States use the Valant platform to treat individuals seeking behavioral healthcare. The Valant IO system has extensive capabilities to enable providers to deliver value-based care through measurement-based assessment and ongoing outcome assessments. 5% Get Started 한국어 Overview | Opportunity | Solution | Outcome | AWS Services Used With the new Valant solution, practices can better engage their patients and communicate with them more frequently through automated reminders for appointments, insurance, no-show follow up, and more. Each practice has the option to deliver all communications via SMS, voice, and emails. Additionally, Valant has grown its overall business by 21 percent and increased add-on revenue by more than 100 percent. business growth Valant Uses AWS Communication Developer Services to Help Behavioral Health Practices Drive Better Patient Engagement Opportunity | Looking to Add More Features to a Telehealth Solution AWS Services Used Amazon Chime SDK As a result of key features built over the last 12 months, Valant has increased its overall business by more than 20 percent. The new telehealth and patient communications features are a big driver of the success. “Because of our new telehealth and automated reminders, which offer more robust features such as group meetings, our clients have seen a revenue increase,” says Jay. “We’ve had an incredible adoption of these new tools, which is also helping us grow our market share and customer satisfaction.</code> | <code>How has the implementation of the new telehealth solution with enhanced communication capabilities through AWS Communication Developer Services impacted Valant Medical Solutions, specifically in terms of business growth and revenue generation?</code> |
741
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
742
+ ```json
743
+ {
744
+ "loss": "MultipleNegativesRankingLoss",
745
+ "matryoshka_dims": [
746
+ 768,
747
+ 512,
748
+ 256,
749
+ 128,
750
+ 64
751
+ ],
752
+ "matryoshka_weights": [
753
+ 1,
754
+ 1,
755
+ 1,
756
+ 1,
757
+ 1
758
+ ],
759
+ "n_dims_per_step": -1
760
+ }
761
+ ```
762
+
763
+ ### Training Hyperparameters
764
+ #### Non-Default Hyperparameters
765
+
766
+ - `eval_strategy`: epoch
767
+ - `per_device_train_batch_size`: 32
768
+ - `per_device_eval_batch_size`: 16
769
+ - `gradient_accumulation_steps`: 16
770
+ - `learning_rate`: 2e-05
771
+ - `num_train_epochs`: 10
772
+ - `lr_scheduler_type`: cosine
773
+ - `warmup_ratio`: 0.1
774
+ - `bf16`: True
775
+ - `tf32`: True
776
+ - `load_best_model_at_end`: True
777
+ - `optim`: adamw_torch_fused
778
+ - `batch_sampler`: no_duplicates
779
+
780
+ #### All Hyperparameters
781
+ <details><summary>Click to expand</summary>
782
+
783
+ - `overwrite_output_dir`: False
784
+ - `do_predict`: False
785
+ - `eval_strategy`: epoch
786
+ - `prediction_loss_only`: True
787
+ - `per_device_train_batch_size`: 32
788
+ - `per_device_eval_batch_size`: 16
789
+ - `per_gpu_train_batch_size`: None
790
+ - `per_gpu_eval_batch_size`: None
791
+ - `gradient_accumulation_steps`: 16
792
+ - `eval_accumulation_steps`: None
793
+ - `learning_rate`: 2e-05
794
+ - `weight_decay`: 0.0
795
+ - `adam_beta1`: 0.9
796
+ - `adam_beta2`: 0.999
797
+ - `adam_epsilon`: 1e-08
798
+ - `max_grad_norm`: 1.0
799
+ - `num_train_epochs`: 10
800
+ - `max_steps`: -1
801
+ - `lr_scheduler_type`: cosine
802
+ - `lr_scheduler_kwargs`: {}
803
+ - `warmup_ratio`: 0.1
804
+ - `warmup_steps`: 0
