Upload modeling_vits.py
Browse files- modeling_vits.py +1799 -0
modeling_vits.py
ADDED
@@ -0,0 +1,1799 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The Kakao Enterprise Authors and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""PyTorch VITS model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
from dataclasses import dataclass
|
19 |
+
from typing import Any, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import torch
|
23 |
+
import torch.utils.checkpoint
|
24 |
+
from scipy.signal import get_window, kaiser
|
25 |
+
from torch import nn
|
26 |
+
|
27 |
+
from transformers.activations import ACT2FN
|
28 |
+
from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled
|
29 |
+
from transformers.integrations.fsdp import is_fsdp_managed_module
|
30 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
|
31 |
+
from transformers.modeling_outputs import (
|
32 |
+
BaseModelOutput,
|
33 |
+
ModelOutput,
|
34 |
+
)
|
35 |
+
from transformers.modeling_utils import PreTrainedModel
|
36 |
+
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
|
37 |
+
from .configuration_vits import VitsConfig
|
38 |
+
|
39 |
+
|
40 |
+
logger = logging.get_logger(__name__)
|
41 |
+
|
42 |
+
|
43 |
+
# General docstring
|
44 |
+
_CONFIG_FOR_DOC = "VitsConfig"
|
45 |
+
|
46 |
+
|
47 |
+
@dataclass
|
48 |
+
class VitsModelOutput(ModelOutput):
|
49 |
+
"""
|
50 |
+
Describes the outputs for the VITS model, with potential hidden states and attentions.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
waveform (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
54 |
+
The final audio waveform predicted by the model.
|
55 |
+
sequence_lengths (`torch.FloatTensor` of shape `(batch_size,)`):
|
56 |
+
The length in samples of each element in the `waveform` batch.
|
57 |
+
spectrogram (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_bins)`):
|
58 |
+
The log-mel spectrogram predicted at the output of the flow model. This spectrogram is passed to the Hi-Fi
|
59 |
+
GAN decoder model to obtain the final audio waveform.
|
60 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
61 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
62 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
63 |
+
|
64 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
65 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
66 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
67 |
+
sequence_length)`.
|
68 |
+
|
69 |
+
Attention weights after the attention softmax, used to compute the weighted average in the self-attention
|
70 |
+
heads.
|
71 |
+
"""
|
72 |
+
|
73 |
+
waveform: torch.FloatTensor = None
|
74 |
+
sequence_lengths: torch.FloatTensor = None
|
75 |
+
spectrogram: Optional[Tuple[torch.FloatTensor]] = None
|
76 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
77 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
78 |
+
|
79 |
+
|
80 |
+
@dataclass
|
81 |
+
class VitsTextEncoderOutput(ModelOutput):
|
82 |
+
"""
|
83 |
+
Describes the outputs for the VITS text encoder model, with potential hidden states and attentions.
|
84 |
+
|
85 |
+
Args:
|
86 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
87 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
88 |
+
prior_means (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
89 |
+
The predicted mean values of the prior distribution for the latent text variables.
|
90 |
+
prior_log_variances (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
91 |
+
The predicted log-variance values of the prior distribution for the latent text variables.
|
92 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
93 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
94 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
95 |
+
|
96 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
97 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
98 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
99 |
+
sequence_length)`.
|
100 |
+
|
101 |
+
Attention weights after the attention softmax, used to compute the weighted average in the self-attention
|
102 |
+
heads.
|
103 |
+
"""
|
104 |
+
|
105 |
+
last_hidden_state: torch.FloatTensor = None
|
106 |
+
prior_means: torch.FloatTensor = None
|
107 |
+
prior_log_variances: torch.FloatTensor = None
|
108 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
109 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
110 |
+
|
111 |
+
|
112 |
+
@torch.jit.script
|
113 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, num_channels):
|
114 |
+
in_act = input_a + input_b
|
115 |
+
t_act = torch.tanh(in_act[:, :num_channels, :])
|
116 |
+
s_act = torch.sigmoid(in_act[:, num_channels:, :])
|
117 |
+
acts = t_act * s_act
|
118 |
+
return acts
|
119 |
+
|
120 |
+
|
121 |
+
def _unconstrained_rational_quadratic_spline(
|
122 |
+
inputs,
|
123 |
+
unnormalized_widths,
|
124 |
+
unnormalized_heights,
|
125 |
+
unnormalized_derivatives,
|
126 |
+
reverse=False,
|
127 |
+
tail_bound=5.0,
|
128 |
+
min_bin_width=1e-3,
|
129 |
+
min_bin_height=1e-3,
|
130 |
+
min_derivative=1e-3,
|
131 |
+
):
|
132 |
+
"""
|
133 |
+
This transformation represents a monotonically increasing piecewise rational quadratic function. Outside of the
|
134 |
+
`tail_bound`, the transform behaves as an identity function.
|
135 |
+
|
136 |
+
Args:
|
137 |
+
inputs (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`:
|
138 |
+
Second half of the hidden-states input to the Vits convolutional flow module.
|
139 |
+
unnormalized_widths (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`):
|
140 |
+
First `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection
|
141 |
+
layer in the convolutional flow module
|
142 |
+
unnormalized_heights (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`):
|
143 |
+
Second `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection
|
144 |
+
layer in the convolutional flow module
|
145 |
+
unnormalized_derivatives (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`):
|
146 |
+
Third `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection
|
147 |
+
layer in the convolutional flow module
|
148 |
+
reverse (`bool`, *optional*, defaults to `False`):
|
149 |
+
Whether the model is being run in reverse mode.
|
150 |
+
tail_bound (`float`, *optional* defaults to 5):
|
151 |
+
Upper and lower limit bound for the rational quadratic function. Outside of this `tail_bound`, the
|
152 |
+
transform behaves as an identity function.
|
153 |
+
min_bin_width (`float`, *optional*, defaults to 1e-3):
|
154 |
+
Minimum bin value across the width dimension for the piecewise rational quadratic function.
|
155 |
+
min_bin_height (`float`, *optional*, defaults to 1e-3):
|
156 |
+
Minimum bin value across the height dimension for the piecewise rational quadratic function.
|
157 |
+
min_derivative (`float`, *optional*, defaults to 1e-3):
|
158 |
+
Minimum bin value across the derivatives for the piecewise rational quadratic function.
|
159 |
+
Returns:
|
160 |
+
outputs (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`:
|
161 |
+
Hidden-states as transformed by the piecewise rational quadratic function with the `tail_bound` limits
|
162 |
+
applied.
|
163 |
+
log_abs_det (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`:
|
164 |
+
Logarithm of the absolute value of the determinants corresponding to the `outputs` with the `tail_bound`
|
165 |
+
limits applied.
|
166 |
+
"""
|
167 |
+
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
168 |
+
outside_interval_mask = ~inside_interval_mask
|
169 |
+
|
170 |
+
outputs = torch.zeros_like(inputs)
|
171 |
+
log_abs_det = torch.zeros_like(inputs)
|
172 |
+
constant = np.log(np.exp(1 - min_derivative) - 1)
|
173 |
+
|
174 |
+
unnormalized_derivatives = nn.functional.pad(unnormalized_derivatives, pad=(1, 1))
|
175 |
+
unnormalized_derivatives[..., 0] = constant
|
176 |
+
unnormalized_derivatives[..., -1] = constant
|
177 |
+
|
178 |
+
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
179 |
+
log_abs_det[outside_interval_mask] = 0.0
|
180 |
+
|
181 |
+
outputs[inside_interval_mask], log_abs_det[inside_interval_mask] = _rational_quadratic_spline(
|
182 |
+
inputs=inputs[inside_interval_mask],
|
183 |
+
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
184 |
+
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
185 |
+
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
|
186 |
+
reverse=reverse,
|
187 |
+
tail_bound=tail_bound,
|
188 |
+
min_bin_width=min_bin_width,
|
189 |
+
min_bin_height=min_bin_height,
|
190 |
+
min_derivative=min_derivative,
|
191 |
+
)
|
192 |
+
return outputs, log_abs_det
|
193 |
+
|
194 |
+
|
195 |
+
def _rational_quadratic_spline(
|
196 |
+
inputs,
|
197 |
+
unnormalized_widths,
|
198 |
+
unnormalized_heights,
|
199 |
+
unnormalized_derivatives,
|
200 |
+
reverse,
|
201 |
+
tail_bound,
|
202 |
+
min_bin_width,
|
203 |
+
min_bin_height,
|
204 |
+
min_derivative,
|
205 |
+
):
|
206 |
+
"""
|
207 |
+
This transformation represents a monotonically increasing piecewise rational quadratic function. Unlike the
|
208 |
+
function `_unconstrained_rational_quadratic_spline`, the function behaves the same across the `tail_bound`.
|
209 |
+
|
210 |
+
Args:
|
211 |
+
inputs (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`:
|
212 |
+
Second half of the hidden-states input to the Vits convolutional flow module.
|
213 |
+
unnormalized_widths (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`):
|
214 |
+
First `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection
|
215 |
+
layer in the convolutional flow module
|
216 |
+
unnormalized_heights (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`):
|
217 |
+
Second `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection
|
218 |
+
layer in the convolutional flow module
|
219 |
+
unnormalized_derivatives (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`):
|
220 |
+
Third `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection
|
221 |
+
layer in the convolutional flow module
|
222 |
+
reverse (`bool`):
|
223 |
+
Whether the model is being run in reverse mode.
|
224 |
+
tail_bound (`float`):
|
225 |
+
Upper and lower limit bound for the rational quadratic function. Outside of this `tail_bound`, the
|
226 |
+
transform behaves as an identity function.
|
227 |
+
min_bin_width (`float`):
|
228 |
+
Minimum bin value across the width dimension for the piecewise rational quadratic function.
|
229 |
+
min_bin_height (`float`):
|
230 |
+
Minimum bin value across the height dimension for the piecewise rational quadratic function.
|
231 |
+
min_derivative (`float`):
|
232 |
+
Minimum bin value across the derivatives for the piecewise rational quadratic function.
|
233 |
+
Returns:
|
234 |
+
outputs (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`:
|
235 |
+
Hidden-states as transformed by the piecewise rational quadratic function.
|
236 |
+
log_abs_det (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`:
|
237 |
+
Logarithm of the absolute value of the determinants corresponding to the `outputs`.
