|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch VITS model.""" |
|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import Any, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
import torch.utils.checkpoint |
|
from scipy.signal import get_window, kaiser |
|
from torch import nn |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled |
|
from transformers.integrations.fsdp import is_fsdp_managed_module |
|
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutput, |
|
ModelOutput, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings |
|
from .configuration_vits import VitsConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
_CONFIG_FOR_DOC = "VitsConfig" |
|
|
|
|
|
@dataclass |
|
class VitsModelOutput(ModelOutput): |
|
""" |
|
Describes the outputs for the VITS model, with potential hidden states and attentions. |
|
|
|
Args: |
|
waveform (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): |
|
The final audio waveform predicted by the model. |
|
sequence_lengths (`torch.FloatTensor` of shape `(batch_size,)`): |
|
The length in samples of each element in the `waveform` batch. |
|
spectrogram (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_bins)`): |
|
The log-mel spectrogram predicted at the output of the flow model. This spectrogram is passed to the Hi-Fi |
|
GAN decoder model to obtain the final audio waveform. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attention weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
|
|
waveform: torch.FloatTensor = None |
|
sequence_lengths: torch.FloatTensor = None |
|
spectrogram: Optional[Tuple[torch.FloatTensor]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
@dataclass |
|
class VitsTextEncoderOutput(ModelOutput): |
|
""" |
|
Describes the outputs for the VITS text encoder model, with potential hidden states and attentions. |
|
|
|
Args: |
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
prior_means (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
The predicted mean values of the prior distribution for the latent text variables. |
|
prior_log_variances (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
The predicted log-variance values of the prior distribution for the latent text variables. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attention weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
|
|
last_hidden_state: torch.FloatTensor = None |
|
prior_means: torch.FloatTensor = None |
|
prior_log_variances: torch.FloatTensor = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
@torch.jit.script |
|
def fused_add_tanh_sigmoid_multiply(input_a, input_b, num_channels): |
|
in_act = input_a + input_b |
|
t_act = torch.tanh(in_act[:, :num_channels, :]) |
|
s_act = torch.sigmoid(in_act[:, num_channels:, :]) |
|
acts = t_act * s_act |
|
return acts |
|
|
|
|
|
def _unconstrained_rational_quadratic_spline( |
|
inputs, |
|
unnormalized_widths, |
|
unnormalized_heights, |
|
unnormalized_derivatives, |
|
reverse=False, |
|
tail_bound=5.0, |
|
min_bin_width=1e-3, |
|
min_bin_height=1e-3, |
|
min_derivative=1e-3, |
|
): |
|
""" |
|
This transformation represents a monotonically increasing piecewise rational quadratic function. Outside of the |
|
`tail_bound`, the transform behaves as an identity function. |
|
|
|
Args: |
|
inputs (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`: |
|
Second half of the hidden-states input to the Vits convolutional flow module. |
|
unnormalized_widths (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`): |
|
First `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection |
|
layer in the convolutional flow module |
|
unnormalized_heights (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`): |
|
Second `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection |
|
layer in the convolutional flow module |
|
unnormalized_derivatives (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`): |
|
Third `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection |
|
layer in the convolutional flow module |
|
reverse (`bool`, *optional*, defaults to `False`): |
|
Whether the model is being run in reverse mode. |
|
tail_bound (`float`, *optional* defaults to 5): |
|
Upper and lower limit bound for the rational quadratic function. Outside of this `tail_bound`, the |
|
transform behaves as an identity function. |
|
min_bin_width (`float`, *optional*, defaults to 1e-3): |
|
Minimum bin value across the width dimension for the piecewise rational quadratic function. |
|
min_bin_height (`float`, *optional*, defaults to 1e-3): |
|
Minimum bin value across the height dimension for the piecewise rational quadratic function. |
|
min_derivative (`float`, *optional*, defaults to 1e-3): |
|
Minimum bin value across the derivatives for the piecewise rational quadratic function. |
|
Returns: |
|
outputs (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`: |
|
Hidden-states as transformed by the piecewise rational quadratic function with the `tail_bound` limits |
|
applied. |
|
log_abs_det (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`: |
|
Logarithm of the absolute value of the determinants corresponding to the `outputs` with the `tail_bound` |
|
limits applied. |
|
""" |
|
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound) |
|
outside_interval_mask = ~inside_interval_mask |
|
|
|
outputs = torch.zeros_like(inputs) |
|
log_abs_det = torch.zeros_like(inputs) |
|
constant = np.log(np.exp(1 - min_derivative) - 1) |
|
|
|
unnormalized_derivatives = nn.functional.pad(unnormalized_derivatives, pad=(1, 1)) |
|
unnormalized_derivatives[..., 0] = constant |
|
unnormalized_derivatives[..., -1] = constant |
|
|
|
outputs[outside_interval_mask] = inputs[outside_interval_mask] |
|
log_abs_det[outside_interval_mask] = 0.0 |
|
|
|
outputs[inside_interval_mask], log_abs_det[inside_interval_mask] = _rational_quadratic_spline( |
|
inputs=inputs[inside_interval_mask], |
|
unnormalized_widths=unnormalized_widths[inside_interval_mask, :], |
|
unnormalized_heights=unnormalized_heights[inside_interval_mask, :], |
|
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :], |
|
reverse=reverse, |
|
tail_bound=tail_bound, |
|
min_bin_width=min_bin_width, |
|
min_bin_height=min_bin_height, |
|
min_derivative=min_derivative, |
|
) |
|
return outputs, log_abs_det |
|
|
|
|
|
def _rational_quadratic_spline( |
|
inputs, |
|
unnormalized_widths, |
|
unnormalized_heights, |
|
unnormalized_derivatives, |
|
reverse, |
|
tail_bound, |
|
min_bin_width, |
|
min_bin_height, |
|
min_derivative, |
|
): |
|
""" |
|
This transformation represents a monotonically increasing piecewise rational quadratic function. Unlike the |
|
function `_unconstrained_rational_quadratic_spline`, the function behaves the same across the `tail_bound`. |
|
|
|
Args: |
|
inputs (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`: |
|
Second half of the hidden-states input to the Vits convolutional flow module. |
|
unnormalized_widths (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`): |
|
First `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection |
|
layer in the convolutional flow module |
|
unnormalized_heights (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`): |
|
Second `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection |
|
layer in the convolutional flow module |
|
unnormalized_derivatives (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`): |
|
Third `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection |
|
layer in the convolutional flow module |
|
reverse (`bool`): |
|
Whether the model is being run in reverse mode. |
|
tail_bound (`float`): |
|