805
+ - `log_level`: passive
806
+ - `log_level_replica`: warning
807
+ - `log_on_each_node`: True
808
+ - `logging_nan_inf_filter`: True
809
+ - `save_safetensors`: True
810
+ - `save_on_each_node`: False
811
+ - `save_only_model`: False
812
+ - `restore_callback_states_from_checkpoint`: False
813
+ - `no_cuda`: False
814
+ - `use_cpu`: False
815
+ - `use_mps_device`: False
816
+ - `seed`: 42
817
+ - `data_seed`: None
818
+ - `jit_mode_eval`: False
819
+ - `use_ipex`: False
820
+ - `bf16`: True
821
+ - `fp16`: False
822
+ - `fp16_opt_level`: O1
823
+ - `half_precision_backend`: auto
824
+ - `bf16_full_eval`: False
825
+ - `fp16_full_eval`: False
826
+ - `tf32`: True
827
+ - `local_rank`: 0
828
+ - `ddp_backend`: None
829
+ - `tpu_num_cores`: None
830
+ - `tpu_metrics_debug`: False
831
+ - `debug`: []
832
+ - `dataloader_drop_last`: False
833
+ - `dataloader_num_workers`: 0
834
+ - `dataloader_prefetch_factor`: None
835
+ - `past_index`: -1
836
+ - `disable_tqdm`: False
837
+ - `remove_unused_columns`: True
838
+ - `label_names`: None
839
+ - `load_best_model_at_end`: True
840
+ - `ignore_data_skip`: False
841
+ - `fsdp`: []
842
+ - `fsdp_min_num_params`: 0
843
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
844
+ - `fsdp_transformer_layer_cls_to_wrap`: None
845
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
846
+ - `deepspeed`: None
847
+ - `label_smoothing_factor`: 0.0
848
+ - `optim`: adamw_torch_fused
849
+ - `optim_args`: None
850
+ - `adafactor`: False
851
+ - `group_by_length`: False
852
+ - `length_column_name`: length
853
+ - `ddp_find_unused_parameters`: None
854
+ - `ddp_bucket_cap_mb`: None
855
+ - `ddp_broadcast_buffers`: False
856
+ - `dataloader_pin_memory`: True
857
+ - `dataloader_persistent_workers`: False
858
+ - `skip_memory_metrics`: True
859
+ - `use_legacy_prediction_loop`: False
860
+ - `push_to_hub`: False
861
+ - `resume_from_checkpoint`: None
862
+ - `hub_model_id`: None
863
+ - `hub_strategy`: every_save
864
+ - `hub_private_repo`: False
865
+ - `hub_always_push`: False
866
+ - `gradient_checkpointing`: False
867
+ - `gradient_checkpointing_kwargs`: None
868
+ - `include_inputs_for_metrics`: False
869
+ - `eval_do_concat_batches`: True
870
+ - `fp16_backend`: auto
871
+ - `push_to_hub_model_id`: None
872
+ - `push_to_hub_organization`: None
873
+ - `mp_parameters`:
874
+ - `auto_find_batch_size`: False
875
+ - `full_determinism`: False
876
+ - `torchdynamo`: None
877
+ - `ray_scope`: last
878
+ - `ddp_timeout`: 1800
879
+ - `torch_compile`: False
880
+ - `torch_compile_backend`: None
881
+ - `torch_compile_mode`: None
882
+ - `dispatch_batches`: None
883
+ - `split_batches`: None
884
+ - `include_tokens_per_second`: False
885
+ - `include_num_input_tokens_seen`: False
886
+ - `neftune_noise_alpha`: None
887
+ - `optim_target_modules`: None
888
+ - `batch_eval_metrics`: False
889
+ - `eval_on_start`: False
890
+ - `batch_sampler`: no_duplicates
891
+ - `multi_dataset_batch_sampler`: proportional
892
+
893
+ </details>
894
+
895
+ ### Training Logs
896
+ | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
897
+ |:----------:|:-----:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
898
+ | **0.9143** | **4** | **-** | **0.6055** | **0.6308** | **0.646** | **0.5623** | **0.6339** |
899
+ | 1.8286 | 8 | - | 0.6255 | 0.6505 | 0.6517 | 0.5791 | 0.6558 |
900
+ | 2.2857 | 10 | 2.0293 | - | - | - | - | - |
901