|
238 |
+
"""
|
239 |
+
upper_bound = tail_bound
|
240 |
+
lower_bound = -tail_bound
|
241 |
+
|
242 |
+
if torch.min(inputs) < lower_bound or torch.max(inputs) > upper_bound:
|
243 |
+
raise ValueError("Input to a transform is not within its domain")
|
244 |
+
|
245 |
+
num_bins = unnormalized_widths.shape[-1]
|
246 |
+
|
247 |
+
if min_bin_width * num_bins > 1.0:
|
248 |
+
raise ValueError(f"Minimal bin width {min_bin_width} too large for the number of bins {num_bins}")
|
249 |
+
if min_bin_height * num_bins > 1.0:
|
250 |
+
raise ValueError(f"Minimal bin height {min_bin_height} too large for the number of bins {num_bins}")
|
251 |
+
|
252 |
+
widths = nn.functional.softmax(unnormalized_widths, dim=-1)
|
253 |
+
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
254 |
+
cumwidths = torch.cumsum(widths, dim=-1)
|
255 |
+
cumwidths = nn.functional.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
|
256 |
+
cumwidths = (upper_bound - lower_bound) * cumwidths + lower_bound
|
257 |
+
cumwidths[..., 0] = lower_bound
|
258 |
+
cumwidths[..., -1] = upper_bound
|
259 |
+
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
260 |
+
|
261 |
+
derivatives = min_derivative + nn.functional.softplus(unnormalized_derivatives)
|
262 |
+
|
263 |
+
heights = nn.functional.softmax(unnormalized_heights, dim=-1)
|
264 |
+
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
265 |
+
cumheights = torch.cumsum(heights, dim=-1)
|
266 |
+
cumheights = nn.functional.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
|
267 |
+
cumheights = (upper_bound - lower_bound) * cumheights + lower_bound
|
268 |
+
cumheights[..., 0] = lower_bound
|
269 |
+
cumheights[..., -1] = upper_bound
|
270 |
+
heights = cumheights[..., 1:] - cumheights[..., :-1]
|
271 |
+
|
272 |
+
bin_locations = cumheights if reverse else cumwidths
|
273 |
+
bin_locations[..., -1] += 1e-6
|
274 |
+
bin_idx = torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
|
275 |
+
bin_idx = bin_idx[..., None]
|
276 |
+
|
277 |
+
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
|
278 |
+
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
|
279 |
+
|
280 |
+
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
|
281 |
+
delta = heights / widths
|
282 |
+
input_delta = delta.gather(-1, bin_idx)[..., 0]
|
283 |
+
|
284 |
+
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
|
285 |
+
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
|
286 |
+
|
287 |
+
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
288 |
+
|
289 |
+
intermediate1 = input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
290 |
+
if not reverse:
|
291 |
+
theta = (inputs - input_cumwidths) / input_bin_widths
|
292 |
+
theta_one_minus_theta = theta * (1 - theta)
|
293 |
+
|
294 |
+
numerator = input_heights * (input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta)
|
295 |
+
denominator = input_delta + intermediate1 * theta_one_minus_theta
|
296 |
+
outputs = input_cumheights + numerator / denominator
|
297 |
+
|
298 |
+
derivative_numerator = input_delta.pow(2) * (
|
299 |
+
input_derivatives_plus_one * theta.pow(2)
|
300 |
+
+ 2 * input_delta * theta_one_minus_theta
|
301 |
+
+ input_derivatives * (1 - theta).pow(2)
|
302 |
+
)
|
303 |
+
log_abs_det = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
304 |
+
return outputs, log_abs_det
|
305 |
+
else:
|
306 |
+
# find the roots of a quadratic equation
|
307 |
+
intermediate2 = inputs - input_cumheights
|
308 |
+
intermediate3 = intermediate2 * intermediate1
|
309 |
+
a = input_heights * (input_delta - input_derivatives) + intermediate3
|
310 |
+
b = input_heights * input_derivatives - intermediate3
|
311 |
+
c = -input_delta * intermediate2
|
312 |
+
|
313 |
+
discriminant = b.pow(2) - 4 * a * c
|
314 |
+
if not (discriminant >= 0).all():
|
315 |
+
raise RuntimeError(f"invalid discriminant {discriminant}")
|
316 |
+
|
317 |
+
root = (2 * c) / (-b - torch.sqrt(discriminant))
|
318 |
+
outputs = root * input_bin_widths + input_cumwidths
|
319 |
+
|
320 |
+
theta_one_minus_theta = root * (1 - root)
|
321 |
+
denominator = input_delta + intermediate1 * theta_one_minus_theta
|
322 |
+
derivative_numerator = input_delta.pow(2) * (
|
323 |
+
input_derivatives_plus_one * root.pow(2)
|
324 |
+
+ 2 * input_delta * theta_one_minus_theta
|
325 |
+
+ input_derivatives * (1 - root).pow(2)
|
326 |
+
)
|
327 |
+
log_abs_det = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
328 |
+
return outputs, -log_abs_det
|
329 |
+
|
330 |
+
|
331 |
+
class VitsWaveNet(torch.nn.Module):
|
332 |
+
def __init__(self, config: VitsConfig, num_layers: int):
|
333 |
+
super().__init__()
|
334 |
+
self.hidden_size = config.hidden_size
|
335 |
+
self.num_layers = num_layers
|
336 |
+
|
337 |
+
self.in_layers = torch.nn.ModuleList()
|
338 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
339 |
+
self.dropout = nn.Dropout(config.wavenet_dropout)
|
340 |
+
|
341 |
+
if hasattr(nn.utils.parametrizations, "weight_norm"):
|
342 |
+
weight_norm = nn.utils.parametrizations.weight_norm
|
343 |
+
else:
|
344 |
+
weight_norm = nn.utils.weight_norm
|
345 |
+
|
346 |
+
if config.speaker_embedding_size != 0:
|
347 |
+
cond_layer = torch.nn.Conv1d(config.speaker_embedding_size, 2 * config.hidden_size * num_layers, 1)
|
348 |
+
self.cond_layer = weight_norm(cond_layer, name="weight")
|
349 |
+
|
350 |
+
for i in range(num_layers):
|
351 |
+
dilation = config.wavenet_dilation_rate**i
|
352 |
+
padding = (config.wavenet_kernel_size * dilation - dilation) // 2
|
353 |
+
in_layer = torch.nn.Conv1d(
|
354 |
+
in_channels=config.hidden_size,
|
355 |
+
out_channels=2 * config.hidden_size,
|
356 |
+
kernel_size=config.wavenet_kernel_size,
|
357 |
+
dilation=dilation,
|
358 |
+
padding=padding,
|
359 |
+
)
|
360 |
+
in_layer = weight_norm(in_layer, name="weight")
|
361 |
+
self.in_layers.append(in_layer)
|
362 |
+
|
363 |
+
# last one is not necessary
|
364 |
+
if i < num_layers - 1:
|
365 |
+
res_skip_channels = 2 * config.hidden_size
|
366 |
+
else:
|
367 |
+
res_skip_channels = config.hidden_size
|
368 |
+
|
369 |
+
res_skip_layer = torch.nn.Conv1d(config.hidden_size, res_skip_channels, 1)
|
370 |
+
res_skip_layer = weight_norm(res_skip_layer, name="weight")
|
371 |
+
self.res_skip_layers.append(res_skip_layer)
|
372 |
+
|
373 |
+
def forward(self, inputs, padding_mask, global_conditioning=None):
|
374 |
+
outputs = torch.zeros_like(inputs)
|
375 |
+
num_channels_tensor = torch.IntTensor([self.hidden_size])
|
376 |
+
|
377 |
+
if global_conditioning is not None:
|
378 |
+
global_conditioning = self.cond_layer(global_conditioning)
|
379 |
+
|
380 |
+
for i in range(self.num_layers):
|
381 |
+
hidden_states = self.in_layers[i](inputs)
|
382 |
+
|
383 |
+
if global_conditioning is not None:
|
384 |
+
cond_offset = i * 2 * self.hidden_size
|
385 |
+
global_states = global_conditioning[:, cond_offset : cond_offset + 2 * self.hidden_size, :]
|
386 |
+
else:
|
387 |
+
global_states = torch.zeros_like(hidden_states)
|
388 |
+
|
389 |
+
acts = fused_add_tanh_sigmoid_multiply(hidden_states, global_states, num_channels_tensor[0])
|
390 |
+
acts = self.dropout(acts)
|
391 |
+
|
392 |
+
res_skip_acts = self.res_skip_layers[i](acts)
|
393 |
+
if i < self.num_layers - 1:
|
394 |
+
res_acts = res_skip_acts[:, : self.hidden_size, :]
|
395 |
+
inputs = (inputs + res_acts) * padding_mask
|
396 |
+
outputs = outputs + res_skip_acts[:, self.hidden_size :, :]
|
397 |
+
else:
|
398 |
+
outputs = outputs + res_skip_acts
|
399 |
+
|
400 |
+
return outputs * padding_mask
|
401 |
+
|
402 |
+
def remove_weight_norm(self):
|
403 |
+
if self.speaker_embedding_size != 0:
|
404 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
405 |
+
for layer in self.in_layers:
|
406 |
+
torch.nn.utils.remove_weight_norm(layer)
|
407 |
+
for layer in self.res_skip_layers:
|
408 |
+
torch.nn.utils.remove_weight_norm(layer)
|
409 |
+
|
410 |
+
|
411 |
+
class VitsPosteriorEncoder(nn.Module):
|
412 |
+
def __init__(self, config: VitsConfig):
|
413 |
+
super().__init__()
|
414 |
+
self.out_channels = config.flow_size
|
415 |
+
|
416 |
+
self.conv_pre = nn.Conv1d(config.spectrogram_bins, config.hidden_size, 1)
|
417 |
+
self.wavenet = VitsWaveNet(config, num_layers=config.posterior_encoder_num_wavenet_layers)
|
418 |
+
self.conv_proj = nn.Conv1d(config.hidden_size, self.out_channels * 2, 1)
|
419 |
+
|
420 |
+
def forward(self, inputs, padding_mask, global_conditioning=None):
|
421 |
+
inputs = self.conv_pre(inputs) * padding_mask
|
422 |
+
inputs = self.wavenet(inputs, padding_mask, global_conditioning)
|
423 |
+
stats = self.conv_proj(inputs) * padding_mask
|
424 |
+
mean, log_stddev = torch.split(stats, self.out_channels, dim=1)
|
425 |
+
sampled = (mean + torch.randn_like(mean) * torch.exp(log_stddev)) * padding_mask
|
426 |
+
return sampled, mean, log_stddev
|
427 |
+
|
428 |
+
|
429 |
+
# Copied from transformers.models.speecht5.modeling_speecht5.HifiGanResidualBlock
|
430 |
+
class HifiGanResidualBlock(nn.Module):
|
431 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), leaky_relu_slope=0.1):
|
432 |
+
super().__init__()
|
433 |
+
self.leaky_relu_slope = leaky_relu_slope
|
434 |
+
|
435 |
+
self.convs1 = nn.ModuleList(
|
436 |
+
[
|
437 |
+
nn.Conv1d(
|
438 |
+
channels,
|
439 |
+
channels,
|
440 |
+
kernel_size,
|
441 |
+
stride=1,
|
442 |
+
dilation=dilation[i],
|
443 |
+
padding=self.get_padding(kernel_size, dilation[i]),
|
444 |
+
)
|
445 |
+
for i in range(len(dilation))
|
446 |
+
]
|
447 |
+
)
|
448 |
+
self.convs2 = nn.ModuleList(
|
449 |
+
[
|
450 |
+
nn.Conv1d(
|
451 |
+
channels,
|
452 |
+
channels,
|
453 |
+
kernel_size,
|
454 |
+
stride=1,
|
455 |
+
dilation=1,
|
456 |
+
padding=self.get_padding(kernel_size, 1),
|
457 |
+
)
|
458 |
+
for _ in range(len(dilation))
|
459 |
+
]
|
460 |
+
)
|
461 |
+
|
462 |
+
def get_padding(self, kernel_size, dilation=1):
|
463 |
+
return (kernel_size * dilation - dilation) // 2
|
464 |
+
|
465 |
+
def apply_weight_norm(self):
|
466 |
+
weight_norm = nn.utils.weight_norm
|
467 |
+
if hasattr(nn.utils.parametrizations, "weight_norm"):
|
468 |
+
weight_norm = nn.utils.parametrizations.weight_norm
|
469 |
+
|
470 |
+
for layer in self.convs1:
|
471 |
+
weight_norm(layer)
|
472 |
+
for layer in self.convs2:
|
473 |
+
weight_norm(layer)
|
474 |
+
|
475 |
+
def remove_weight_norm(self):
|
476 |
+
for layer in self.convs1:
|
477 |
+
nn.utils.remove_weight_norm(layer)
|
478 |
+
for layer in self.convs2:
|
479 |
+
nn.utils.remove_weight_norm(layer)
|
480 |
+
|
481 |
+
def forward(self, hidden_states):
|
482 |
+
for conv1, conv2 in zip(self.convs1, self.convs2):
|
483 |
+
residual = hidden_states
|
484 |
+
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
|
485 |
+
hidden_states = conv1(hidden_states)
|
486 |
+
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
|
487 |
+
hidden_states = conv2(hidden_states)
|
488 |
+
hidden_states = hidden_states + residual
|
489 |
+
return hidden_states
|
490 |
+
|
491 |
+
|
492 |
+
class VitsHifiGan(nn.Module):
|
493 |
+
def __init__(self, config: VitsConfig):
|
494 |
+
super().__init__()
|
495 |
+
self.config = config
|
496 |
+
self.num_kernels = len(config.resblock_kernel_sizes)
|
497 |
+
self.num_upsamples = len(config.upsample_rates)
|
498 |
+
self.conv_pre = nn.Conv1d(
|
499 |
+
config.flow_size,
|
500 |
+
config.upsample_initial_channel,
|
501 |
+
kernel_size=7,
|
502 |
+
stride=1,
|
503 |
+
padding=3,
|
504 |
+
)
|
505 |
+
|
506 |
+
self.upsampler = nn.ModuleList()
|
507 |
+
for i, (upsample_rate, kernel_size) in enumerate(zip(config.upsample_rates, config.upsample_kernel_sizes)):
|
508 |
+
self.upsampler.append(
|
509 |
+
nn.ConvTranspose1d(
|
510 |
+
config.upsample_initial_channel // (2**i),
|
511 |
+
config.upsample_initial_channel // (2 ** (i + 1)),
|
512 |
+
kernel_size=kernel_size,
|
513 |
+
stride=upsample_rate,
|
514 |
+
padding=(kernel_size - upsample_rate) // 2,
|
515 |
+
)
|
516 |
+
)
|
517 |
+
|
518 |
+
self.resblocks = nn.ModuleList()
|
519 |
+
for i in range(len(self.upsampler)):
|
520 |
+
channels = config.upsample_initial_channel // (2 ** (i + 1))
|
521 |
+
for kernel_size, dilation in zip(config.resblock_kernel_sizes, config.resblock_dilation_sizes):
|
522 |
+
self.resblocks.append(HifiGanResidualBlock(channels, kernel_size, dilation, config.leaky_relu_slope))
|
523 |
+
|
524 |
+
self.conv_post = nn.Conv1d(channels, 1, kernel_size=7, stride=1, padding=3, bias=False)
|
525 |
+
|
526 |
+
if config.speaker_embedding_size != 0:
|
527 |
+
self.cond = nn.Conv1d(config.speaker_embedding_size, config.upsample_initial_channel, 1)
|
528 |
+
|
529 |
+
def apply_weight_norm(self):
|
530 |
+
weight_norm = nn.utils.weight_norm
|
531 |
+
if hasattr(nn.utils.parametrizations, "weight_norm"):
|
532 |
+
weight_norm = nn.utils.parametrizations.weight_norm
|
533 |
+
|
534 |
+
for layer in self.upsampler:
|
535 |
+
weight_norm(layer)
|
536 |
+
for layer in self.resblocks:
|
537 |
+
layer.apply_weight_norm()
|
538 |
+
|
539 |
+
def remove_weight_norm(self):
|
540 |
+
for layer in self.upsampler:
|
541 |
+
nn.utils.remove_weight_norm(layer)
|
542 |
+
for layer in self.resblocks:
|
543 |
+
layer.remove_weight_norm()
|
544 |
+
|
545 |
+
def forward(
|
546 |
+
self, spectrogram: torch.FloatTensor, global_conditioning: Optional[torch.FloatTensor] = None
|
547 |
+
) -> torch.FloatTensor:
|
548 |
+
r"""
|
549 |
+
Converts a spectrogram into a speech waveform.
|
550 |
+
|
551 |
+
Args:
|
552 |
+
spectrogram (`torch.FloatTensor` of shape `(batch_size, config.spectrogram_bins, sequence_length)`):
|
553 |
+
Tensor containing the spectrograms.
|
554 |
+
global_conditioning (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_size, 1)`, *optional*):
|
555 |
+
Tensor containing speaker embeddings, for multispeaker models.
|
556 |
+
|
557 |
+
Returns:
|
558 |
+
`torch.FloatTensor`: Tensor of shape shape `(batch_size, 1, num_frames)` containing the speech waveform.
|
559 |
+
"""
|
560 |
+
hidden_states = self.conv_pre(spectrogram)
|
561 |
+
|
562 |
+
if global_conditioning is not None:
|
563 |
+
hidden_states = hidden_states + self.cond(global_conditioning)
|
564 |
+
|
565 |
+
for i in range(self.num_upsamples):
|
566 |
+
hidden_states = nn.functional.leaky_relu(hidden_states, self.config.leaky_relu_slope)
|
567 |
+
hidden_states = self.upsampler[i](hidden_states)
|
568 |
+
|
569 |
+
res_state = self.resblocks[i * self.num_kernels](hidden_states)
|
570 |
+
for j in range(1, self.num_kernels):
|
571 |
+
res_state += self.resblocks[i * self.num_kernels + j](hidden_states)
|
572 |
+
hidden_states = res_state / self.num_kernels
|
573 |
+
|
574 |
+
hidden_states = nn.functional.leaky_relu(hidden_states)
|
575 |
+
hidden_states = self.conv_post(hidden_states)
|
576 |
+
waveform = torch.tanh(hidden_states)
|
577 |
+
return waveform
|
578 |
+
|
579 |
+
|
580 |
+
class VitsISTFT(nn.Module):
|
581 |
+
def __init__(self, config: VitsConfig):
|
582 |
+
super().__init__()
|
583 |
+
self.config = config
|
584 |
+
self.gen_istft_n_fft = config.gen_istft_n_fft
|
585 |
+
self.gen_istft_hop_size = config.gen_istft_hop_size
|
586 |
+
self.post_n_fft = config.gen_istft_n_fft
|
587 |
+
|
588 |
+
if config.istft_decoder in ["ms_istft", "mb_istft"]:
|
589 |
+
self.subbands = config.subbands
|
590 |
+
if config.istft_decoder == "mb_istft":
|
591 |
+
self.pqmf = PQMF(subbands=self.subbands)
|
592 |
+
else:
|
593 |
+
updown_filter = torch.zeros((self.subbands, self.subbands, self.subbands)).float()
|
594 |
+
for k in range(self.subbands):
|
595 |
+
updown_filter[k, k, 0] = 1.0
|
596 |
+
self.register_buffer("updown_filter", updown_filter)
|
597 |
+
|
598 |
+
self.multistream_conv_post = nn.Conv1d(
|
599 |
+
4, 1, kernel_size=63, bias=False, padding=self.get_padding(63, 1)
|
600 |
+
)
|
601 |
+
|
602 |
+
self.num_kernels = len(config.resblock_kernel_sizes)
|
603 |
+
self.num_upsamples = len(config.upsample_rates)
|
604 |
+
self.conv_pre = nn.Conv1d(
|
605 |
+
config.flow_size,
|
606 |
+
config.upsample_initial_channel,
|
607 |
+
kernel_size=7,
|
608 |
+
stride=1,
|
609 |
+
padding=3,
|
610 |
+
)
|
611 |
+
|
612 |
+
self.upsampler = nn.ModuleList()
|
613 |
+
for i, (upsample_rate, kernel_size) in enumerate(zip(config.upsample_rates, config.upsample_kernel_sizes)):
|
614 |
+
self.upsampler.append(
|
615 |
+
nn.ConvTranspose1d(
|
616 |
+
config.upsample_initial_channel // (2**i),
|
617 |
+
config.upsample_initial_channel // (2 ** (i + 1)),
|
618 |
+
kernel_size=kernel_size,
|
619 |
+
stride=upsample_rate,
|
620 |
+
padding=(kernel_size - upsample_rate) // 2,
|
621 |
+
)
|
622 |
+
)
|
623 |
+
|
624 |
+
self.resblocks = nn.ModuleList()
|
625 |
+
for i in range(len(self.upsampler)):
|
626 |
+
channels = config.upsample_initial_channel // (2 ** (i + 1))
|
627 |
+
for kernel_size, dilation in zip(config.resblock_kernel_sizes, config.resblock_dilation_sizes):
|
628 |
+
self.resblocks.append(HifiGanResidualBlock(channels, kernel_size, dilation, config.leaky_relu_slope))
|
629 |
+
|
630 |
+
if config.istft_decoder == "istft":
|
631 |
+
self.conv_post = nn.Conv1d(channels, self.post_n_fft + 2, kernel_size=7, stride=1, padding=3, bias=True)
|
632 |
+
elif config.istft_decoder in ["ms_istft", "mb_istft"]:
|
633 |
+
self.conv_post = nn.Conv1d(
|
634 |
+
channels, self.subbands * (self.post_n_fft + 2), kernel_size=7, stride=1, padding=3, bias=True
|
635 |
+
)
|
636 |
+
|
637 |
+
self.reflection_pad = nn.ReflectionPad1d((1, 0))
|
638 |
+
self.stft = TorchSTFT(
|
639 |
+
filter_length=self.gen_istft_n_fft, hop_length=self.gen_istft_hop_size, win_length=self.gen_istft_n_fft
|
640 |
+
)
|
641 |
+
|
642 |
+
if config.speaker_embedding_size != 0:
|
643 |
+
self.cond = nn.Conv1d(config.speaker_embedding_size, config.upsample_initial_channel, 1)
|
644 |
+
|
645 |
+
def get_padding(self, kernel_size, dilation=1):
|
646 |
+
return int((kernel_size * dilation - dilation) / 2)
|
647 |
+
|
648 |
+
def apply_weight_norm(self):
|
649 |
+
weight_norm = nn.utils.weight_norm
|
650 |
+
if hasattr(nn.utils.parametrizations, "weight_norm"):
|
651 |
+
weight_norm = nn.utils.parametrizations.weight_norm
|
652 |
+
|
653 |
+
for layer in self.upsampler:
|
654 |
+
weight_norm(layer)
|
655 |
+
for layer in self.resblocks:
|
656 |
+
layer.apply_weight_norm()
|
657 |
+
weight_norm(self.conv_pre)
|
658 |
+
weight_norm(self.conv_post)
|
659 |
+
|
660 |
+
if self.config.istft_decoder == "ms_istft":
|
661 |
+
weight_norm(self.multistream_conv_post)
|
662 |
+
|
663 |
+
def remove_weight_norm(self):
|
664 |
+
for layer in self.upsampler:
|
665 |
+
nn.utils.remove_weight_norm(layer)
|
666 |
+
for layer in self.resblocks:
|
667 |
+
layer.remove_weight_norm()
|
668 |
+
nn.utils.remove_weight_norm(self.conv_pre)
|
669 |
+
nn.utils.remove_weight_norm(self.conv_post)
|
670 |
+
|
671 |
+
if self.config.istft_decoder == "ms_istft":
|
672 |
+
nn.utils.remove_weight_norm(self.multistream_conv_post)
|
673 |
+
|
674 |
+
def forward(
|
675 |
+
self, spectrogram: torch.FloatTensor, global_conditioning: Optional[torch.FloatTensor] = None
|
676 |
+
) -> torch.FloatTensor:
|
677 |
+
r"""
|
678 |
+
Converts a spectrogram into a speech waveform.
|
679 |
+
|
680 |
+
Args:
|
681 |
+
spectrogram (`torch.FloatTensor` of shape `(batch_size, config.spectrogram_bins, sequence_length)`):
|
682 |
+
Tensor containing the spectrograms.
|
683 |
+
global_conditioning (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_size, 1)`, *optional*):
|
684 |
+
Tensor containing speaker embeddings, for multispeaker models.
|
685 |
+
|
686 |
+
Returns:
|
687 |
+
`torch.FloatTensor`: Tensor of shape shape `(batch_size, 1, num_frames)` containing the speech waveform.