Upper and lower limit bound for the rational quadratic function. Outside of this `tail_bound`, the |
|
transform behaves as an identity function. |
|
min_bin_width (`float`): |
|
Minimum bin value across the width dimension for the piecewise rational quadratic function. |
|
min_bin_height (`float`): |
|
Minimum bin value across the height dimension for the piecewise rational quadratic function. |
|
min_derivative (`float`): |
|
Minimum bin value across the derivatives for the piecewise rational quadratic function. |
|
Returns: |
|
outputs (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`: |
|
Hidden-states as transformed by the piecewise rational quadratic function. |
|
log_abs_det (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`: |
|
Logarithm of the absolute value of the determinants corresponding to the `outputs`. |
|
""" |
|
upper_bound = tail_bound |
|
lower_bound = -tail_bound |
|
|
|
if torch.min(inputs) < lower_bound or torch.max(inputs) > upper_bound: |
|
raise ValueError("Input to a transform is not within its domain") |
|
|
|
num_bins = unnormalized_widths.shape[-1] |
|
|
|
if min_bin_width * num_bins > 1.0: |
|
raise ValueError(f"Minimal bin width {min_bin_width} too large for the number of bins {num_bins}") |
|
if min_bin_height * num_bins > 1.0: |
|
raise ValueError(f"Minimal bin height {min_bin_height} too large for the number of bins {num_bins}") |
|
|
|
widths = nn.functional.softmax(unnormalized_widths, dim=-1) |
|
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths |
|
cumwidths = torch.cumsum(widths, dim=-1) |
|
cumwidths = nn.functional.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0) |
|
cumwidths = (upper_bound - lower_bound) * cumwidths + lower_bound |
|
cumwidths[..., 0] = lower_bound |
|
cumwidths[..., -1] = upper_bound |
|
widths = cumwidths[..., 1:] - cumwidths[..., :-1] |
|
|
|
derivatives = min_derivative + nn.functional.softplus(unnormalized_derivatives) |
|
|
|
heights = nn.functional.softmax(unnormalized_heights, dim=-1) |
|
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights |
|
cumheights = torch.cumsum(heights, dim=-1) |
|
cumheights = nn.functional.pad(cumheights, pad=(1, 0), mode="constant", value=0.0) |
|
cumheights = (upper_bound - lower_bound) * cumheights + lower_bound |
|
cumheights[..., 0] = lower_bound |
|
cumheights[..., -1] = upper_bound |
|
heights = cumheights[..., 1:] - cumheights[..., :-1] |
|
|
|
bin_locations = cumheights if reverse else cumwidths |
|
bin_locations[..., -1] += 1e-6 |
|
bin_idx = torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1 |
|
bin_idx = bin_idx[..., None] |
|
|
|
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0] |
|
input_bin_widths = widths.gather(-1, bin_idx)[..., 0] |
|
|
|
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0] |
|
delta = heights / widths |
|
input_delta = delta.gather(-1, bin_idx)[..., 0] |
|
|
|
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0] |
|
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0] |
|
|
|
input_heights = heights.gather(-1, bin_idx)[..., 0] |
|
|
|
intermediate1 = input_derivatives + input_derivatives_plus_one - 2 * input_delta |
|
if not reverse: |
|
theta = (inputs - input_cumwidths) / input_bin_widths |
|
theta_one_minus_theta = theta * (1 - theta) |
|
|
|
numerator = input_heights * (input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta) |
|
denominator = input_delta + intermediate1 * theta_one_minus_theta |
|
outputs = input_cumheights + numerator / denominator |
|
|
|
derivative_numerator = input_delta.pow(2) * ( |
|
input_derivatives_plus_one * theta.pow(2) |
|
+ 2 * input_delta * theta_one_minus_theta |
|
+ input_derivatives * (1 - theta).pow(2) |
|
) |
|
log_abs_det = torch.log(derivative_numerator) - 2 * torch.log(denominator) |
|
return outputs, log_abs_det |
|
else: |
|
|
|
intermediate2 = inputs - input_cumheights |
|
intermediate3 = intermediate2 * intermediate1 |
|
a = input_heights * (input_delta - input_derivatives) + intermediate3 |
|
b = input_heights * input_derivatives - intermediate3 |
|
c = -input_delta * intermediate2 |
|
|
|
discriminant = b.pow(2) - 4 * a * c |
|
if not (discriminant >= 0).all(): |
|
raise RuntimeError(f"invalid discriminant {discriminant}") |
|
|
|
root = (2 * c) / (-b - torch.sqrt(discriminant)) |
|
outputs = root * input_bin_widths + input_cumwidths |
|
|
|
theta_one_minus_theta = root * (1 - root) |
|
denominator = input_delta + intermediate1 * theta_one_minus_theta |
|
derivative_numerator = input_delta.pow(2) * ( |
|
input_derivatives_plus_one * root.pow(2) |
|
+ 2 * input_delta * theta_one_minus_theta |
|
+ input_derivatives * (1 - root).pow(2) |
|
) |
|
log_abs_det = torch.log(derivative_numerator) - 2 * torch.log(denominator) |
|
return outputs, -log_abs_det |
|
|
|
|
|
class VitsWaveNet(torch.nn.Module): |
|
def __init__(self, config: VitsConfig, num_layers: int): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.num_layers = num_layers |
|
|
|
self.in_layers = torch.nn.ModuleList() |
|
self.res_skip_layers = torch.nn.ModuleList() |
|
self.dropout = nn.Dropout(config.wavenet_dropout) |
|
|
|
if hasattr(nn.utils.parametrizations, "weight_norm"): |
|
weight_norm = nn.utils.parametrizations.weight_norm |
|
else: |
|
weight_norm = nn.utils.weight_norm |
|
|
|
if config.speaker_embedding_size != 0: |
|
cond_layer = torch.nn.Conv1d(config.speaker_embedding_size, 2 * config.hidden_size * num_layers, 1) |
|
self.cond_layer = weight_norm(cond_layer, name="weight") |
|
|
|
for i in range(num_layers): |
|
dilation = config.wavenet_dilation_rate**i |
|
padding = (config.wavenet_kernel_size * dilation - dilation) // 2 |
|
in_layer = torch.nn.Conv1d( |
|
in_channels=config.hidden_size, |
|
out_channels=2 * config.hidden_size, |
|
kernel_size=config.wavenet_kernel_size, |
|
dilation=dilation, |
|
padding=padding, |
|
) |
|
in_layer = weight_norm(in_layer, name="weight") |
|
self.in_layers.append(in_layer) |
|
|
|
|
|
if i < num_layers - 1: |
|
res_skip_channels = 2 * config.hidden_size |
|
else: |
|
res_skip_channels = config.hidden_size |
|
|
|
res_skip_layer = torch.nn.Conv1d(config.hidden_size, res_skip_channels, 1) |
|
res_skip_layer = weight_norm(res_skip_layer, name="weight") |
|
self.res_skip_layers.append(res_skip_layer) |
|
|
|
def forward(self, inputs, padding_mask, global_conditioning=None): |
|
outputs = torch.zeros_like(inputs) |
|
num_channels_tensor = torch.IntTensor([self.hidden_size]) |
|
|
|
if global_conditioning is not None: |
|
global_conditioning = self.cond_layer(global_conditioning) |
|
|
|
for i in range(self.num_layers): |
|
hidden_states = self.in_layers[i](inputs) |
|
|
|
if global_conditioning is not None: |
|
cond_offset = i * 2 * self.hidden_size |
|
global_states = global_conditioning[:, cond_offset : cond_offset + 2 * self.hidden_size, :] |
|
else: |
|
global_states = torch.zeros_like(hidden_states) |
|
|
|
acts = fused_add_tanh_sigmoid_multiply(hidden_states, global_states, num_channels_tensor[0]) |
|
acts = self.dropout(acts) |
|
|
|
res_skip_acts = self.res_skip_layers[i](acts) |
|
if i < self.num_layers - 1: |
|
res_acts = res_skip_acts[:, : self.hidden_size, :] |
|
inputs = (inputs + res_acts) * padding_mask |
|
outputs = outputs + res_skip_acts[:, self.hidden_size :, :] |
|
else: |
|
outputs = outputs + res_skip_acts |
|
|
|
return outputs * padding_mask |
|
|
|
def remove_weight_norm(self): |
|
if self.speaker_embedding_size != 0: |
|
torch.nn.utils.remove_weight_norm(self.cond_layer) |
|
for layer in self.in_layers: |
|
torch.nn.utils.remove_weight_norm(layer) |
|
for layer in self.res_skip_layers: |
|
torch.nn.utils.remove_weight_norm(layer) |
|
|
|
|
|
class VitsPosteriorEncoder(nn.Module): |
|
def __init__(self, config: VitsConfig): |
|
super().__init__() |
|
self.out_channels = config.flow_size |
|
|
|
self.conv_pre = nn.Conv1d(config.spectrogram_bins, config.hidden_size, 1) |
|
self.wavenet = VitsWaveNet(config, num_layers=config.posterior_encoder_num_wavenet_layers) |
|
self.conv_proj = nn.Conv1d(config.hidden_size, self.out_channels * 2, 1) |
|
|
|
def forward(self, inputs, padding_mask, global_conditioning=None): |
|
inputs = self.conv_pre(inputs) * padding_mask |
|
inputs = self.wavenet(inputs, padding_mask, global_conditioning) |
|
stats = self.conv_proj(inputs) * padding_mask |
|
mean, log_stddev = torch.split(stats, self.out_channels, dim=1) |
|
sampled = (mean + torch.randn_like(mean) * torch.exp(log_stddev)) * padding_mask |
|
return sampled, mean, log_stddev |
|
|
|
|
|
|
|
class HifiGanResidualBlock(nn.Module): |
|
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), leaky_relu_slope=0.1): |
|
super().__init__() |
|
self.leaky_relu_slope = leaky_relu_slope |
|
|
|
self.convs1 = nn.ModuleList( |
|
[ |
|
nn.Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
stride=1, |
|
dilation=dilation[i], |
|
padding=self.get_padding(kernel_size, dilation[i]), |
|
) |
|
for i in range(len(dilation)) |
|
] |
|
) |
|
self.convs2 = nn.ModuleList( |
|
[ |
|
nn.Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
stride=1, |
|
dilation=1, |
|
padding=self.get_padding(kernel_size, 1), |
|
) |
|
for _ in range(len(dilation)) |
|
] |
|
) |
|
|
|
def get_padding(self, kernel_size, dilation=1): |
|
return (kernel_size * dilation - dilation) // 2 |
|
|
|
def apply_weight_norm(self): |
|
weight_norm = nn.utils.weight_norm |
|
if hasattr(nn.utils.parametrizations, "weight_norm"): |
|
weight_norm = nn.utils.parametrizations.weight_norm |
|
|
|
for layer in self.convs1: |
|
weight_norm(layer) |
|
for layer in self.convs2: |
|
weight_norm(layer) |
|
|
|
def remove_weight_norm(self): |
|
for layer in self.convs1: |
|
nn.utils.remove_weight_norm(layer) |
|
for layer in self.convs2: |
|
nn.utils.remove_weight_norm(layer) |
|
|
|
def forward(self, hidden_states): |
|
for conv1, conv2 in zip(self.convs1, self.convs2): |
|
residual = hidden_states |
|
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope) |
|
hidden_states = conv1(hidden_states) |
|
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope) |
|
hidden_states = conv2(hidden_states) |
|
hidden_states = hidden_states + residual |
|
return hidden_states |
|
|
|
|
|
class VitsHifiGan(nn.Module): |
|
def __init__(self, config: VitsConfig): |
|
super().__init__() |
|
self.config = config |
|
self.num_kernels = len(config.resblock_kernel_sizes) |
|
self.num_upsamples = len(config.upsample_rates) |
|
self.conv_pre = nn.Conv1d( |
|
config.flow_size, |
|
config.upsample_initial_channel, |
|
kernel_size=7, |
|
stride=1, |
|
padding=3, |
|
) |
|
|
|
self.upsampler = nn.ModuleList() |
|
for i, (upsample_rate, kernel_size) in enumerate(zip(config.upsample_rates, config.upsample_kernel_sizes)): |
|
self.upsampler.append( |
|
nn.ConvTranspose1d( |
|
config.upsample_initial_channel // (2**i), |
|
config.upsample_initial_channel // (2 ** (i + 1)), |
|
kernel_size=kernel_size, |
|
stride=upsample_rate, |
|
padding=(kernel_size - upsample_rate) // 2, |
|
) |
|
) |
|
|
|
self.resblocks = nn.ModuleList() |
|
for i in range(len(self.upsampler)): |
|
channels = config.upsample_initial_channel // (2 ** (i + 1)) |
|
for kernel_size, dilation in zip(config.resblock_kernel_sizes, config.resblock_dilation_sizes): |
|
self.resblocks.append(HifiGanResidualBlock(channels, kernel_size, dilation, config.leaky_relu_slope)) |
|
|
|
self.conv_post = nn.Conv1d(channels, 1, kernel_size=7, stride=1, padding=3, bias=False) |
|
|
|
if config.speaker_embedding_size != 0: |
|
self.cond = nn.Conv1d(config.speaker_embedding_size, config.upsample_initial_channel, 1) |
|
|
|
def apply_weight_norm(self): |
|
weight_norm = nn.utils.weight_norm |
|
if hasattr(nn.utils.parametrizations, "weight_norm"): |
|
weight_norm = nn.utils.parametrizations.weight_norm |
|
|
|
for layer in self.upsampler: |
|
weight_norm(layer) |
|
for layer in self.resblocks: |
|
layer.apply_weight_norm() |
|
|
|
def remove_weight_norm(self): |
|
for layer in self.upsampler: |
|
nn.utils.remove_weight_norm(layer) |
|
for layer in self.resblocks: |
|
layer.remove_weight_norm() |
|
|
|
def forward( |
|
self, spectrogram: torch.FloatTensor, global_conditioning: Optional[torch.FloatTensor] = None |
|
) -> torch.FloatTensor: |
|
r""" |
|
Converts a spectrogram into a speech waveform. |
|
|
|
Args: |
|
spectrogram (`torch.FloatTensor` of shape `(batch_size, config.spectrogram_bins, sequence_length)`): |
|
Tensor containing the spectrograms. |
|
global_conditioning (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_size, 1)`, *optional*): |
|
Tensor containing speaker embeddings, for multispeaker models. |
|
|
|
Returns: |
|
`torch.FloatTensor`: Tensor of shape shape `(batch_size, 1, num_frames)` containing the speech waveform. |
|
""" |
|
hidden_states = self.conv_pre(spectrogram) |
|
|
|
if global_conditioning is not None: |
|
hidden_states = hidden_states + self.cond(global_conditioning) |
|
|
|
for i in range(self.num_upsamples): |
|
hidden_states = nn.functional.leaky_relu(hidden_states, self.config.leaky_relu_slope) |
|
hidden_states = self.upsampler[i](hidden_states) |
|
|
|
res_state = self.resblocks[i * self.num_kernels](hidden_states) |
|
for j in range(1, self.num_kernels): |
|
res_state += self.resblocks[i * self.num_kernels + j](hidden_states) |
|
hidden_states = res_state / self.num_kernels |
|
|
|
hidden_states = nn.functional.leaky_relu(hidden_states) |
|
hidden_states = self.conv_post(hidden_states) |
|
waveform = torch.tanh(hidden_states) |
|
return waveform |
|
|
|
|
|
class VitsISTFT(nn.Module): |
|
def __init__(self, config: VitsConfig): |
|
super().__init__() |
|
self.config = config |
|
self.gen_istft_n_fft = config.gen_istft_n_fft |
|
self.gen_istft_hop_size = config.gen_istft_hop_size |
|
self.post_n_fft = config.gen_istft_n_fft |
|
|
|
if config.istft_decoder in ["ms_istft", "mb_istft"]: |
|
self.subbands = config.subbands |
|
if config.istft_decoder == "mb_istft": |
|
self.pqmf = PQMF(subbands=self.subbands) |
|
else: |
|
updown_filter = torch.zeros((self.subbands, self.subbands, self.subbands)).float() |
|
for k in range(self.subbands): |
|
updown_filter[k, k, 0] = 1.0 |
|
self.register_buffer("updown_filter", updown_filter) |
|
|
|
self.multistream_conv_post = nn.Conv1d( |
|
4, 1, kernel_size=63, bias=False, padding=self.get_padding(63, 1) |
|
) |
|
|
|
self.num_kernels = len(config.resblock_kernel_sizes) |
|
self.num_upsamples = len(config.upsample_rates) |
|
self.conv_pre = nn.Conv1d( |
|
config.flow_size, |
|
config.upsample_initial_channel, |
|
kernel_size=7, |
|
stride=1, |
|
padding=3, |
|
) |
|
|
|
self.upsampler = nn.ModuleList() |
|
for i, (upsample_rate, kernel_size) in enumerate(zip(config.upsample_rates, config.upsample_kernel_sizes)): |
|
self.upsampler.append( |
|
nn.ConvTranspose1d( |
|
config.upsample_initial_channel // (2**i), |
|
config.upsample_initial_channel // (2 ** (i + 1)), |
|
kernel_size=kernel_size, |
|
stride=upsample_rate, |
|
padding=(kernel_size - upsample_rate) // 2, |
|
) |
|
) |
|
|
|
self.resblocks = nn.ModuleList() |
|
for i in range(len(self.upsampler)): |
|
channels = config.upsample_initial_channel // (2 ** (i + 1)) |
|
for kernel_size, dilation in zip(config.resblock_kernel_sizes, config.resblock_dilation_sizes): |
|
self.resblocks.append(HifiGanResidualBlock(channels, kernel_size, dilation, config.leaky_relu_slope)) |
|
|
|
if config.istft_decoder == "istft": |