+ | 2.9714 | 13 | - | 0.6096 | 0.6472 | 0.6471 | 0.5935 | 0.6490 |
902
+ | 3.8857 | 17 | - | 0.6125 | 0.6410 | 0.6468 | 0.6020 | 0.6422 |
903
+ | 4.5714 | 20 | 0.5008 | - | - | - | - | - |
904
+ | 4.8 | 21 | - | 0.6156 | 0.6351 | 0.6409 | 0.6014 | 0.6391 |
905
+ | 5.9429 | 26 | - | 0.6143 | 0.6350 | 0.6367 | 0.6015 | 0.6406 |
906
+ | 6.8571 | 30 | 0.2964 | 0.6167 | 0.6371 | 0.6390 | 0.5981 | 0.6387 |
907
+ | 8.0 | 35 | - | 0.6138 | 0.6364 | 0.6391 | 0.5986 | 0.6392 |
908
+ | 8.9143 | 39 | - | 0.6173 | 0.6378 | 0.6389 | 0.6021 | 0.6394 |
909
+ | 9.1429 | 40 | 0.2382 | 0.6161 | 0.6376 | 0.6391 | 0.5982 | 0.6398 |
910
+ | **0.9143** | **4** | **-** | **0.6273** | **0.6535** | **0.6608** | **0.5949** | **0.66** |
911
+ | 1.8286 | 8 | - | 0.6177 | 0.6439 | 0.6515 | 0.6074 | 0.6508 |
912
+ | 2.2857 | 10 | 0.554 | - | - | - | - | - |
913
+ | 2.9714 | 13 | - | 0.6070 | 0.6300 | 0.6339 | 0.5923 | 0.6366 |
914
+ | 3.8857 | 17 | - | 0.6071 | 0.6332 | 0.6362 | 0.5976 | 0.6362 |
915
+ | 4.5714 | 20 | 0.2694 | - | - | - | - | - |
916
+ | 4.8 | 21 | - | 0.6124 | 0.6397 | 0.6455 | 0.5988 | 0.6404 |
917
+ | 5.9429 | 26 | - | 0.6155 | 0.6411 | 0.6446 | 0.6007 | 0.6429 |
918
+ | 6.8571 | 30 | 0.1746 | 0.6167 | 0.6429 | 0.6467 | 0.5942 | 0.6424 |
919
+ | 8.0 | 35 | - | 0.6166 | 0.6398 | 0.6462 | 0.5928 | 0.6429 |
920
+ | 8.9143 | 39 | - | 0.6108 | 0.6426 | 0.6448 | 0.5943 | 0.6432 |
921
+ | 9.1429 | 40 | 0.1419 | 0.6146 | 0.6422 | 0.6448 | 0.5935 | 0.6409 |
922
+
923
+ * The bold row denotes the saved checkpoint.
924
+
925
+ ### Framework Versions
926
+ - Python: 3.10.12
927
+ - Sentence Transformers: 3.0.1
928
+ - Transformers: 4.42.4
929
+ - PyTorch: 2.3.1+cu121
930
+ - Accelerate: 0.32.1
931
+ - Datasets: 2.20.0
932
+ - Tokenizers: 0.19.1
933
+
934
+ ## Citation
935
+
936
+ ### BibTeX
937
+
938
+ #### Sentence Transformers
939
+ ```bibtex
940
+ @inproceedings{reimers-2019-sentence-bert,
941
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
942
+ author = "Reimers, Nils and Gurevych, Iryna",
943
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
944
+ month = "11",
945
+ year = "2019",
946
+ publisher = "Association for Computational Linguistics",
947
+ url = "https://arxiv.org/abs/1908.10084",
948
+ }
949
+ ```
950
+
951
+ #### MatryoshkaLoss
952
+ ```bibtex
953
+ @misc{kusupati2024matryoshka,
954
+ title={Matryoshka Representation Learning},
955
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
956
+ year={2024},
957
+ eprint={2205.13147},
958
+ archivePrefix={arXiv},
959
+ primaryClass={cs.LG}
960
+ }
961
+ ```
962
+
963
+ #### MultipleNegativesRankingLoss
964
+ ```bibtex
965
+ @misc{henderson2017efficient,
966
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
967
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
968
+ year={2017},
969
+ eprint={1705.00652},
970
+ archivePrefix={arXiv},
971
+ primaryClass={cs.CL}
972
+ }
973
+ ```
974
+
975
+ <!--
976
+ ## Glossary
977
+
978
+ *Clearly define terms in order to be accessible across audiences.*
979
+ -->
980
+
981
+ <!--
982
+ ## Model Card Authors
983
+
984
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
985
+ -->
986
+
987
+ <!--
988
+ ## Model Card Contact
989
+
990
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
991
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.42.4",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d03918c71f97c505abfe232a31fe78fb41aaf398d7cfe9e7432d853b1cc67598
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff