File size: 79,815 Bytes
7fcc9c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 |
# coding=utf-8
# Copyright 2023 The Kakao Enterprise Authors and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch VITS model."""
import math
from dataclasses import dataclass
from typing import Any, Optional, Tuple, Union
import numpy as np
import torch
import torch.utils.checkpoint
from scipy.signal import get_window, kaiser
from torch import nn
from transformers.activations import ACT2FN
from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled
from transformers.integrations.fsdp import is_fsdp_managed_module
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
from transformers.modeling_outputs import (
BaseModelOutput,
ModelOutput,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_vits import VitsConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "VitsConfig"
@dataclass
class VitsModelOutput(ModelOutput):
"""
Describes the outputs for the VITS model, with potential hidden states and attentions.
Args:
waveform (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
The final audio waveform predicted by the model.
sequence_lengths (`torch.FloatTensor` of shape `(batch_size,)`):
The length in samples of each element in the `waveform` batch.
spectrogram (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_bins)`):
The log-mel spectrogram predicted at the output of the flow model. This spectrogram is passed to the Hi-Fi
GAN decoder model to obtain the final audio waveform.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attention weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
waveform: torch.FloatTensor = None
sequence_lengths: torch.FloatTensor = None
spectrogram: Optional[Tuple[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class VitsTextEncoderOutput(ModelOutput):
"""
Describes the outputs for the VITS text encoder model, with potential hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
prior_means (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
The predicted mean values of the prior distribution for the latent text variables.
prior_log_variances (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
The predicted log-variance values of the prior distribution for the latent text variables.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attention weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
last_hidden_state: torch.FloatTensor = None
prior_means: torch.FloatTensor = None
prior_log_variances: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@torch.jit.script
def fused_add_tanh_sigmoid_multiply(input_a, input_b, num_channels):
in_act = input_a + input_b
t_act = torch.tanh(in_act[:, :num_channels, :])
s_act = torch.sigmoid(in_act[:, num_channels:, :])
acts = t_act * s_act
return acts
def _unconstrained_rational_quadratic_spline(
inputs,
unnormalized_widths,
unnormalized_heights,
unnormalized_derivatives,
reverse=False,
tail_bound=5.0,
min_bin_width=1e-3,
min_bin_height=1e-3,
min_derivative=1e-3,
):
"""
This transformation represents a monotonically increasing piecewise rational quadratic function. Outside of the
`tail_bound`, the transform behaves as an identity function.
Args:
inputs (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`:
Second half of the hidden-states input to the Vits convolutional flow module.
unnormalized_widths (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`):
First `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection
layer in the convolutional flow module
unnormalized_heights (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`):
Second `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection
layer in the convolutional flow module
unnormalized_derivatives (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`):
Third `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection
layer in the convolutional flow module
reverse (`bool`, *optional*, defaults to `False`):
Whether the model is being run in reverse mode.
tail_bound (`float`, *optional* defaults to 5):
Upper and lower limit bound for the rational quadratic function. Outside of this `tail_bound`, the
transform behaves as an identity function.
min_bin_width (`float`, *optional*, defaults to 1e-3):
Minimum bin value across the width dimension for the piecewise rational quadratic function.
min_bin_height (`float`, *optional*, defaults to 1e-3):
Minimum bin value across the height dimension for the piecewise rational quadratic function.
min_derivative (`float`, *optional*, defaults to 1e-3):
Minimum bin value across the derivatives for the piecewise rational quadratic function.
Returns:
outputs (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`:
Hidden-states as transformed by the piecewise rational quadratic function with the `tail_bound` limits
applied.
log_abs_det (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`:
Logarithm of the absolute value of the determinants corresponding to the `outputs` with the `tail_bound`
limits applied.