|
self.conv_post = nn.Conv1d(channels, self.post_n_fft + 2, kernel_size=7, stride=1, padding=3, bias=True) |
|
elif config.istft_decoder in ["ms_istft", "mb_istft"]: |
|
self.conv_post = nn.Conv1d( |
|
channels, self.subbands * (self.post_n_fft + 2), kernel_size=7, stride=1, padding=3, bias=True |
|
) |
|
|
|
self.reflection_pad = nn.ReflectionPad1d((1, 0)) |
|
self.stft = TorchSTFT( |
|
filter_length=self.gen_istft_n_fft, hop_length=self.gen_istft_hop_size, win_length=self.gen_istft_n_fft |
|
) |
|
|
|
if config.speaker_embedding_size != 0: |
|
self.cond = nn.Conv1d(config.speaker_embedding_size, config.upsample_initial_channel, 1) |
|
|
|
def get_padding(self, kernel_size, dilation=1): |
|
return int((kernel_size * dilation - dilation) / 2) |
|
|
|
def apply_weight_norm(self): |
|
weight_norm = nn.utils.weight_norm |
|
if hasattr(nn.utils.parametrizations, "weight_norm"): |
|
weight_norm = nn.utils.parametrizations.weight_norm |
|
|
|
for layer in self.upsampler: |
|
weight_norm(layer) |
|
for layer in self.resblocks: |
|
layer.apply_weight_norm() |
|
weight_norm(self.conv_pre) |
|
weight_norm(self.conv_post) |
|
|
|
if self.config.istft_decoder == "ms_istft": |
|
weight_norm(self.multistream_conv_post) |
|
|
|
def remove_weight_norm(self): |
|
for layer in self.upsampler: |
|
nn.utils.remove_weight_norm(layer) |
|
for layer in self.resblocks: |
|
layer.remove_weight_norm() |
|
nn.utils.remove_weight_norm(self.conv_pre) |
|
nn.utils.remove_weight_norm(self.conv_post) |
|
|
|
if self.config.istft_decoder == "ms_istft": |
|
nn.utils.remove_weight_norm(self.multistream_conv_post) |
|
|
|
def forward( |
|
self, spectrogram: torch.FloatTensor, global_conditioning: Optional[torch.FloatTensor] = None |
|
) -> torch.FloatTensor: |
|
r""" |
|
Converts a spectrogram into a speech waveform. |
|
|
|
Args: |
|
spectrogram (`torch.FloatTensor` of shape `(batch_size, config.spectrogram_bins, sequence_length)`): |
|
Tensor containing the spectrograms. |
|
global_conditioning (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_size, 1)`, *optional*): |
|
Tensor containing speaker embeddings, for multispeaker models. |
|
|
|
Returns: |
|
`torch.FloatTensor`: Tensor of shape shape `(batch_size, 1, num_frames)` containing the speech waveform. |
|
""" |
|
hidden_states = self.conv_pre(spectrogram) |
|
|
|
if global_conditioning is not None: |
|
hidden_states = hidden_states + self.cond(global_conditioning) |
|
|
|
for i in range(self.num_upsamples): |
|
hidden_states = nn.functional.leaky_relu(hidden_states, self.config.leaky_relu_slope) |
|
hidden_states = self.upsampler[i](hidden_states) |
|
|
|
res_state = self.resblocks[i * self.num_kernels](hidden_states) |
|
for j in range(1, self.num_kernels): |
|
res_state += self.resblocks[i * self.num_kernels + j](hidden_states) |
|
hidden_states = res_state / self.num_kernels |
|
|
|
hidden_states = nn.functional.leaky_relu(hidden_states) |
|
hidden_states = self.reflection_pad(hidden_states) |
|
hidden_states = self.conv_post(hidden_states) |
|
|
|
if self.config.istft_decoder == "istft": |
|
spec = torch.exp(hidden_states[:, : self.post_n_fft // 2 + 1, :]) |
|
phase = math.pi * torch.sin(hidden_states[:, self.post_n_fft // 2 + 1 :, :]) |
|
waveform = self.stft.inverse(spec, phase) |
|
|
|
elif self.config.istft_decoder in ["mb_istft", "ms_istft"]: |
|
hidden_states = torch.reshape( |
|
hidden_states, |
|
( |
|
hidden_states.shape[0], |
|
self.subbands, |
|
hidden_states.shape[1] // self.subbands, |
|
hidden_states.shape[-1], |
|
), |
|
) |
|
spec = torch.exp(hidden_states[:, :, : self.post_n_fft // 2 + 1, :]) |
|
phase = math.pi * torch.sin(hidden_states[:, :, self.post_n_fft // 2 + 1 :, :]) |
|
|
|
waveform_mb = self.stft.inverse( |
|
torch.reshape(spec, (spec.shape[0] * self.subbands, self.gen_istft_n_fft // 2 + 1, spec.shape[-1])), |
|
torch.reshape(phase, (phase.shape[0] * self.subbands, self.gen_istft_n_fft // 2 + 1, phase.shape[-1])), |
|
) |
|
waveform_mb = torch.reshape(waveform_mb, (hidden_states.shape[0], self.subbands, 1, waveform_mb.shape[-1])) |
|
waveform_mb = waveform_mb.squeeze(-2) |
|
|
|
if self.config.istft_decoder == "mb_istft": |
|
waveform = self.pqmf.synthesis(waveform_mb) |
|
else: |
|
waveform_mb = torch.nn.functional.conv_transpose1d( |
|
waveform_mb, self.updown_filter * self.subbands, stride=self.subbands |
|
) |
|
waveform = self.multistream_conv_post(waveform_mb) |
|
|
|
return waveform |
|
|
|
|
|
class PQMF(torch.nn.Module): |
|
"""PQMF module. |
|
This module is based on `Near-perfect-reconstruction pseudo-QMF banks`_. |
|
.. _`Near-perfect-reconstruction pseudo-QMF banks`: |
|
https://ieeexplore.ieee.org/document/258122 |
|
""" |
|
|
|
def __init__(self, subbands=4, taps=62, cutoff_ratio=0.15, beta=9.0): |
|
"""Initilize PQMF module. |
|
Args: |
|
subbands (int): The number of subbands. |
|
taps (int): The number of filter taps. |
|
cutoff_ratio (float): Cut-off frequency ratio. |
|
beta (float): Beta coefficient for kaiser window. |
|
""" |
|
super(PQMF, self).__init__() |
|
|
|
|
|
h_proto = self.design_prototype_filter(taps, cutoff_ratio, beta) |
|
h_analysis = np.zeros((subbands, len(h_proto))) |
|
h_synthesis = np.zeros((subbands, len(h_proto))) |
|
for k in range(subbands): |
|
h_analysis[k] = ( |
|
2 |
|
* h_proto |
|
* np.cos( |
|
(2 * k + 1) * (np.pi / (2 * subbands)) * (np.arange(taps + 1) - ((taps - 1) / 2)) |
|
+ (-1) ** k * np.pi / 4 |
|
) |
|
) |
|
h_synthesis[k] = ( |
|
2 |
|
* h_proto |
|
* np.cos( |
|
(2 * k + 1) * (np.pi / (2 * subbands)) * (np.arange(taps + 1) - ((taps - 1) / 2)) |
|
- (-1) ** k * np.pi / 4 |
|
) |
|
) |
|
|
|
|
|
analysis_filter = torch.from_numpy(h_analysis).float().unsqueeze(1) |
|
synthesis_filter = torch.from_numpy(h_synthesis).float().unsqueeze(0) |
|
|
|
|
|
self.register_buffer("analysis_filter", analysis_filter) |
|
self.register_buffer("synthesis_filter", synthesis_filter) |
|
|
|
|
|
updown_filter = torch.zeros((subbands, subbands, subbands)).float() |
|
for k in range(subbands): |
|
updown_filter[k, k, 0] = 1.0 |
|
self.register_buffer("updown_filter", updown_filter) |
|
self.subbands = subbands |
|
|
|
|
|
self.pad_fn = torch.nn.ConstantPad1d(taps // 2, 0.0) |
|
|
|
def design_prototype_filter(self, taps=62, cutoff_ratio=0.15, beta=9.0): |
|
"""Design prototype filter for PQMF. |
|
This method is based on `A Kaiser window approach for the design of prototype |
|
filters of cosine modulated filterbanks`_. |
|
Args: |
|
taps (int): The number of filter taps. |
|
cutoff_ratio (float): Cut-off frequency ratio. |
|
beta (float): Beta coefficient for kaiser window. |
|
Returns: |
|
ndarray: Impluse response of prototype filter (taps + 1,). |
|
.. _`A Kaiser window approach for the design of prototype filters of cosine modulated filterbanks`: |
|
https://ieeexplore.ieee.org/abstract/document/681427 |
|
""" |
|
|
|
assert taps % 2 == 0, "The number of taps mush be even number." |
|
assert 0.0 < cutoff_ratio < 1.0, "Cutoff ratio must be > 0.0 and < 1.0." |
|
|
|
|
|
omega_c = np.pi * cutoff_ratio |
|
with np.errstate(invalid="ignore"): |
|
h_i = np.sin(omega_c * (np.arange(taps + 1) - 0.5 * taps)) / (np.pi * (np.arange(taps + 1) - 0.5 * taps)) |
|
h_i[taps // 2] = np.cos(0) * cutoff_ratio |
|
|
|
|
|
w = kaiser(taps + 1, beta) |
|
h = h_i * w |
|
|
|
return h |
|
|
|
def analysis(self, x): |
|
"""Analysis with PQMF. |
|
Args: |
|
x (Tensor): Input tensor (B, 1, T). |
|
Returns: |
|
Tensor: Output tensor (B, subbands, T // subbands). |
|
""" |
|
x = torch.nn.functional.conv1d(self.pad_fn(x), self.analysis_filter) |
|
return torch.nn.functional.conv1d(x, self.updown_filter, stride=self.subbands) |