|
688 |
+
"""
|
689 |
+
hidden_states = self.conv_pre(spectrogram)
|
690 |
+
|
691 |
+
if global_conditioning is not None:
|
692 |
+
hidden_states = hidden_states + self.cond(global_conditioning)
|
693 |
+
|
694 |
+
for i in range(self.num_upsamples):
|
695 |
+
hidden_states = nn.functional.leaky_relu(hidden_states, self.config.leaky_relu_slope)
|
696 |
+
hidden_states = self.upsampler[i](hidden_states)
|
697 |
+
|
698 |
+
res_state = self.resblocks[i * self.num_kernels](hidden_states)
|
699 |
+
for j in range(1, self.num_kernels):
|
700 |
+
res_state += self.resblocks[i * self.num_kernels + j](hidden_states)
|
701 |
+
hidden_states = res_state / self.num_kernels
|
702 |
+
|
703 |
+
hidden_states = nn.functional.leaky_relu(hidden_states)
|
704 |
+
hidden_states = self.reflection_pad(hidden_states)
|
705 |
+
hidden_states = self.conv_post(hidden_states)
|
706 |
+
|
707 |
+
if self.config.istft_decoder == "istft":
|
708 |
+
spec = torch.exp(hidden_states[:, : self.post_n_fft // 2 + 1, :])
|
709 |
+
phase = math.pi * torch.sin(hidden_states[:, self.post_n_fft // 2 + 1 :, :])
|
710 |
+
waveform = self.stft.inverse(spec, phase)
|
711 |
+
|
712 |
+
elif self.config.istft_decoder in ["mb_istft", "ms_istft"]:
|
713 |
+
hidden_states = torch.reshape(
|
714 |
+
hidden_states,
|
715 |
+
(
|
716 |
+
hidden_states.shape[0],
|
717 |
+
self.subbands,
|
718 |
+
hidden_states.shape[1] // self.subbands,
|
719 |
+
hidden_states.shape[-1],
|
720 |
+
),
|
721 |
+
)
|
722 |
+
spec = torch.exp(hidden_states[:, :, : self.post_n_fft // 2 + 1, :])
|
723 |
+
phase = math.pi * torch.sin(hidden_states[:, :, self.post_n_fft // 2 + 1 :, :])
|
724 |
+
|
725 |
+
waveform_mb = self.stft.inverse(
|
726 |
+
torch.reshape(spec, (spec.shape[0] * self.subbands, self.gen_istft_n_fft // 2 + 1, spec.shape[-1])),
|
727 |
+
torch.reshape(phase, (phase.shape[0] * self.subbands, self.gen_istft_n_fft // 2 + 1, phase.shape[-1])),
|
728 |
+
)
|
729 |
+
waveform_mb = torch.reshape(waveform_mb, (hidden_states.shape[0], self.subbands, 1, waveform_mb.shape[-1]))
|
730 |
+
waveform_mb = waveform_mb.squeeze(-2)
|
731 |
+
|
732 |
+
if self.config.istft_decoder == "mb_istft":
|
733 |
+
waveform = self.pqmf.synthesis(waveform_mb)
|
734 |
+
else:
|
735 |
+
waveform_mb = torch.nn.functional.conv_transpose1d(
|
736 |
+
waveform_mb, self.updown_filter * self.subbands, stride=self.subbands
|
737 |
+
)
|
738 |
+
waveform = self.multistream_conv_post(waveform_mb)
|
739 |
+
|
740 |
+
return waveform
|
741 |
+
|
742 |
+
|
743 |
+
class PQMF(torch.nn.Module):
|
744 |
+
"""PQMF module.
|
745 |
+
This module is based on `Near-perfect-reconstruction pseudo-QMF banks`_.
|
746 |
+
.. _`Near-perfect-reconstruction pseudo-QMF banks`:
|
747 |
+
https://ieeexplore.ieee.org/document/258122
|
748 |
+
"""
|
749 |
+
|
750 |
+
def __init__(self, subbands=4, taps=62, cutoff_ratio=0.15, beta=9.0):
|
751 |
+
"""Initilize PQMF module.
|
752 |
+
Args:
|
753 |
+
subbands (int): The number of subbands.
|
754 |
+
taps (int): The number of filter taps.
|
755 |
+
cutoff_ratio (float): Cut-off frequency ratio.
|
756 |
+
beta (float): Beta coefficient for kaiser window.
|
757 |
+
"""
|
758 |
+
super(PQMF, self).__init__()
|
759 |
+
|
760 |
+
# define filter coefficient
|
761 |
+
h_proto = self.design_prototype_filter(taps, cutoff_ratio, beta)
|
762 |
+
h_analysis = np.zeros((subbands, len(h_proto)))
|
763 |
+
h_synthesis = np.zeros((subbands, len(h_proto)))
|
764 |
+
for k in range(subbands):
|
765 |
+
h_analysis[k] = (
|
766 |
+
2
|
767 |
+
* h_proto
|
768 |
+
* np.cos(
|
769 |
+
(2 * k + 1) * (np.pi / (2 * subbands)) * (np.arange(taps + 1) - ((taps - 1) / 2))
|
770 |
+
+ (-1) ** k * np.pi / 4
|
771 |
+
)
|
772 |
+
)
|
773 |
+
h_synthesis[k] = (
|
774 |
+
2
|
775 |
+
* h_proto
|
776 |
+
* np.cos(
|
777 |
+
(2 * k + 1) * (np.pi / (2 * subbands)) * (np.arange(taps + 1) - ((taps - 1) / 2))
|
778 |
+
- (-1) ** k * np.pi / 4
|
779 |
+
)
|
780 |
+
)
|
781 |
+
|
782 |
+
# convert to tensor
|
783 |
+
analysis_filter = torch.from_numpy(h_analysis).float().unsqueeze(1)
|
784 |
+
synthesis_filter = torch.from_numpy(h_synthesis).float().unsqueeze(0)
|
785 |
+
|
786 |
+
# register coefficients as beffer
|
787 |
+
self.register_buffer("analysis_filter", analysis_filter)
|
788 |
+
self.register_buffer("synthesis_filter", synthesis_filter)
|
789 |
+
|
790 |
+
# filter for downsampling & upsampling
|
791 |
+
updown_filter = torch.zeros((subbands, subbands, subbands)).float()
|
792 |
+
for k in range(subbands):
|
793 |
+
updown_filter[k, k, 0] = 1.0
|
794 |
+
self.register_buffer("updown_filter", updown_filter)
|
795 |
+
self.subbands = subbands
|
796 |
+
|
797 |
+
# keep padding info
|
798 |
+
self.pad_fn = torch.nn.ConstantPad1d(taps // 2, 0.0)
|
799 |
+
|
800 |
+
def design_prototype_filter(self, taps=62, cutoff_ratio=0.15, beta=9.0):
|
801 |
+
"""Design prototype filter for PQMF.
|
802 |
+
This method is based on `A Kaiser window approach for the design of prototype
|
803 |
+
filters of cosine modulated filterbanks`_.
|
804 |
+
Args:
|
805 |
+
taps (int): The number of filter taps.
|
806 |
+
cutoff_ratio (float): Cut-off frequency ratio.
|
807 |
+
beta (float): Beta coefficient for kaiser window.
|
808 |
+
Returns:
|
809 |
+
ndarray: Impluse response of prototype filter (taps + 1,).
|
810 |
+
.. _`A Kaiser window approach for the design of prototype filters of cosine modulated filterbanks`:
|
811 |
+
https://ieeexplore.ieee.org/abstract/document/681427
|
812 |
+
"""
|
813 |
+
# check the arguments are valid
|
814 |
+
assert taps % 2 == 0, "The number of taps mush be even number."
|
815 |
+
assert 0.0 < cutoff_ratio < 1.0, "Cutoff ratio must be > 0.0 and < 1.0."
|
816 |
+
|
817 |
+
# make initial filter
|
818 |
+
omega_c = np.pi * cutoff_ratio
|
819 |
+
with np.errstate(invalid="ignore"):
|
820 |
+
h_i = np.sin(omega_c * (np.arange(taps + 1) - 0.5 * taps)) / (np.pi * (np.arange(taps + 1) - 0.5 * taps))
|
821 |
+
h_i[taps // 2] = np.cos(0) * cutoff_ratio # fix nan due to indeterminate form
|
822 |
+
|
823 |
+
# apply kaiser window
|
824 |
+
w = kaiser(taps + 1, beta)
|
825 |
+
h = h_i * w
|
826 |
+
|
827 |
+
return h
|
828 |
+
|
829 |
+
def analysis(self, x):
|
830 |
+
"""Analysis with PQMF.
|
831 |
+
Args:
|
832 |
+
x (Tensor): Input tensor (B, 1, T).
|
833 |
+
Returns:
|
834 |
+
Tensor: Output tensor (B, subbands, T // subbands).
|
835 |
+
"""
|
836 |
+
x = torch.nn.functional.conv1d(self.pad_fn(x), self.analysis_filter)
|
837 |
+
return torch.nn.functional.conv1d(x, self.updown_filter, stride=self.subbands)
|
838 |
+
|
839 |
+
def synthesis(self, x):
|
840 |
+
"""Synthesis with PQMF.
|
841 |
+
Args:
|
842 |
+
x (Tensor): Input tensor (B, subbands, T // subbands).
|
843 |
+
Returns:
|
844 |
+
Tensor: Output tensor (B, 1, T).
|
845 |
+
"""