"""
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
outside_interval_mask = ~inside_interval_mask
outputs = torch.zeros_like(inputs)
log_abs_det = torch.zeros_like(inputs)
constant = np.log(np.exp(1 - min_derivative) - 1)
unnormalized_derivatives = nn.functional.pad(unnormalized_derivatives, pad=(1, 1))
unnormalized_derivatives[..., 0] = constant
unnormalized_derivatives[..., -1] = constant
outputs[outside_interval_mask] = inputs[outside_interval_mask]
log_abs_det[outside_interval_mask] = 0.0
outputs[inside_interval_mask], log_abs_det[inside_interval_mask] = _rational_quadratic_spline(
inputs=inputs[inside_interval_mask],
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
reverse=reverse,
tail_bound=tail_bound,
min_bin_width=min_bin_width,
min_bin_height=min_bin_height,
min_derivative=min_derivative,
)
return outputs, log_abs_det
def _rational_quadratic_spline(
inputs,
unnormalized_widths,
unnormalized_heights,
unnormalized_derivatives,
reverse,
tail_bound,
min_bin_width,
min_bin_height,
min_derivative,
):
"""
This transformation represents a monotonically increasing piecewise rational quadratic function. Unlike the
function `_unconstrained_rational_quadratic_spline`, the function behaves the same across the `tail_bound`.
Args:
inputs (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`:
Second half of the hidden-states input to the Vits convolutional flow module.
unnormalized_widths (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`):
First `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection
layer in the convolutional flow module
unnormalized_heights (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`):
Second `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection
layer in the convolutional flow module
unnormalized_derivatives (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`):
Third `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection
layer in the convolutional flow module
reverse (`bool`):
Whether the model is being run in reverse mode.
tail_bound (`float`):
Upper and lower limit bound for the rational quadratic function. Outside of this `tail_bound`, the
transform behaves as an identity function.
min_bin_width (`float`):
Minimum bin value across the width dimension for the piecewise rational quadratic function.
min_bin_height (`float`):
Minimum bin value across the height dimension for the piecewise rational quadratic function.
min_derivative (`float`):
Minimum bin value across the derivatives for the piecewise rational quadratic function.
Returns:
outputs (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`:
Hidden-states as transformed by the piecewise rational quadratic function.
log_abs_det (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`:
Logarithm of the absolute value of the determinants corresponding to the `outputs`.
"""
upper_bound = tail_bound
lower_bound = -tail_bound
if torch.min(inputs) < lower_bound or torch.max(inputs) > upper_bound:
raise ValueError("Input to a transform is not within its domain")
num_bins = unnormalized_widths.shape[-1]
if min_bin_width * num_bins > 1.0:
raise ValueError(f"Minimal bin width {min_bin_width} too large for the number of bins {num_bins}")
if min_bin_height * num_bins > 1.0:
raise ValueError(f"Minimal bin height {min_bin_height} too large for the number of bins {num_bins}")
widths = nn.functional.softmax(unnormalized_widths, dim=-1)
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
cumwidths = torch.cumsum(widths, dim=-1)
cumwidths = nn.functional.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
cumwidths = (upper_bound - lower_bound) * cumwidths + lower_bound
cumwidths[..., 0] = lower_bound
cumwidths[..., -1] = upper_bound
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
derivatives = min_derivative + nn.functional.softplus(unnormalized_derivatives)
heights = nn.functional.softmax(unnormalized_heights, dim=-1)
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
cumheights = torch.cumsum(heights, dim=-1)
cumheights = nn.functional.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
cumheights = (upper_bound - lower_bound) * cumheights + lower_bound
cumheights[..., 0] = lower_bound
cumheights[..., -1] = upper_bound
heights = cumheights[..., 1:] - cumheights[..., :-1]
bin_locations = cumheights if reverse else cumwidths
bin_locations[..., -1] += 1e-6
bin_idx = torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