|
|
|
def synthesis(self, x): |
|
"""Synthesis with PQMF. |
|
Args: |
|
x (Tensor): Input tensor (B, subbands, T // subbands). |
|
Returns: |
|
Tensor: Output tensor (B, 1, T). |
|
""" |
|
|
|
|
|
|
|
x = torch.nn.functional.conv_transpose1d(x, self.updown_filter * self.subbands, stride=self.subbands) |
|
return torch.nn.functional.conv1d(self.pad_fn(x), self.synthesis_filter) |
|
|
|
|
|
class TorchSTFT(torch.nn.Module): |
|
def __init__(self, filter_length=800, hop_length=200, win_length=800, window="hann"): |
|
super().__init__() |
|
self.filter_length = filter_length |
|
self.hop_length = hop_length |
|
self.win_length = win_length |
|
self.window = torch.from_numpy(get_window(window, win_length, fftbins=True).astype(np.float32)) |
|
|
|
def transform(self, input_data): |
|
forward_transform = torch.stft( |
|
input_data, self.filter_length, self.hop_length, self.win_length, window=self.window, return_complex=True |
|
) |
|
|
|
return torch.abs(forward_transform), torch.angle(forward_transform) |
|
|
|
def inverse(self, magnitude, phase): |
|
inverse_transform = torch.istft( |
|
magnitude * torch.exp(phase * 1j), |
|
self.filter_length, |
|
self.hop_length, |
|
self.win_length, |
|
window=self.window.to(magnitude.device), |
|
) |
|
|
|
return inverse_transform.unsqueeze(-2) |
|
|
|
def forward(self, input_data): |
|
self.magnitude, self.phase = self.transform(input_data) |
|
reconstruction = self.inverse(self.magnitude, self.phase) |
|
return reconstruction |
|
|
|
|
|
class VitsResidualCouplingLayer(nn.Module): |
|
def __init__(self, config: VitsConfig): |
|
super().__init__() |
|
self.half_channels = config.flow_size // 2 |
|
|
|
self.conv_pre = nn.Conv1d(self.half_channels, config.hidden_size, 1) |
|
self.wavenet = VitsWaveNet(config, num_layers=config.prior_encoder_num_wavenet_layers) |
|
self.conv_post = nn.Conv1d(config.hidden_size, self.half_channels, 1) |
|
|
|
def forward(self, inputs, padding_mask, global_conditioning=None, reverse=False): |
|
first_half, second_half = torch.split(inputs, [self.half_channels] * 2, dim=1) |
|
hidden_states = self.conv_pre(first_half) * padding_mask |
|
hidden_states = self.wavenet(hidden_states, padding_mask, global_conditioning) |
|
mean = self.conv_post(hidden_states) * padding_mask |
|
log_stddev = torch.zeros_like(mean) |
|
|
|
if not reverse: |
|
second_half = mean + second_half * torch.exp(log_stddev) * padding_mask |
|
outputs = torch.cat([first_half, second_half], dim=1) |
|
log_determinant = torch.sum(log_stddev, [1, 2]) |
|
return outputs, log_determinant |
|
else: |
|
second_half = (second_half - mean) * torch.exp(-log_stddev) * padding_mask |
|
outputs = torch.cat([first_half, second_half], dim=1) |
|
return outputs, None |
|
|
|
|
|
class VitsResidualCouplingBlock(nn.Module): |
|
def __init__(self, config: VitsConfig): |
|
super().__init__() |
|
self.flows = nn.ModuleList() |
|
for _ in range(config.prior_encoder_num_flows): |
|
self.flows.append(VitsResidualCouplingLayer(config)) |
|
|
|
def forward(self, inputs, padding_mask, global_conditioning=None, reverse=False): |
|
if not reverse: |
|
for flow in self.flows: |
|
inputs, _ = flow(inputs, padding_mask, global_conditioning) |
|
inputs = torch.flip(inputs, [1]) |
|
else: |
|
for flow in reversed(self.flows): |
|
inputs = torch.flip(inputs, [1]) |
|
inputs, _ = flow(inputs, padding_mask, global_conditioning, reverse=True) |
|
return inputs |
|
|
|
|
|
class VitsDilatedDepthSeparableConv(nn.Module): |
|
def __init__(self, config: VitsConfig, dropout_rate=0.0): |
|
super().__init__() |
|
kernel_size = config.duration_predictor_kernel_size |
|
channels = config.hidden_size |
|
self.num_layers = config.depth_separable_num_layers |
|
|
|
self.dropout = nn.Dropout(dropout_rate) |
|
self.convs_dilated = nn.ModuleList() |
|
self.convs_pointwise = nn.ModuleList() |
|
self.norms_1 = nn.ModuleList() |
|
self.norms_2 = nn.ModuleList() |
|
for i in range(self.num_layers): |
|
dilation = kernel_size**i |
|
padding = (kernel_size * dilation - dilation) // 2 |
|
self.convs_dilated.append( |
|
nn.Conv1d( |
|
in_channels=channels, |
|
out_channels=channels, |
|
kernel_size=kernel_size, |
|
groups=channels, |
|
dilation=dilation, |
|
padding=padding, |
|
) |
|
) |
|
self.convs_pointwise.append(nn.Conv1d(channels, channels, 1)) |
|
self.norms_1.append(nn.LayerNorm(channels)) |
|
self.norms_2.append(nn.LayerNorm(channels)) |
|
|
|
def forward(self, inputs, padding_mask, global_conditioning=None): |
|
if global_conditioning is not None: |
|
inputs = inputs + global_conditioning |
|
|
|
for i in range(self.num_layers): |
|
hidden_states = self.convs_dilated[i](inputs * padding_mask) |
|
hidden_states = self.norms_1[i](hidden_states.transpose(1, -1)).transpose(1, -1) |
|
hidden_states = nn.functional.gelu(hidden_states) |
|
hidden_states = self.convs_pointwise[i](hidden_states) |
|
hidden_states = self.norms_2[i](hidden_states.transpose(1, -1)).transpose(1, -1) |
|
hidden_states = nn.functional.gelu(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
inputs = inputs + hidden_states |
|
|
|
return inputs * padding_mask |
|
|
|
|
|
class VitsConvFlow(nn.Module): |
|
def __init__(self, config: VitsConfig): |
|
super().__init__() |
|
self.filter_channels = config.hidden_size |
|
self.half_channels = config.depth_separable_channels // 2 |
|
self.num_bins = config.duration_predictor_flow_bins |
|
self.tail_bound = config.duration_predictor_tail_bound |
|
|
|
self.conv_pre = nn.Conv1d(self.half_channels, self.filter_channels, 1) |
|
self.conv_dds = VitsDilatedDepthSeparableConv(config) |
|
self.conv_proj = nn.Conv1d(self.filter_channels, self.half_channels * (self.num_bins * 3 - 1), 1) |
|
|
|
def forward(self, inputs, padding_mask, global_conditioning=None, reverse=False): |
|
first_half, second_half = torch.split(inputs, [self.half_channels] * 2, dim=1) |
|
|
|
hidden_states = self.conv_pre(first_half) |
|
hidden_states = self.conv_dds(hidden_states, padding_mask, global_conditioning) |
|
hidden_states = self.conv_proj(hidden_states) * padding_mask |
|
|
|
batch_size, channels, length = first_half.shape |
|
hidden_states = hidden_states.reshape(batch_size, channels, -1, length).permute(0, 1, 3, 2) |
|
|
|
unnormalized_widths = hidden_states[..., : self.num_bins] / math.sqrt(self.filter_channels) |
|
unnormalized_heights = hidden_states[..., self.num_bins : 2 * self.num_bins] / math.sqrt(self.filter_channels) |
|
unnormalized_derivatives = hidden_states[..., 2 * self.num_bins :] |
|
|
|
second_half, log_abs_det = _unconstrained_rational_quadratic_spline( |
|
second_half, |
|
unnormalized_widths, |
|
unnormalized_heights, |
|
unnormalized_derivatives, |
|
reverse=reverse, |
|
tail_bound=self.tail_bound, |
|
) |
|
|
|
outputs = torch.cat([first_half, second_half], dim=1) * padding_mask |
|
if not reverse: |
|
log_determinant = torch.sum(log_abs_det * padding_mask, [1, 2]) |
|
return outputs, log_determinant |
|
else: |
|
return outputs, None |
|
|
|
|
|
class VitsElementwiseAffine(nn.Module): |
|
def __init__(self, config: VitsConfig): |
|
super().__init__() |
|
self.channels = config.depth_separable_channels |
|
self.translate = nn.Parameter(torch.zeros(self.channels, 1)) |
|
self.log_scale = nn.Parameter(torch.zeros(self.channels, 1)) |
|
|
|
def forward(self, inputs, padding_mask, global_conditioning=None, reverse=False): |
|
if not reverse: |
|
outputs = self.translate + torch.exp(self.log_scale) * inputs |
|
outputs = outputs * padding_mask |
|
log_determinant = torch.sum(self.log_scale * padding_mask, [1, 2]) |
|
return outputs, log_determinant |
|
else: |
|
outputs = (inputs - self.translate) * torch.exp(-self.log_scale) * padding_mask |