|
846 |
+
# NOTE(kan-bayashi): Power will be dreased so here multipy by # subbands.
|
847 |
+
# Not sure this is the correct way, it is better to check again.
|
848 |
+
# TODO(kan-bayashi): Understand the reconstruction procedure
|
849 |
+
x = torch.nn.functional.conv_transpose1d(x, self.updown_filter * self.subbands, stride=self.subbands)
|
850 |
+
return torch.nn.functional.conv1d(self.pad_fn(x), self.synthesis_filter)
|
851 |
+
|
852 |
+
|
853 |
+
class TorchSTFT(torch.nn.Module):
|
854 |
+
def __init__(self, filter_length=800, hop_length=200, win_length=800, window="hann"):
|
855 |
+
super().__init__()
|
856 |
+
self.filter_length = filter_length
|
857 |
+
self.hop_length = hop_length
|
858 |
+
self.win_length = win_length
|
859 |
+
self.window = torch.from_numpy(get_window(window, win_length, fftbins=True).astype(np.float32))
|
860 |
+
|
861 |
+
def transform(self, input_data):
|
862 |
+
forward_transform = torch.stft(
|
863 |
+
input_data, self.filter_length, self.hop_length, self.win_length, window=self.window, return_complex=True
|
864 |
+
)
|
865 |
+
|
866 |
+
return torch.abs(forward_transform), torch.angle(forward_transform)
|
867 |
+
|
868 |
+
def inverse(self, magnitude, phase):
|
869 |
+
inverse_transform = torch.istft(
|
870 |
+
magnitude * torch.exp(phase * 1j),
|
871 |
+
self.filter_length,
|
872 |
+
self.hop_length,
|
873 |
+
self.win_length,
|
874 |
+
window=self.window.to(magnitude.device),
|
875 |
+
)
|
876 |
+
|
877 |
+
return inverse_transform.unsqueeze(-2) # unsqueeze to stay consistent with conv_transpose1d implementation
|
878 |
+
|
879 |
+
def forward(self, input_data):
|
880 |
+
self.magnitude, self.phase = self.transform(input_data)
|
881 |
+
reconstruction = self.inverse(self.magnitude, self.phase)
|
882 |
+
return reconstruction
|
883 |
+
|
884 |
+
|
885 |
+
class VitsResidualCouplingLayer(nn.Module):
|
886 |
+
def __init__(self, config: VitsConfig):
|
887 |
+
super().__init__()
|
888 |
+
self.half_channels = config.flow_size // 2
|
889 |
+
|
890 |
+
self.conv_pre = nn.Conv1d(self.half_channels, config.hidden_size, 1)
|
891 |
+
self.wavenet = VitsWaveNet(config, num_layers=config.prior_encoder_num_wavenet_layers)
|
892 |
+
self.conv_post = nn.Conv1d(config.hidden_size, self.half_channels, 1)
|
893 |
+
|
894 |
+
def forward(self, inputs, padding_mask, global_conditioning=None, reverse=False):
|
895 |
+
first_half, second_half = torch.split(inputs, [self.half_channels] * 2, dim=1)
|
896 |
+
hidden_states = self.conv_pre(first_half) * padding_mask
|
897 |
+
hidden_states = self.wavenet(hidden_states, padding_mask, global_conditioning)
|
898 |
+
mean = self.conv_post(hidden_states) * padding_mask
|
899 |
+
log_stddev = torch.zeros_like(mean)
|
900 |
+
|
901 |
+
if not reverse:
|
902 |
+
second_half = mean + second_half * torch.exp(log_stddev) * padding_mask
|
903 |
+
outputs = torch.cat([first_half, second_half], dim=1)
|
904 |
+
log_determinant = torch.sum(log_stddev, [1, 2])
|
905 |
+
return outputs, log_determinant
|
906 |
+
else:
|
907 |
+
second_half = (second_half - mean) * torch.exp(-log_stddev) * padding_mask
|
908 |
+
outputs = torch.cat([first_half, second_half], dim=1)
|
909 |
+
return outputs, None
|
910 |
+
|
911 |
+
|
912 |
+
class VitsResidualCouplingBlock(nn.Module):
|
913 |
+
def __init__(self, config: VitsConfig):
|
914 |
+
super().__init__()
|
915 |
+
self.flows = nn.ModuleList()
|
916 |
+
for _ in range(config.prior_encoder_num_flows):
|
917 |
+
self.flows.append(VitsResidualCouplingLayer(config))
|
918 |
+
|
919 |
+
def forward(self, inputs, padding_mask, global_conditioning=None, reverse=False):
|
920 |
+
if not reverse:
|
921 |
+
for flow in self.flows:
|
922 |
+
inputs, _ = flow(inputs, padding_mask, global_conditioning)
|
923 |
+
inputs = torch.flip(inputs, [1])
|
924 |
+
else:
|
925 |
+
for flow in reversed(self.flows):
|
926 |
+
inputs = torch.flip(inputs, [1])
|
927 |
+
inputs, _ = flow(inputs, padding_mask, global_conditioning, reverse=True)
|
928 |
+
return inputs
|
929 |
+
|
930 |
+
|
931 |
+
class VitsDilatedDepthSeparableConv(nn.Module):
|
932 |
+
def __init__(self, config: VitsConfig, dropout_rate=0.0):
|
933 |
+
super().__init__()
|
934 |
+
kernel_size = config.duration_predictor_kernel_size
|
935 |
+
channels = config.hidden_size
|
936 |
+
self.num_layers = config.depth_separable_num_layers
|
937 |
+
|
938 |
+
self.dropout = nn.Dropout(dropout_rate)
|
939 |
+
self.convs_dilated = nn.ModuleList()
|
940 |
+
self.convs_pointwise = nn.ModuleList()
|
941 |
+
self.norms_1 = nn.ModuleList()
|
942 |
+
self.norms_2 = nn.ModuleList()
|
943 |
+
for i in range(self.num_layers):
|
944 |
+
dilation = kernel_size**i
|
945 |
+
padding = (kernel_size * dilation - dilation) // 2
|
946 |
+
self.convs_dilated.append(
|
947 |
+
nn.Conv1d(
|
948 |
+
in_channels=channels,
|
949 |
+
out_channels=channels,
|
950 |
+
kernel_size=kernel_size,
|
951 |
+
groups=channels,
|
952 |
+
dilation=dilation,
|
953 |
+
padding=padding,
|
954 |
+
)
|
955 |
+
)
|
956 |
+
self.convs_pointwise.append(nn.Conv1d(channels, channels, 1))
|
957 |
+
self.norms_1.append(nn.LayerNorm(channels))
|
958 |
+
self.norms_2.append(nn.LayerNorm(channels))
|
959 |
+
|
960 |
+
def forward(self, inputs, padding_mask, global_conditioning=None):
|
961 |
+
if global_conditioning is not None:
|
962 |
+
inputs = inputs + global_conditioning
|
963 |
+
|
964 |
+
for i in range(self.num_layers):
|
965 |
+
hidden_states = self.convs_dilated[i](inputs * padding_mask)
|
966 |
+
hidden_states = self.norms_1[i](hidden_states.transpose(1, -1)).transpose(1, -1)
|
967 |
+
hidden_states = nn.functional.gelu(hidden_states)
|
968 |
+
hidden_states = self.convs_pointwise[i](hidden_states)
|
969 |
+
hidden_states = self.norms_2[i](hidden_states.transpose(1, -1)).transpose(1, -1)
|
970 |
+
hidden_states = nn.functional.gelu(hidden_states)
|
971 |
+
hidden_states = self.dropout(hidden_states)
|
972 |
+
inputs = inputs + hidden_states
|
973 |
+
|
974 |
+
return inputs * padding_mask
|
975 |
+
|
976 |
+
|
977 |
+
class VitsConvFlow(nn.Module):
|
978 |
+
def __init__(self, config: VitsConfig):
|
979 |
+
super().__init__()
|
980 |
+
self.filter_channels = config.hidden_size
|
981 |
+
self.half_channels = config.depth_separable_channels // 2
|
982 |
+
self.num_bins = config.duration_predictor_flow_bins
|
983 |
+
self.tail_bound = config.duration_predictor_tail_bound
|
984 |
+
|
985 |
+
self.conv_pre = nn.Conv1d(self.half_channels, self.filter_channels, 1)
|
986 |
+
self.conv_dds = VitsDilatedDepthSeparableConv(config)
|
987 |
+
self.conv_proj = nn.Conv1d(self.filter_channels, self.half_channels * (self.num_bins * 3 - 1), 1)
|
988 |
+
|
989 |
+
def forward(self, inputs, padding_mask, global_conditioning=None, reverse=False):
|
990 |
+
first_half, second_half = torch.split(inputs, [self.half_channels] * 2, dim=1)
|
991 |
+
|
992 |
+
hidden_states = self.conv_pre(first_half)
|
993 |
+
hidden_states = self.conv_dds(hidden_states, padding_mask, global_conditioning)
|
994 |
+
hidden_states = self.conv_proj(hidden_states) * padding_mask
|
995 |
+
|
996 |
+
batch_size, channels, length = first_half.shape
|
997 |
+
hidden_states = hidden_states.reshape(batch_size, channels, -1, length).permute(0, 1, 3, 2)
|
998 |
+
|
999 |
+
unnormalized_widths = hidden_states[..., : self.num_bins] / math.sqrt(self.filter_channels)
|
1000 |
+
unnormalized_heights = hidden_states[..., self.num_bins : 2 * self.num_bins] / math.sqrt(self.filter_channels)
|
1001 |
+
unnormalized_derivatives = hidden_states[..., 2 * self.num_bins :]
|
1002 |
+
|
1003 |
+
second_half, log_abs_det = _unconstrained_rational_quadratic_spline(
|
1004 |
+
second_half,
|
1005 |
+
unnormalized_widths,
|
1006 |
+
unnormalized_heights,
|
1007 |
+
unnormalized_derivatives,
|
1008 |
+
reverse=reverse,
|
1009 |
+
tail_bound=self.tail_bound,
|
1010 |
+
)
|
1011 |
+
|
1012 |
+
outputs = torch.cat([first_half, second_half], dim=1) * padding_mask
|
1013 |
+
if not reverse:
|
1014 |
+
log_determinant = torch.sum(log_abs_det * padding_mask, [1, 2])
|
1015 |
+
return outputs, log_determinant
|
1016 |
+
else:
|
1017 |
+
return outputs, None
|
1018 |
+
|
1019 |
+
|
1020 |
+
class VitsElementwiseAffine(nn.Module):
|
1021 |
+
def __init__(self, config: VitsConfig):
|
1022 |
+
super().__init__()
|
1023 |
+
self.channels = config.depth_separable_channels
|
1024 |
+
self.translate = nn.Parameter(torch.zeros(self.channels, 1))
|
1025 |
+
self.log_scale = nn.Parameter(torch.zeros(self.channels, 1))
|
1026 |
+
|
1027 |
+
def forward(self, inputs, padding_mask, global_conditioning=None, reverse=False):
|
1028 |
+
if not reverse:
|
1029 |
+
outputs = self.translate + torch.exp(self.log_scale) * inputs
|
1030 |
+
outputs = outputs * padding_mask
|
1031 |
+
log_determinant = torch.sum(self.log_scale * padding_mask, [1, 2])
|
1032 |
+
return outputs, log_determinant
|
1033 |
+
else:
|
1034 |
+
outputs = (inputs - self.translate) * torch.exp(-self.log_scale) * padding_mask
|
1035 |
+
return outputs, None
|
1036 |
+
|
1037 |
+
|
1038 |
+
class VitsStochasticDurationPredictor(nn.Module):
|
1039 |
+
def __init__(self, config):
|
1040 |
+
super().__init__()
|
1041 |
+
embed_dim = config.speaker_embedding_size
|
1042 |
+
filter_channels = config.hidden_size
|
1043 |
+
|
1044 |
+
self.conv_pre = nn.Conv1d(filter_channels, filter_channels, 1)
|
1045 |
+
self.conv_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
1046 |
+
self.conv_dds = VitsDilatedDepthSeparableConv(
|
1047 |
+
config,
|
1048 |
+
dropout_rate=config.duration_predictor_dropout,
|
1049 |
+
)
|
1050 |
+
|
1051 |
+
if embed_dim != 0:
|
1052 |
+
self.cond = nn.Conv1d(embed_dim, filter_channels, 1)
|
1053 |
+
|
1054 |
+
self.flows = nn.ModuleList()
|
1055 |
+
self.flows.append(VitsElementwiseAffine(config))
|
1056 |
+
for _ in range(config.duration_predictor_num_flows):
|
1057 |
+
self.flows.append(VitsConvFlow(config))
|
1058 |
+
|
1059 |
+
self.post_conv_pre = nn.Conv1d(1, filter_channels, 1)
|
1060 |
+
self.post_conv_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
1061 |
+
self.post_conv_dds = VitsDilatedDepthSeparableConv(
|
1062 |
+
config,
|
1063 |
+
dropout_rate=config.duration_predictor_dropout,
|
1064 |
+
)
|
1065 |
+
|
1066 |
+
self.post_flows = nn.ModuleList()
|
1067 |
+
self.post_flows.append(VitsElementwiseAffine(config))
|
1068 |
+
for _ in range(config.duration_predictor_num_flows):
|
1069 |
+
self.post_flows.append(VitsConvFlow(config))
|
1070 |
+
|
1071 |
+
def forward(self, inputs, padding_mask, global_conditioning=None, durations=None, reverse=False, noise_scale=1.0):
|
1072 |
+
inputs = torch.detach(inputs)
|
1073 |
+
inputs = self.conv_pre(inputs)
|
1074 |
+
|
1075 |
+
if global_conditioning is not None:
|
1076 |
+
global_conditioning = torch.detach(global_conditioning)
|
1077 |
+
inputs = inputs + self.cond(global_conditioning)
|
1078 |
+
|
1079 |
+
inputs = self.conv_dds(inputs, padding_mask)
|
1080 |
+
inputs = self.conv_proj(inputs) * padding_mask
|
1081 |
+
|
1082 |
+