|
return outputs, None |
|
|
|
|
|
class VitsStochasticDurationPredictor(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
embed_dim = config.speaker_embedding_size |
|
filter_channels = config.hidden_size |
|
|
|
self.conv_pre = nn.Conv1d(filter_channels, filter_channels, 1) |
|
self.conv_proj = nn.Conv1d(filter_channels, filter_channels, 1) |
|
self.conv_dds = VitsDilatedDepthSeparableConv( |
|
config, |
|
dropout_rate=config.duration_predictor_dropout, |
|
) |
|
|
|
if embed_dim != 0: |
|
self.cond = nn.Conv1d(embed_dim, filter_channels, 1) |
|
|
|
self.flows = nn.ModuleList() |
|
self.flows.append(VitsElementwiseAffine(config)) |
|
for _ in range(config.duration_predictor_num_flows): |
|
self.flows.append(VitsConvFlow(config)) |
|
|
|
self.post_conv_pre = nn.Conv1d(1, filter_channels, 1) |
|
self.post_conv_proj = nn.Conv1d(filter_channels, filter_channels, 1) |
|
self.post_conv_dds = VitsDilatedDepthSeparableConv( |
|
config, |
|
dropout_rate=config.duration_predictor_dropout, |
|
) |
|
|
|
self.post_flows = nn.ModuleList() |
|
self.post_flows.append(VitsElementwiseAffine(config)) |
|
for _ in range(config.duration_predictor_num_flows): |
|
self.post_flows.append(VitsConvFlow(config)) |
|
|
|
def forward(self, inputs, padding_mask, global_conditioning=None, durations=None, reverse=False, noise_scale=1.0): |
|
inputs = torch.detach(inputs) |
|
inputs = self.conv_pre(inputs) |
|
|
|
if global_conditioning is not None: |
|
global_conditioning = torch.detach(global_conditioning) |
|
inputs = inputs + self.cond(global_conditioning) |
|
|
|
inputs = self.conv_dds(inputs, padding_mask) |
|
inputs = self.conv_proj(inputs) * padding_mask |
|
|
|
if not reverse: |
|
hidden_states = self.post_conv_pre(durations) |
|
hidden_states = self.post_conv_dds(hidden_states, padding_mask) |
|
hidden_states = self.post_conv_proj(hidden_states) * padding_mask |
|
|
|
random_posterior = ( |
|
torch.randn(durations.size(0), 2, durations.size(2)).to(device=inputs.device, dtype=inputs.dtype) |
|
* padding_mask |
|
) |
|
log_determinant_posterior_sum = 0 |
|
latents_posterior = random_posterior |
|
for flow in self.post_flows: |
|
latents_posterior, log_determinant = flow( |
|
latents_posterior, padding_mask, global_conditioning=inputs + hidden_states |
|
) |
|
latents_posterior = torch.flip(latents_posterior, [1]) |
|
log_determinant_posterior_sum += log_determinant |
|
|
|
first_half, second_half = torch.split(latents_posterior, [1, 1], dim=1) |
|
|
|
log_determinant_posterior_sum += torch.sum( |
|
(nn.functional.logsigmoid(first_half) + nn.functional.logsigmoid(-first_half)) * padding_mask, [1, 2] |
|
) |
|
logq = ( |
|
torch.sum(-0.5 * (math.log(2 * math.pi) + (random_posterior**2)) * padding_mask, [1, 2]) |
|
- log_determinant_posterior_sum |
|
) |
|
|
|
first_half = (durations - torch.sigmoid(first_half)) * padding_mask |
|
first_half = torch.log(torch.clamp_min(first_half, 1e-5)) * padding_mask |
|
log_determinant_sum = torch.sum(-first_half, [1, 2]) |
|
|
|
latents = torch.cat([first_half, second_half], dim=1) |
|
for flow in self.flows: |
|
latents, log_determinant = flow(latents, padding_mask, global_conditioning=inputs) |
|
latents = torch.flip(latents, [1]) |
|
log_determinant_sum += log_determinant |
|
|
|
nll = torch.sum(0.5 * (math.log(2 * math.pi) + (latents**2)) * padding_mask, [1, 2]) - log_determinant_sum |
|
return nll + logq |
|
else: |
|
flows = list(reversed(self.flows)) |
|
flows = flows[:-2] + [flows[-1]] |
|
|
|
latents = ( |
|
torch.randn(inputs.size(0), 2, inputs.size(2)).to(device=inputs.device, dtype=inputs.dtype) |
|
* noise_scale |
|
) |
|
for flow in flows: |
|
latents = torch.flip(latents, [1]) |
|
latents, _ = flow(latents, padding_mask, global_conditioning=inputs, reverse=True) |
|
|
|
log_duration, _ = torch.split(latents, [1, 1], dim=1) |
|
return log_duration |
|
|
|
|
|
class VitsDurationPredictor(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
kernel_size = config.duration_predictor_kernel_size |
|
filter_channels = config.duration_predictor_filter_channels |
|
|
|
self.dropout = nn.Dropout(config.duration_predictor_dropout) |
|
self.conv_1 = nn.Conv1d(config.hidden_size, filter_channels, kernel_size, padding=kernel_size // 2) |
|
self.norm_1 = nn.LayerNorm(filter_channels, eps=config.layer_norm_eps) |
|
self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2) |
|
self.norm_2 = nn.LayerNorm(filter_channels, eps=config.layer_norm_eps) |
|
self.proj = nn.Conv1d(filter_channels, 1, 1) |
|
|
|
if config.speaker_embedding_size != 0: |
|
self.cond = nn.Conv1d(config.speaker_embedding_size, config.hidden_size, 1) |
|
|
|
def forward(self, inputs, padding_mask, global_conditioning=None): |
|
inputs = torch.detach(inputs) |
|
|
|
if global_conditioning is not None: |
|
global_conditioning = torch.detach(global_conditioning) |
|
inputs = inputs + self.cond(global_conditioning) |
|
|
|
inputs = self.conv_1(inputs * padding_mask) |
|
inputs = torch.relu(inputs) |
|
inputs = self.norm_1(inputs.transpose(1, -1)).transpose(1, -1) |
|
inputs = self.dropout(inputs) |
|
|
|
inputs = self.conv_2(inputs * padding_mask) |
|
inputs = torch.relu(inputs) |
|
inputs = self.norm_2(inputs.transpose(1, -1)).transpose(1, -1) |
|
inputs = self.dropout(inputs) |
|
|
|
inputs = self.proj(inputs * padding_mask) |
|
return inputs * padding_mask |
|
|
|
|
|
class VitsAttention(nn.Module): |
|
"""Multi-headed attention with relative positional representation.""" |
|
|
|
def __init__(self, config: VitsConfig): |
|
super().__init__() |
|
self.embed_dim = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.dropout = config.attention_dropout |
|
self.window_size = config.window_size |
|
|
|
self.head_dim = self.embed_dim // self.num_heads |
|
self.scaling = self.head_dim**-0.5 |
|
|
|
if (self.head_dim * self.num_heads) != self.embed_dim: |
|
raise ValueError( |
|
f"hidden_size must be divisible by num_attention_heads (got `hidden_size`: {self.embed_dim}" |
|
f" and `num_attention_heads`: {self.num_heads})." |
|
) |
|
|
|
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias) |
|
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias) |
|
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias) |
|
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias) |
|
|
|
if self.window_size: |
|
self.emb_rel_k = nn.Parameter(torch.randn(1, self.window_size * 2 + 1, self.head_dim) * self.scaling) |
|
self.emb_rel_v = nn.Parameter(torch.randn(1, self.window_size * 2 + 1, self.head_dim) * self.scaling) |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
key_value_states: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
layer_head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: |
|
"""Input shape: Batch x Time x Channel""" |
|
|
|
|
|
|
|
|
|
bsz, tgt_len, _ = hidden_states.size() |
|
|
|
|
|
query_states = self.q_proj(hidden_states) * self.scaling |
|
|
|
|
|
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) |
|
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) |
|
|
|
proj_shape = (bsz * self.num_heads, -1, self.head_dim) |
|
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) |
|
key_states = key_states.view(*proj_shape) |
|
value_states = value_states.view(*proj_shape) |
|
|
|
src_len = key_states.size(1) |
|
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) |
|
|
|
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): |
|
raise ValueError( |
|
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" |
|
f" {attn_weights.size()}" |
|
) |
|
|
|
if self.window_size is not None: |
|
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, src_len) |
|
relative_logits = torch.matmul(query_states, key_relative_embeddings.transpose(-2, -1)) |
|
rel_pos_bias = self._relative_position_to_absolute_position(relative_logits) |
|
attn_weights += rel_pos_bias |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, tgt_len, src_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" |
|
) |
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask |
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1) |
|
|
|
if layer_head_mask is not None: |
|
if layer_head_mask.size() != (self.num_heads,): |
|
raise ValueError( |
|
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" |
|
f" {layer_head_mask.size()}" |
|
) |
|
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) |
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) |
|
|
|
if output_attentions: |
|
|
|
|
|
|
|
|
|
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) |
|
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) |
|
else: |
|
attn_weights_reshaped = None |
|
|
|
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) |
|
|
|
attn_output = torch.bmm(attn_probs, value_states) |
|
|
|
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
if self.window_size is not None: |
|
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, src_len) |
|
relative_weights = self._absolute_position_to_relative_position(attn_probs) |
|
rel_pos_bias = torch.matmul(relative_weights, value_relative_embeddings) |
|
attn_output += rel_pos_bias |
|
|
|
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) |
|
attn_output = attn_output.transpose(1, 2) |
|
|
|
|
|
|
|
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) |
|
|
|
attn_output = self.out_proj(attn_output) |
|
|
|
return attn_output, attn_weights_reshaped |
|
|
|
def _get_relative_embeddings(self, relative_embeddings, length): |
|
pad_length = max(length - (self.window_size + 1), 0) |
|
if pad_length > 0: |
|
relative_embeddings = nn.functional.pad(relative_embeddings, [0, 0, pad_length, pad_length, 0, 0]) |
|
|
|
slice_start_position = max((self.window_size + 1) - length, 0) |
|
slice_end_position = slice_start_position + 2 * length - 1 |
|
return relative_embeddings[:, slice_start_position:slice_end_position] |
|
|
|
def _relative_position_to_absolute_position(self, x): |
|
batch_heads, length, _ = x.size() |
|
|
|
|
|
x = nn.functional.pad(x, [0, 1, 0, 0, 0, 0]) |
|
|
|
|
|
x_flat = x.view([batch_heads, length * 2 * length]) |
|
x_flat = nn.functional.pad(x_flat, [0, length - 1, 0, 0]) |
|
|
|
|
|
x_final = x_flat.view([batch_heads, length + 1, 2 * length - 1]) |
|
x_final = x_final[:, :length, length - 1 :] |
|
return x_final |
|
|
|
def _absolute_position_to_relative_position(self, x): |
|
batch_heads, length, _ = x.size() |
|
|
|
|
|
x = nn.functional.pad(x, [0, length - 1, 0, 0, 0, 0]) |
|
x_flat = x.view([batch_heads, length * (2 * length - 1)]) |
|
|
|
|
|
x_flat = nn.functional.pad(x_flat, [length, 0, 0, 0]) |
|
x_final = x_flat.view([batch_heads, length, 2 * length])[:, :, 1:] |
|
return x_final |
|
|
|
|
|
class VitsFeedForward(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.conv_1 = nn.Conv1d(config.hidden_size, config.ffn_dim, config.ffn_kernel_size) |
|
self.conv_2 = nn.Conv1d(config.ffn_dim, config.hidden_size, config.ffn_kernel_size) |
|
self.dropout = nn.Dropout(config.activation_dropout) |
|
|
|
if isinstance(config.hidden_act, str): |
|
self.act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.act_fn = config.hidden_act |
|
|
|
if config.ffn_kernel_size > 1: |
|
pad_left = (config.ffn_kernel_size - 1) // 2 |
|
pad_right = config.ffn_kernel_size // 2 |
|
self.padding = [pad_left, pad_right, 0, 0, 0, 0] |
|
else: |
|
self.padding = None |
|
|
|
def forward(self, hidden_states, padding_mask): |
|
hidden_states = hidden_states.permute(0, 2, 1) |
|
padding_mask = padding_mask.permute(0, 2, 1) |
|
|
|
hidden_states = hidden_states * padding_mask |
|
if self.padding is not None: |
|
hidden_states = nn.functional.pad(hidden_states, self.padding) |
|
|
|
hidden_states = self.conv_1(hidden_states) |
|
hidden_states = self.act_fn(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
|
|
hidden_states = hidden_states * padding_mask |
|
if self.padding is not None: |
|
hidden_states = nn.functional.pad(hidden_states, self.padding) |
|
|
|
hidden_states = self.conv_2(hidden_states) |
|
hidden_states = hidden_states * padding_mask |
|
|
|
hidden_states = hidden_states.permute(0, 2, 1) |
|
return hidden_states |
|
|
|
|
|
class VitsEncoderLayer(nn.Module): |
|
def __init__(self, config: VitsConfig): |
|
super().__init__() |
|
self.attention = VitsAttention(config) |
|
self.dropout = nn.Dropout(config.hidden_dropout) |
|
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.feed_forward = VitsFeedForward(config) |
|
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
padding_mask: torch.FloatTensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
): |
|
residual = hidden_states |
|
hidden_states, attn_weights = self.attention( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.layer_norm(residual + hidden_states) |
|
|
|
residual = hidden_states |
|
hidden_states = self.feed_forward(hidden_states, padding_mask) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.final_layer_norm(residual + hidden_states) |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (attn_weights,) |
|
|
|
return outputs |
|
|
|
|
|
class VitsEncoder(nn.Module): |
|
def __init__(self, config: VitsConfig): |
|
super().__init__() |
|
self.config = config |
|
self.layers = nn.ModuleList([VitsEncoderLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.gradient_checkpointing = False |
|
self.layerdrop = config.layerdrop |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
padding_mask: torch.FloatTensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutput]: |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
|
|
|
|
if attention_mask is not None: |
|
|
|
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype) |
|
|
|
hidden_states = hidden_states * padding_mask |
|
|
|
synced_gpus = is_deepspeed_zero3_enabled() or is_fsdp_managed_module(self) |
|
|
|
for encoder_layer in self.layers: |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
|
|
dropout_probability = np.random.uniform(0, 1) |
|
|
|
skip_the_layer = self.training and (dropout_probability < self.layerdrop) |
|
if not skip_the_layer or synced_gpus: |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
encoder_layer.__call__, |
|
hidden_states, |
|
padding_mask, |
|
attention_mask, |
|
output_attentions, |
|
) |
|
else: |
|
layer_outputs = encoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
padding_mask=padding_mask, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states = layer_outputs[0] |
|
|
|
if skip_the_layer: |
|
layer_outputs = (None, None) |
|
|
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (layer_outputs[1],) |
|
|
|
hidden_states = hidden_states * padding_mask |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) |
|
|
|
return BaseModelOutput( |
|
last_hidden_state=hidden_states, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
) |
|
|
|
|
|
class VitsTextEncoder(nn.Module): |
|
""" |
|
Transformer encoder that uses relative positional representation instead of absolute positional encoding. |
|
""" |
|
|
|
def __init__(self, config: VitsConfig): |
|
super().__init__() |
|
self.config = config |
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) |
|
self.encoder = VitsEncoder(config) |
|
self.project = nn.Conv1d(config.hidden_size, config.flow_size * 2, kernel_size=1) |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.Tensor, |
|
padding_mask: torch.FloatTensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = True, |