if not reverse:
|
1083 |
+
hidden_states = self.post_conv_pre(durations)
|
1084 |
+
hidden_states = self.post_conv_dds(hidden_states, padding_mask)
|
1085 |
+
hidden_states = self.post_conv_proj(hidden_states) * padding_mask
|
1086 |
+
|
1087 |
+
random_posterior = (
|
1088 |
+
torch.randn(durations.size(0), 2, durations.size(2)).to(device=inputs.device, dtype=inputs.dtype)
|
1089 |
+
* padding_mask
|
1090 |
+
)
|
1091 |
+
log_determinant_posterior_sum = 0
|
1092 |
+
latents_posterior = random_posterior
|
1093 |
+
for flow in self.post_flows:
|
1094 |
+
latents_posterior, log_determinant = flow(
|
1095 |
+
latents_posterior, padding_mask, global_conditioning=inputs + hidden_states
|
1096 |
+
)
|
1097 |
+
latents_posterior = torch.flip(latents_posterior, [1])
|
1098 |
+
log_determinant_posterior_sum += log_determinant
|
1099 |
+
|
1100 |
+
first_half, second_half = torch.split(latents_posterior, [1, 1], dim=1)
|
1101 |
+
|
1102 |
+
log_determinant_posterior_sum += torch.sum(
|
1103 |
+
(nn.functional.logsigmoid(first_half) + nn.functional.logsigmoid(-first_half)) * padding_mask, [1, 2]
|
1104 |
+
)
|
1105 |
+
logq = (
|
1106 |
+
torch.sum(-0.5 * (math.log(2 * math.pi) + (random_posterior**2)) * padding_mask, [1, 2])
|
1107 |
+
- log_determinant_posterior_sum
|
1108 |
+
)
|
1109 |
+
|
1110 |
+
first_half = (durations - torch.sigmoid(first_half)) * padding_mask
|
1111 |
+
first_half = torch.log(torch.clamp_min(first_half, 1e-5)) * padding_mask
|
1112 |
+
log_determinant_sum = torch.sum(-first_half, [1, 2])
|
1113 |
+
|
1114 |
+
latents = torch.cat([first_half, second_half], dim=1)
|
1115 |
+
for flow in self.flows:
|
1116 |
+
latents, log_determinant = flow(latents, padding_mask, global_conditioning=inputs)
|
1117 |
+
latents = torch.flip(latents, [1])
|
1118 |
+
log_determinant_sum += log_determinant
|
1119 |
+
|
1120 |
+
nll = torch.sum(0.5 * (math.log(2 * math.pi) + (latents**2)) * padding_mask, [1, 2]) - log_determinant_sum
|
1121 |
+
return nll + logq
|
1122 |
+
else:
|
1123 |
+
flows = list(reversed(self.flows))
|
1124 |
+
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
1125 |
+
|
1126 |
+
latents = (
|
1127 |
+
torch.randn(inputs.size(0), 2, inputs.size(2)).to(device=inputs.device, dtype=inputs.dtype)
|
1128 |
+
* noise_scale
|
1129 |
+
)
|
1130 |
+
for flow in flows:
|
1131 |
+
latents = torch.flip(latents, [1])
|
1132 |
+
latents, _ = flow(latents, padding_mask, global_conditioning=inputs, reverse=True)
|
1133 |
+
|
1134 |
+
log_duration, _ = torch.split(latents, [1, 1], dim=1)
|
1135 |
+
return log_duration
|
1136 |
+
|
1137 |
+
|
1138 |
+
class VitsDurationPredictor(nn.Module):
|
1139 |
+
def __init__(self, config):
|
1140 |
+
super().__init__()
|
1141 |
+
kernel_size = config.duration_predictor_kernel_size
|
1142 |
+
filter_channels = config.duration_predictor_filter_channels
|
1143 |
+
|
1144 |
+
self.dropout = nn.Dropout(config.duration_predictor_dropout)
|
1145 |
+
self.conv_1 = nn.Conv1d(config.hidden_size, filter_channels, kernel_size, padding=kernel_size // 2)
|
1146 |
+
self.norm_1 = nn.LayerNorm(filter_channels, eps=config.layer_norm_eps)
|
1147 |
+
self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
1148 |
+
self.norm_2 = nn.LayerNorm(filter_channels, eps=config.layer_norm_eps)
|
1149 |
+
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
1150 |
+
|
1151 |
+
if config.speaker_embedding_size != 0:
|
1152 |
+
self.cond = nn.Conv1d(config.speaker_embedding_size, config.hidden_size, 1)
|
1153 |
+
|
1154 |
+
def forward(self, inputs, padding_mask, global_conditioning=None):
|
1155 |
+
inputs = torch.detach(inputs)
|
1156 |
+
|
1157 |
+
if global_conditioning is not None:
|
1158 |
+
global_conditioning = torch.detach(global_conditioning)
|
1159 |
+
inputs = inputs + self.cond(global_conditioning)
|
1160 |
+
|
1161 |
+
inputs = self.conv_1(inputs * padding_mask)
|
1162 |
+
inputs = torch.relu(inputs)
|
1163 |
+
inputs = self.norm_1(inputs.transpose(1, -1)).transpose(1, -1)
|
1164 |
+
inputs = self.dropout(inputs)
|
1165 |
+
|
1166 |
+
inputs = self.conv_2(inputs * padding_mask)
|
1167 |
+
inputs = torch.relu(inputs)
|
1168 |
+
inputs = self.norm_2(inputs.transpose(1, -1)).transpose(1, -1)
|
1169 |
+
inputs = self.dropout(inputs)
|
1170 |
+
|
1171 |
+
inputs = self.proj(inputs * padding_mask)
|
1172 |
+
return inputs * padding_mask
|
1173 |
+
|
1174 |
+
|
1175 |
+
class VitsAttention(nn.Module):
|
1176 |
+
"""Multi-headed attention with relative positional representation."""
|
1177 |
+
|
1178 |
+
def __init__(self, config: VitsConfig):
|
1179 |
+
super().__init__()
|
1180 |
+
self.embed_dim = config.hidden_size
|
1181 |
+
self.num_heads = config.num_attention_heads
|
1182 |
+
self.dropout = config.attention_dropout
|
1183 |
+
self.window_size = config.window_size
|
1184 |
+
|
1185 |
+
self.head_dim = self.embed_dim // self.num_heads
|
1186 |
+
self.scaling = self.head_dim**-0.5
|
1187 |
+
|
1188 |
+
if (self.head_dim * self.num_heads) != self.embed_dim:
|
1189 |
+
raise ValueError(
|
1190 |
+
f"hidden_size must be divisible by num_attention_heads (got `hidden_size`: {self.embed_dim}"
|
1191 |
+
f" and `num_attention_heads`: {self.num_heads})."
|
1192 |
+
)
|
1193 |
+
|
1194 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias)
|
1195 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias)
|
1196 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias)
|
1197 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias)
|
1198 |
+
|
1199 |
+
if self.window_size:
|
1200 |
+
self.emb_rel_k = nn.Parameter(torch.randn(1, self.window_size * 2 + 1, self.head_dim) * self.scaling)
|
1201 |
+
self.emb_rel_v = nn.Parameter(torch.randn(1, self.window_size * 2 + 1, self.head_dim) * self.scaling)
|
1202 |
+
|
1203 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
1204 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
1205 |
+
|
1206 |
+
def forward(
|
1207 |
+
self,
|
1208 |
+
hidden_states: torch.Tensor,
|
1209 |
+
key_value_states: Optional[torch.Tensor] = None,
|
1210 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1211 |
+
layer_head_mask: Optional[torch.Tensor] = None,
|
1212 |
+
output_attentions: bool = False,
|
1213 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
1214 |
+
"""Input shape: Batch x Time x Channel"""
|
1215 |
+
|
1216 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
1217 |
+
# for the decoder
|
1218 |
+
|
1219 |
+
bsz, tgt_len, _ = hidden_states.size()
|
1220 |
+
|
1221 |
+
# get query proj
|
1222 |
+
query_states = self.q_proj(hidden_states) * self.scaling
|
1223 |
+
|
1224 |
+
# self_attention
|
1225 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
1226 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
1227 |
+
|
1228 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
1229 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
1230 |
+
key_states = key_states.view(*proj_shape)
|
1231 |
+
value_states = value_states.view(*proj_shape)
|
1232 |
+
|
1233 |
+
src_len = key_states.size(1)
|
1234 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
1235 |
+
|
1236 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
1237 |
+
raise ValueError(
|
1238 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
1239 |
+
f" {attn_weights.size()}"
|
1240 |
+
)
|
1241 |
+
|
1242 |
+
if self.window_size is not None:
|
1243 |
+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, src_len)
|
1244 |
+
relative_logits = torch.matmul(query_states, key_relative_embeddings.transpose(-2, -1))
|
1245 |
+
rel_pos_bias = self._relative_position_to_absolute_position(relative_logits)
|
1246 |
+
attn_weights += rel_pos_bias
|
1247 |
+
|
1248 |
+
if attention_mask is not None:
|
1249 |
+
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
1250 |
+
raise ValueError(
|
1251 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
1252 |
+
)
|
1253 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
1254 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
1255 |
+
|
1256 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
1257 |
+
|
1258 |
+
if layer_head_mask is not None:
|
1259 |
+
if layer_head_mask.size() != (self.num_heads,):
|
1260 |
+
raise ValueError(
|
1261 |
+
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
|
1262 |
+
f" {layer_head_mask.size()}"
|
1263 |
+
)
|
1264 |
+
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
1265 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
1266 |
+
|
1267 |
+
if output_attentions:
|
1268 |
+
# this operation is a bit awkward, but it's required to
|
1269 |
+
# make sure that attn_weights keeps its gradient.
|
1270 |
+
# In order to do so, attn_weights have to be reshaped
|
1271 |
+
# twice and have to be reused in the following
|
1272 |
+
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
1273 |
+
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
1274 |
+
else:
|
1275 |
+
attn_weights_reshaped = None
|
1276 |
+
|
1277 |
+
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
1278 |
+
|
1279 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
1280 |
+
|
1281 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
1282 |
+
raise ValueError(
|
1283 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
1284 |
+
f" {attn_output.size()}"
|
1285 |
+
)
|
1286 |
+
|
1287 |
+
if self.window_size is not None:
|
1288 |
+
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, src_len)
|
1289 |
+
relative_weights = self._absolute_position_to_relative_position(attn_probs)
|
1290 |
+
rel_pos_bias = torch.matmul(relative_weights, value_relative_embeddings)
|
1291 |
+
attn_output += rel_pos_bias
|
1292 |
+
|
1293 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
1294 |
+
attn_output = attn_output.transpose(1, 2)
|
1295 |
+
|
1296 |
+
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
1297 |
+
# partitioned aross GPUs when using tensor-parallelism.
|
1298 |
+
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
|
1299 |
+
|
1300 |
+
attn_output = self.out_proj(attn_output)
|
1301 |
+
|
1302 |
+
return attn_output, attn_weights_reshaped
|
1303 |
+
|
1304 |
+
def _get_relative_embeddings(self, relative_embeddings, length):
|
1305 |
+
pad_length = max(length - (self.window_size + 1), 0)
|
1306 |
+
if pad_length > 0:
|
1307 |
+
relative_embeddings = nn.functional.pad(relative_embeddings, [0, 0, pad_length, pad_length, 0, 0])
|
1308 |
+
|
1309 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
1310 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
1311 |
+
return relative_embeddings[:, slice_start_position:slice_end_position]
|
1312 |
+
|
1313 |
+
def _relative_position_to_absolute_position(self, x):
|
1314 |
+
batch_heads, length, _ = x.size()
|
1315 |
+
|
1316 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
1317 |
+
x = nn.functional.pad(x, [0, 1, 0, 0, 0, 0])
|
1318 |
+
|
1319 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
1320 |
+
x_flat = x.view([batch_heads, length * 2 * length])
|
1321 |
+
x_flat = nn.functional.pad(x_flat, [0, length - 1, 0, 0])