|
) -> Union[Tuple[torch.Tensor], VitsTextEncoderOutput]: |
|
hidden_states = self.embed_tokens(input_ids) * math.sqrt(self.config.hidden_size) |
|
|
|
encoder_outputs = self.encoder( |
|
hidden_states=hidden_states, |
|
padding_mask=padding_mask, |
|
attention_mask=attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
last_hidden_state = encoder_outputs[0] if not return_dict else encoder_outputs.last_hidden_state |
|
|
|
stats = self.project(last_hidden_state.transpose(1, 2)).transpose(1, 2) * padding_mask |
|
prior_means, prior_log_variances = torch.split(stats, self.config.flow_size, dim=2) |
|
|
|
if not return_dict: |
|
outputs = (last_hidden_state, prior_means, prior_log_variances) + encoder_outputs[1:] |
|
return outputs |
|
|
|
return VitsTextEncoderOutput( |
|
last_hidden_state=last_hidden_state, |
|
prior_means=prior_means, |
|
prior_log_variances=prior_log_variances, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
|
|
|
|
class VitsPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = VitsConfig |
|
base_model_prefix = "vits" |
|
main_input_name = "input_ids" |
|
supports_gradient_checkpointing = True |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
elif isinstance(module, nn.Conv1d): |
|
nn.init.kaiming_normal_(module.weight) |
|
if module.bias is not None: |
|
k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) |
|
nn.init.uniform_(module.bias, a=-k, b=k) |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
VITS_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`VitsConfig`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
VITS_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, |
|
1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
speaker_id (`int`, *optional*): |
|
Which speaker embedding to use. Only used for multispeaker models. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The complete VITS model, for text-to-speech synthesis.", |
|
VITS_START_DOCSTRING, |
|
) |
|
class VitsModel(VitsPreTrainedModel): |
|
def __init__(self, config: VitsConfig): |
|
super().__init__(config) |
|
self.config = config |
|
self.text_encoder = VitsTextEncoder(config) |
|
self.flow = VitsResidualCouplingBlock(config) |
|
|
|
if config.istft_decoder in ["istft", "mb_istft", "ms_istft"]: |
|
self.decoder = VitsISTFT(config) |
|
else: |
|
self.decoder = VitsHifiGan(config) |
|
|
|
if config.use_stochastic_duration_prediction: |
|
self.duration_predictor = VitsStochasticDurationPredictor(config) |
|
else: |
|
self.duration_predictor = VitsDurationPredictor(config) |
|
|
|
if config.num_speakers > 1: |
|
self.embed_speaker = nn.Embedding(config.num_speakers, config.speaker_embedding_size) |
|
|
|
|
|
self.posterior_encoder = VitsPosteriorEncoder(config) |
|
|
|
|
|
self.speaking_rate = config.speaking_rate |
|
self.noise_scale = config.noise_scale |
|
self.noise_scale_duration = config.noise_scale_duration |
|
|
|
|
|
self.post_init() |
|
|
|
def get_encoder(self): |
|
return self.text_encoder |
|
|
|
@add_start_docstrings_to_model_forward(VITS_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=VitsModelOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
speaker_id: Optional[int] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
labels: Optional[torch.FloatTensor] = None, |
|
) -> Union[Tuple[Any], VitsModelOutput]: |
|
r""" |
|
labels (`torch.FloatTensor` of shape `(batch_size, config.spectrogram_bins, sequence_length)`, *optional*): |
|
Float values of target spectrogram. Timesteps set to `-100.0` are ignored (masked) for the loss |
|
computation. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import VitsTokenizer, VitsModel, set_seed |
|
>>> import torch |
|
|
|
>>> tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-eng") |
|
>>> model = VitsModel.from_pretrained("facebook/mms-tts-eng") |
|
|
|
>>> inputs = tokenizer(text="Hello - my dog is cute", return_tensors="pt") |
|
|
|
>>> set_seed(555) # make deterministic |
|
|
|
>>> with torch.no_grad(): |
|
... outputs = model(inputs["input_ids"]) |
|
>>> outputs.waveform.shape |
|
torch.Size([1, 45824]) |
|
``` |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if labels is not None: |
|
raise NotImplementedError("Training of VITS is not supported yet.") |
|
|
|
if attention_mask is not None: |
|
input_padding_mask = attention_mask.unsqueeze(-1).float() |
|
else: |
|
input_padding_mask = torch.ones_like(input_ids).unsqueeze(-1).float() |
|
|
|
if self.config.num_speakers > 1 and speaker_id is not None: |
|
if not 0 <= speaker_id < self.config.num_speakers: |
|
raise ValueError(f"Set `speaker_id` in the range 0-{self.config.num_speakers - 1}.") |
|
if isinstance(speaker_id, int): |
|
speaker_id = torch.full(size=(1,), fill_value=speaker_id, device=self.device) |
|
speaker_embeddings = self.embed_speaker(speaker_id).unsqueeze(-1) |
|
else: |
|
speaker_embeddings = None |
|
|
|
text_encoder_output = self.text_encoder( |
|
input_ids=input_ids, |
|
padding_mask=input_padding_mask, |
|
attention_mask=attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state |
|
hidden_states = hidden_states.transpose(1, 2) |
|
input_padding_mask = input_padding_mask.transpose(1, 2) |
|
prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means |
|
prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances |
|
|
|
if self.config.use_stochastic_duration_prediction: |
|
log_duration = self.duration_predictor( |
|
hidden_states, |
|
input_padding_mask, |
|
speaker_embeddings, |
|
reverse=True, |
|
noise_scale=self.noise_scale_duration, |
|
) |
|
else: |
|
log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings) |
|
|
|
length_scale = 1.0 / self.speaking_rate |
|
duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale) |
|
predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long() |
|
|
|
|
|
indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device) |
|
output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1) |
|
output_padding_mask = output_padding_mask.unsqueeze(1).to(input_padding_mask.dtype) |
|
|
|
|
|
attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(output_padding_mask, -1) |
|
batch_size, _, output_length, input_length = attn_mask.shape |
|
cum_duration = torch.cumsum(duration, -1).view(batch_size * input_length, 1) |
|
indices = torch.arange(output_length, dtype=duration.dtype, device=duration.device) |
|
valid_indices = indices.unsqueeze(0) < cum_duration |
|
valid_indices = valid_indices.to(attn_mask.dtype).view(batch_size, input_length, output_length) |
|
padded_indices = valid_indices - nn.functional.pad(valid_indices, [0, 0, 1, 0, 0, 0])[:, :-1] |
|
attn = padded_indices.unsqueeze(1).transpose(2, 3) * attn_mask |
|
|
|
|
|
prior_means = torch.matmul(attn.squeeze(1), prior_means).transpose(1, 2) |
|
prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances).transpose(1, 2) |
|
|
|
prior_latents = prior_means + torch.randn_like(prior_means) * torch.exp(prior_log_variances) * self.noise_scale |
|
latents = self.flow(prior_latents, output_padding_mask, speaker_embeddings, reverse=True) |
|
|
|
spectrogram = latents * output_padding_mask |
|
waveform = self.decoder(spectrogram, speaker_embeddings) |
|
waveform = waveform.squeeze(1) |
|
sequence_lengths = predicted_lengths * np.prod(self.config.upsample_rates) |
|
|
|
if not return_dict: |
|
outputs = (waveform, sequence_lengths, spectrogram) + text_encoder_output[3:] |
|
return outputs |
|
|
|
return VitsModelOutput( |
|
waveform=waveform, |
|
sequence_lengths=sequence_lengths, |
|
spectrogram=spectrogram, |
|
hidden_states=text_encoder_output.hidden_states, |
|
attentions=text_encoder_output.attentions, |
|
) |
|
|