|
1322 |
+
|
1323 |
+
# Reshape and slice out the padded elements.
|
1324 |
+
x_final = x_flat.view([batch_heads, length + 1, 2 * length - 1])
|
1325 |
+
x_final = x_final[:, :length, length - 1 :]
|
1326 |
+
return x_final
|
1327 |
+
|
1328 |
+
def _absolute_position_to_relative_position(self, x):
|
1329 |
+
batch_heads, length, _ = x.size()
|
1330 |
+
|
1331 |
+
# Pad along column
|
1332 |
+
x = nn.functional.pad(x, [0, length - 1, 0, 0, 0, 0])
|
1333 |
+
x_flat = x.view([batch_heads, length * (2 * length - 1)])
|
1334 |
+
|
1335 |
+
# Add 0's in the beginning that will skew the elements after reshape
|
1336 |
+
x_flat = nn.functional.pad(x_flat, [length, 0, 0, 0])
|
1337 |
+
x_final = x_flat.view([batch_heads, length, 2 * length])[:, :, 1:]
|
1338 |
+
return x_final
|
1339 |
+
|
1340 |
+
|
1341 |
+
class VitsFeedForward(nn.Module):
|
1342 |
+
def __init__(self, config):
|
1343 |
+
super().__init__()
|
1344 |
+
self.conv_1 = nn.Conv1d(config.hidden_size, config.ffn_dim, config.ffn_kernel_size)
|
1345 |
+
self.conv_2 = nn.Conv1d(config.ffn_dim, config.hidden_size, config.ffn_kernel_size)
|
1346 |
+
self.dropout = nn.Dropout(config.activation_dropout)
|
1347 |
+
|
1348 |
+
if isinstance(config.hidden_act, str):
|
1349 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
1350 |
+
else:
|
1351 |
+
self.act_fn = config.hidden_act
|
1352 |
+
|
1353 |
+
if config.ffn_kernel_size > 1:
|
1354 |
+
pad_left = (config.ffn_kernel_size - 1) // 2
|
1355 |
+
pad_right = config.ffn_kernel_size // 2
|
1356 |
+
self.padding = [pad_left, pad_right, 0, 0, 0, 0]
|
1357 |
+
else:
|
1358 |
+
self.padding = None
|
1359 |
+
|
1360 |
+
def forward(self, hidden_states, padding_mask):
|
1361 |
+
hidden_states = hidden_states.permute(0, 2, 1)
|
1362 |
+
padding_mask = padding_mask.permute(0, 2, 1)
|
1363 |
+
|
1364 |
+
hidden_states = hidden_states * padding_mask
|
1365 |
+
if self.padding is not None:
|
1366 |
+
hidden_states = nn.functional.pad(hidden_states, self.padding)
|
1367 |
+
|
1368 |
+
hidden_states = self.conv_1(hidden_states)
|
1369 |
+
hidden_states = self.act_fn(hidden_states)
|
1370 |
+
hidden_states = self.dropout(hidden_states)
|
1371 |
+
|
1372 |
+
hidden_states = hidden_states * padding_mask
|
1373 |
+
if self.padding is not None:
|
1374 |
+
hidden_states = nn.functional.pad(hidden_states, self.padding)
|
1375 |
+
|
1376 |
+
hidden_states = self.conv_2(hidden_states)
|
1377 |
+
hidden_states = hidden_states * padding_mask
|
1378 |
+
|
1379 |
+
hidden_states = hidden_states.permute(0, 2, 1)
|
1380 |
+
return hidden_states
|
1381 |
+
|
1382 |
+
|
1383 |
+
class VitsEncoderLayer(nn.Module):
|
1384 |
+
def __init__(self, config: VitsConfig):
|
1385 |
+
super().__init__()
|
1386 |
+
self.attention = VitsAttention(config)
|
1387 |
+
self.dropout = nn.Dropout(config.hidden_dropout)
|
1388 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
1389 |
+
self.feed_forward = VitsFeedForward(config)
|
1390 |
+
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
1391 |
+
|
1392 |
+
def forward(
|
1393 |
+
self,
|
1394 |
+
hidden_states: torch.Tensor,
|
1395 |
+
padding_mask: torch.FloatTensor,
|
1396 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1397 |
+
output_attentions: bool = False,
|
1398 |
+
):
|
1399 |
+
residual = hidden_states
|
1400 |
+
hidden_states, attn_weights = self.attention(
|
1401 |
+
hidden_states=hidden_states,
|
1402 |
+
attention_mask=attention_mask,
|
1403 |
+
output_attentions=output_attentions,
|
1404 |
+
)
|
1405 |
+
|
1406 |
+
hidden_states = self.dropout(hidden_states)
|
1407 |
+
hidden_states = self.layer_norm(residual + hidden_states)
|
1408 |
+
|
1409 |
+
residual = hidden_states
|
1410 |
+
hidden_states = self.feed_forward(hidden_states, padding_mask)
|
1411 |
+
hidden_states = self.dropout(hidden_states)
|
1412 |
+
hidden_states = self.final_layer_norm(residual + hidden_states)
|
1413 |
+
|
1414 |
+
outputs = (hidden_states,)
|
1415 |
+
|
1416 |
+
if output_attentions:
|
1417 |
+
outputs += (attn_weights,)
|
1418 |
+
|
1419 |
+
return outputs
|
1420 |
+
|
1421 |
+
|
1422 |
+
class VitsEncoder(nn.Module):
|
1423 |
+
def __init__(self, config: VitsConfig):
|
1424 |
+
super().__init__()
|
1425 |
+
self.config = config
|
1426 |
+
self.layers = nn.ModuleList([VitsEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
1427 |
+
self.gradient_checkpointing = False
|
1428 |
+
self.layerdrop = config.layerdrop
|
1429 |
+
|
1430 |
+
def forward(
|
1431 |
+
self,
|
1432 |
+
hidden_states: torch.FloatTensor,
|
1433 |
+
padding_mask: torch.FloatTensor,
|
1434 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1435 |
+
output_attentions: Optional[bool] = None,
|
1436 |
+
output_hidden_states: Optional[bool] = None,
|
1437 |
+
return_dict: Optional[bool] = None,
|
1438 |
+
) -> Union[Tuple, BaseModelOutput]:
|
1439 |
+
all_hidden_states = () if output_hidden_states else None
|
1440 |
+
all_self_attentions = () if output_attentions else None
|
1441 |
+
|
1442 |
+
# expand attention_mask
|
1443 |
+
if attention_mask is not None:
|
1444 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1445 |
+
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
|
1446 |
+
|
1447 |
+
hidden_states = hidden_states * padding_mask
|
1448 |
+
|
1449 |
+
synced_gpus = is_deepspeed_zero3_enabled() or is_fsdp_managed_module(self)
|
1450 |
+
|
1451 |
+
for encoder_layer in self.layers:
|
1452 |
+
if output_hidden_states:
|
1453 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1454 |
+
|
1455 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
1456 |
+
dropout_probability = np.random.uniform(0, 1)
|
1457 |
+
|
1458 |
+
skip_the_layer = self.training and (dropout_probability < self.layerdrop)
|
1459 |
+
if not skip_the_layer or synced_gpus:
|
1460 |
+
# under fsdp or deepspeed zero3 all gpus must run in sync
|
1461 |
+
if self.gradient_checkpointing and self.training:
|
1462 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1463 |
+
encoder_layer.__call__,
|
1464 |
+
hidden_states,
|
1465 |
+
padding_mask,
|
1466 |
+
attention_mask,
|
1467 |
+
output_attentions,
|
1468 |
+
)
|
1469 |
+
else:
|
1470 |
+
layer_outputs = encoder_layer(
|
1471 |
+
hidden_states,
|
1472 |
+
attention_mask=attention_mask,
|
1473 |
+
padding_mask=padding_mask,
|
1474 |
+
output_attentions=output_attentions,
|
1475 |
+
)
|
1476 |
+
hidden_states = layer_outputs[0]
|
1477 |
+
|
1478 |
+
if skip_the_layer:
|
1479 |
+
layer_outputs = (None, None)
|
1480 |
+
|
1481 |
+
if output_attentions:
|
1482 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
1483 |
+
|
1484 |
+
hidden_states = hidden_states * padding_mask
|
1485 |
+
|
1486 |
+
if output_hidden_states:
|
1487 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1488 |
+
|
1489 |
+
if not return_dict:
|
1490 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
1491 |
+
|
1492 |
+
return BaseModelOutput(
|
1493 |
+
last_hidden_state=hidden_states,
|
1494 |
+
hidden_states=all_hidden_states,
|
1495 |
+
attentions=all_self_attentions,
|
1496 |
+
)
|
1497 |
+
|
1498 |
+
|
1499 |
+
class VitsTextEncoder(nn.Module):
|
1500 |
+
"""
|
1501 |
+
Transformer encoder that uses relative positional representation instead of absolute positional encoding.
|
1502 |
+
"""
|
1503 |
+
|
1504 |
+
def __init__(self, config: VitsConfig):
|
1505 |
+
super().__init__()
|
1506 |
+
self.config = config
|
1507 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
|
1508 |
+
self.encoder = VitsEncoder(config)
|
1509 |
+
self.project = nn.Conv1d(config.hidden_size, config.flow_size * 2, kernel_size=1)
|
1510 |
+
|
1511 |
+
def get_input_embeddings(self):
|
1512 |
+
return self.embed_tokens
|
1513 |
+
|
1514 |
+
def set_input_embeddings(self, value):
|
1515 |
+
self.embed_tokens = value
|
1516 |
+
|
1517 |
+
def forward(
|
1518 |
+
self,
|
1519 |
+
input_ids: torch.Tensor,
|
1520 |
+
padding_mask: torch.FloatTensor,
|
1521 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1522 |
+
output_attentions: Optional[bool] = None,
|
1523 |
+
output_hidden_states: Optional[bool] = None,
|
1524 |
+
return_dict: Optional[bool] = True,
|
1525 |
+
) -> Union[Tuple[torch.Tensor], VitsTextEncoderOutput]:
|
1526 |
+
hidden_states = self.embed_tokens(input_ids) * math.sqrt(self.config.hidden_size)
|
1527 |
+
|
1528 |
+
encoder_outputs = self.encoder(
|
1529 |
+
hidden_states=hidden_states,
|
1530 |
+
padding_mask=padding_mask,
|
1531 |
+
attention_mask=attention_mask,
|
1532 |
+
output_attentions=output_attentions,
|
1533 |
+
output_hidden_states=output_hidden_states,
|
1534 |
+
return_dict=return_dict,
|
1535 |
+
)
|
1536 |
+
|
1537 |
+
last_hidden_state = encoder_outputs[0] if not return_dict else encoder_outputs.last_hidden_state
|
1538 |
+
|
1539 |
+
stats = self.project(last_hidden_state.transpose(1, 2)).transpose(1, 2) * padding_mask
|
1540 |
+
prior_means, prior_log_variances = torch.split(stats, self.config.flow_size, dim=2)
|
1541 |
+
|
1542 |
+
if not return_dict:
|
1543 |
+
outputs = (last_hidden_state, prior_means, prior_log_variances) + encoder_outputs[1:]
|
1544 |
+
return outputs
|
1545 |
+
|
1546 |
+
return VitsTextEncoderOutput(
|
1547 |
+
last_hidden_state=last_hidden_state,
|
1548 |
+
prior_means=prior_means,
|
1549 |
+
prior_log_variances=prior_log_variances,
|
1550 |
+
hidden_states=encoder_outputs.hidden_states,
|
1551 |
+
attentions=encoder_outputs.attentions,
|
1552 |
+
)
|
1553 |
+
|
1554 |
+
|
1555 |
+
class VitsPreTrainedModel(PreTrainedModel):
|
1556 |
+
"""
|
1557 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
1558 |
+
models.
|
1559 |
+
"""
|
1560 |
+
|
1561 |
+
config_class = VitsConfig
|
1562 |
+
base_model_prefix = "vits"
|
1563 |
+
main_input_name = "input_ids"
|
1564 |
+
supports_gradient_checkpointing = True
|
1565 |
+
|
1566 |
+
def _init_weights(self, module):
|
1567 |
+
"""Initialize the weights"""
|
1568 |
+
if isinstance(module, nn.Linear):
|
1569 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
1570 |
+
if module.bias is not None:
|
1571 |
+
module.bias.data.zero_()
|
1572 |
+
elif isinstance(module, nn.LayerNorm):
|
1573 |
+
module.bias.data.zero_()
|
1574 |
+
module.weight.data.fill_(1.0)
|
1575 |
+
elif isinstance(module, nn.Conv1d):
|
1576 |
+
nn.init.kaiming_normal_(module.weight)
|
1577 |
+
if module.bias is not None:
|
1578 |
+
k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
|
1579 |
+
nn.init.uniform_(module.bias, a=-k, b=k)
|
1580 |
+
elif isinstance(module, nn.Embedding):
|
1581 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
1582 |
+
if module.padding_idx is not None:
|
1583 |
+
module.weight.data[module.padding_idx].zero_()
|
1584 |
+
|
1585 |
+
|
1586 |
+
VITS_START_DOCSTRING = r"""
|
1587 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
1588 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
1589 |
+
etc.)
|
1590 |
+
|
1591 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
1592 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
1593 |
+
and behavior.
|
1594 |
+
|
1595 |
+
Parameters:
|
1596 |
+
config ([`VitsConfig`]):
|
1597 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
1598 |
+
load the weights associated with the model, only the configuration. Check out the
|
1599 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
1600 |
+
"""
|
1601 |
+
|
1602 |
+
|
1603 |
+
VITS_INPUTS_DOCSTRING = r"""
|
1604 |
+
Args:
|
1605 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1606 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
1607 |
+
it.
|
1608 |
+
|
1609 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1610 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1611 |
+
|
1612 |
+
[What are input IDs?](../glossary#input-ids)
|
1613 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1614 |
+
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0,
|
1615 |
+
1]`:
|
1616 |
+
|
1617 |
+
- 1 for tokens that are **not masked**,
|
1618 |
+
- 0 for tokens that are **masked**.
|
1619 |
+
|
1620 |
+
[What are attention masks?](../glossary#attention-mask)
|
1621 |
+
speaker_id (`int`, *optional*):
|
1622 |
+
Which speaker embedding to use. Only used for multispeaker models.
|
1623 |
+
output_attentions (`bool`, *optional*):
|
1624 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1625 |
+
tensors for more detail.
|
1626 |
+
output_hidden_states (`bool`, *optional*):
|
1627 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1628 |
+
more detail.
|
1629 |
+
return_dict (`bool`, *optional*):
|
1630 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1631 |
+
"""
|
1632 |
+
|
1633 |
+
|
1634 |
+
@add_start_docstrings(
|
1635 |
+
"The complete VITS model, for text-to-speech synthesis.",
|
1636 |
+
VITS_START_DOCSTRING,
|
1637 |
+
)
|
1638 |
+
class VitsModel(VitsPreTrainedModel):
|
1639 |
+
def __init__(self, config: VitsConfig):
|
1640 |
+
super().__init__(config)
|
1641 |
+
self.config = config
|
1642 |
+
self.text_encoder = VitsTextEncoder(config)
|
1643 |
+
self.flow = VitsResidualCouplingBlock(config)
|
1644 |
+
|
1645 |
+
if config.istft_decoder in ["istft", "mb_istft", "ms_istft"]:
|
1646 |
+
self.decoder = VitsISTFT(config)
|
1647 |
+
else:
|
1648 |
+
self.decoder = VitsHifiGan(config)
|
1649 |
+
|
1650 |
+
if config.use_stochastic_duration_prediction:
|
1651 |
+
self.duration_predictor = VitsStochasticDurationPredictor(config)
|
1652 |
+
else:
|
1653 |
+
self.duration_predictor = VitsDurationPredictor(config)
|
1654 |
+
|
1655 |
+
if config.num_speakers > 1:
|
1656 |
+
self.embed_speaker = nn.Embedding(config.num_speakers, config.speaker_embedding_size)
|
1657 |
+
|
1658 |
+
# This is used only for training.
|
1659 |
+
self.posterior_encoder = VitsPosteriorEncoder(config)
|
1660 |
+
|
1661 |
+
# These parameters control the synthesised speech properties
|
1662 |
+
self.speaking_rate = config.speaking_rate
|
1663 |
+
self.noise_scale = config.noise_scale
|
1664 |
+
self.noise_scale_duration = config.noise_scale_duration
|
1665 |
+
|
1666 |
+
# Initialize weights and apply final processing
|
1667 |
+
self.post_init()
|
1668 |
+
|
1669 |
+
def get_encoder(self):
|
1670 |
+
return self.text_encoder
|
1671 |
+
|
1672 |
+
@add_start_docstrings_to_model_forward(VITS_INPUTS_DOCSTRING)
|
1673 |
+
@replace_return_docstrings(output_type=VitsModelOutput, config_class=_CONFIG_FOR_DOC)
|
1674 |
+
def forward(
|
1675 |
+
self,
|
1676 |
+
input_ids: Optional[torch.Tensor] = None,
|
1677 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1678 |
+
speaker_id: Optional[int] = None,
|
1679 |
+
output_attentions: Optional[bool] = None,
|
1680 |
+
output_hidden_states: Optional[bool] = None,
|
1681 |
+
return_dict: Optional[bool] = None,
|
1682 |
+
labels: Optional[torch.FloatTensor] = None,
|
1683 |
+
) -> Union[Tuple[Any], VitsModelOutput]:
|
1684 |
+
r"""
|
1685 |
+
labels (`torch.FloatTensor` of shape `(batch_size, config.spectrogram_bins, sequence_length)`, *optional*):
|
1686 |
+
Float values of target spectrogram. Timesteps set to `-100.0` are ignored (masked) for the loss
|
1687 |
+
computation.
|
1688 |
+
|
1689 |
+
Returns:
|
1690 |
+
|
1691 |
+
Example:
|
1692 |
+
|
1693 |
+
```python
|
1694 |
+
>>> from transformers import VitsTokenizer, VitsModel, set_seed
|
1695 |
+
>>> import torch
|
1696 |
+
|
1697 |
+
>>> tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-eng")
|
1698 |
+
>>> model = VitsModel.from_pretrained("facebook/mms-tts-eng")
|
1699 |
+
|
1700 |
+
>>> inputs = tokenizer(text="Hello - my dog is cute", return_tensors="pt")
|
1701 |
+
|
1702 |
+
>>> set_seed(555) # make deterministic
|
1703 |
+
|
1704 |
+
>>> with torch.no_grad():
|
1705 |
+
... outputs = model(inputs["input_ids"])
|
1706 |
+
>>> outputs.waveform.shape
|
1707 |
+
torch.Size([1, 45824])
|
1708 |
+
```
|
1709 |
+
"""
|
1710 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1711 |
+
output_hidden_states = (
|
1712 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1713 |
+
)
|
1714 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1715 |
+
|
1716 |
+
if labels is not None:
|
1717 |
+
raise NotImplementedError("Training of VITS is not supported yet.")
|
1718 |
+
|
1719 |
+
if attention_mask is not None:
|
1720 |
+
input_padding_mask = attention_mask.unsqueeze(-1).float()
|
1721 |
+
else:
|
1722 |
+
input_padding_mask = torch.ones_like(input_ids).unsqueeze(-1).float()
|
1723 |
+
|
1724 |
+
if self.config.num_speakers > 1 and speaker_id is not None:
|
1725 |
+
if not 0 <= speaker_id < self.config.num_speakers:
|
1726 |
+
raise ValueError(f"Set `speaker_id` in the range 0-{self.config.num_speakers - 1}.")
|
1727 |
+
if isinstance(speaker_id, int):
|
1728 |
+
speaker_id = torch.full(size=(1,), fill_value=speaker_id, device=self.device)
|
1729 |
+
speaker_embeddings = self.embed_speaker(speaker_id).unsqueeze(-1)
|
1730 |
+
else:
|
1731 |
+
speaker_embeddings = None
|
1732 |
+
|
1733 |
+
text_encoder_output = self.text_encoder(
|
1734 |
+
input_ids=input_ids,
|
1735 |
+
padding_mask=input_padding_mask,
|
1736 |
+
attention_mask=attention_mask,
|
1737 |
+
output_attentions=output_attentions,
|
1738 |
+
output_hidden_states=output_hidden_states,
|
1739 |
+
return_dict=return_dict,
|
1740 |
+
)
|
1741 |
+
hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state
|
1742 |
+
hidden_states = hidden_states.transpose(1, 2)
|
1743 |
+
input_padding_mask = input_padding_mask.transpose(1, 2)
|
1744 |
+
prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means
|
1745 |
+
prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances
|
1746 |
+
|
1747 |
+
if self.config.use_stochastic_duration_prediction:
|
1748 |
+
log_duration = self.duration_predictor(
|
1749 |
+
hidden_states,
|
1750 |
+
input_padding_mask,
|
1751 |
+
speaker_embeddings,
|
1752 |
+
reverse=True,
|
1753 |
+
noise_scale=self.noise_scale_duration,
|
1754 |
+
)
|
1755 |
+
else:
|
1756 |
+
log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings)
|
1757 |
+
|
1758 |
+
length_scale = 1.0 / self.speaking_rate
|
1759 |
+
duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale)
|
1760 |
+
predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long()
|
1761 |
+
|
1762 |
+
# Create a padding mask for the output lengths of shape (batch, 1, max_output_length)
|
1763 |
+
indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device)
|
1764 |
+
output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1)
|
1765 |
+
output_padding_mask = output_padding_mask.unsqueeze(1).to(input_padding_mask.dtype)
|
1766 |
+
|
1767 |
+
# Reconstruct an attention tensor of shape (batch, 1, out_length, in_length)
|
1768 |
+
attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(output_padding_mask, -1)
|
1769 |
+
batch_size, _, output_length, input_length = attn_mask.shape
|
1770 |
+
cum_duration = torch.cumsum(duration, -1).view(batch_size * input_length, 1)
|
1771 |
+
indices = torch.arange(output_length, dtype=duration.dtype, device=duration.device)
|
1772 |
+
valid_indices = indices.unsqueeze(0) < cum_duration
|
1773 |
+
valid_indices = valid_indices.to(attn_mask.dtype).view(batch_size, input_length, output_length)
|
1774 |
+
padded_indices = valid_indices - nn.functional.pad(valid_indices, [0, 0, 1, 0, 0, 0])[:, :-1]
|
1775 |
+
attn = padded_indices.unsqueeze(1).transpose(2, 3) * attn_mask
|
1776 |
+
|
1777 |
+
# Expand prior distribution
|
1778 |
+
prior_means = torch.matmul(attn.squeeze(1), prior_means).transpose(1, 2)
|
1779 |
+
prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances).transpose(1, 2)
|
1780 |
+
|
1781 |
+
prior_latents = prior_means + torch.randn_like(prior_means) * torch.exp(prior_log_variances) * self.noise_scale
|
1782 |
+
latents = self.flow(prior_latents, output_padding_mask, speaker_embeddings, reverse=True)
|
1783 |
+
|
1784 |
+
spectrogram = latents * output_padding_mask
|
1785 |
+
waveform = self.decoder(spectrogram, speaker_embeddings)
|
1786 |
+
waveform = waveform.squeeze(1)
|
1787 |
+
sequence_lengths = predicted_lengths * np.prod(self.config.upsample_rates)
|
1788 |
+
|
1789 |
+
if not return_dict:
|
1790 |
+
outputs = (waveform, sequence_lengths, spectrogram) + text_encoder_output[3:]
|
1791 |
+
return outputs
|
1792 |
+
|
1793 |
+
return VitsModelOutput(
|
1794 |
+
waveform=waveform,
|
1795 |
+
sequence_lengths=sequence_lengths,
|
1796 |
+
spectrogram=spectrogram,
|
1797 |
+
hidden_states=text_encoder_output.hidden_states,
|
1798 |
+
attentions=text_encoder_output.attentions,
|
1799 |
+
)
|