bin_idx = bin_idx[..., None]
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
delta = heights / widths
input_delta = delta.gather(-1, bin_idx)[..., 0]
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
input_heights = heights.gather(-1, bin_idx)[..., 0]
intermediate1 = input_derivatives + input_derivatives_plus_one - 2 * input_delta
if not reverse:
theta = (inputs - input_cumwidths) / input_bin_widths
theta_one_minus_theta = theta * (1 - theta)
numerator = input_heights * (input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta)
denominator = input_delta + intermediate1 * theta_one_minus_theta
outputs = input_cumheights + numerator / denominator
derivative_numerator = input_delta.pow(2) * (
input_derivatives_plus_one * theta.pow(2)
+ 2 * input_delta * theta_one_minus_theta
+ input_derivatives * (1 - theta).pow(2)
)
log_abs_det = torch.log(derivative_numerator) - 2 * torch.log(denominator)
return outputs, log_abs_det
else:
# find the roots of a quadratic equation
intermediate2 = inputs - input_cumheights
intermediate3 = intermediate2 * intermediate1
a = input_heights * (input_delta - input_derivatives) + intermediate3
b = input_heights * input_derivatives - intermediate3
c = -input_delta * intermediate2
discriminant = b.pow(2) - 4 * a * c
if not (discriminant >= 0).all():
raise RuntimeError(f"invalid discriminant {discriminant}")
root = (2 * c) / (-b - torch.sqrt(discriminant))
outputs = root * input_bin_widths + input_cumwidths
theta_one_minus_theta = root * (1 - root)
denominator = input_delta + intermediate1 * theta_one_minus_theta
derivative_numerator = input_delta.pow(2) * (
input_derivatives_plus_one * root.pow(2)
+ 2 * input_delta * theta_one_minus_theta
+ input_derivatives * (1 - root).pow(2)
)
log_abs_det = torch.log(derivative_numerator) - 2 * torch.log(denominator)
return outputs, -log_abs_det
class VitsWaveNet(torch.nn.Module):
def __init__(self, config: VitsConfig, num_layers: int):
super().__init__()
self.hidden_size = config.hidden_size
self.num_layers = num_layers
self.in_layers = torch.nn.ModuleList()
self.res_skip_layers = torch.nn.ModuleList()
self.dropout = nn.Dropout(config.wavenet_dropout)
if hasattr(nn.utils.parametrizations, "weight_norm"):
weight_norm = nn.utils.parametrizations.weight_norm
else:
weight_norm = nn.utils.weight_norm
if config.speaker_embedding_size != 0:
cond_layer = torch.nn.Conv1d(config.speaker_embedding_size, 2 * config.hidden_size * num_layers, 1)
self.cond_layer = weight_norm(cond_layer, name="weight")
for i in range(num_layers):
dilation = config.wavenet_dilation_rate**i
padding = (config.wavenet_kernel_size * dilation - dilation) // 2
in_layer = torch.nn.Conv1d(
in_channels=config.hidden_size,
out_channels=2 * config.hidden_size,
kernel_size=config.wavenet_kernel_size,
dilation=dilation,
padding=padding,
)
in_layer = weight_norm(in_layer, name="weight")
self.in_layers.append(in_layer)
# last one is not necessary
if i < num_layers - 1:
res_skip_channels = 2 * config.hidden_size
else:
res_skip_channels = config.hidden_size
res_skip_layer = torch.nn.Conv1d(config.hidden_size, res_skip_channels, 1)
res_skip_layer = weight_norm(res_skip_layer, name="weight")
self.res_skip_layers.append(res_skip_layer)
def forward(self, inputs, padding_mask, global_conditioning=None):
outputs = torch.zeros_like(inputs)
num_channels_tensor = torch.IntTensor([self.hidden_size])
if global_conditioning is not None:
global_conditioning = self.cond_layer(global_conditioning)
for i in range(self.num_layers):
hidden_states = self.in_layers[i](inputs)
if global_conditioning is not None:
cond_offset = i * 2 * self.hidden_size
global_states = global_conditioning[:, cond_offset : cond_offset + 2 * self.hidden_size, :]
else:
global_states = torch.zeros_like(hidden_states)
acts = fused_add_tanh_sigmoid_multiply(hidden_states, global_states, num_channels_tensor[0])
acts = self.dropout(acts)
res_skip_acts = self.res_skip_layers[i](acts)
if i < self.num_layers - 1:
res_acts = res_skip_acts[:, : self.hidden_size, :]
inputs = (inputs + res_acts) * padding_mask
outputs = outputs + res_skip_acts[:, self.hidden_size :, :]
else:
outputs = outputs + res_skip_acts
return outputs * padding_mask
def remove_weight_norm(self):
if self.speaker_embedding_size != 0:
torch.nn.utils.remove_weight_norm(self.cond_layer)
for layer in self.in_layers:
torch.nn.utils.remove_weight_norm(layer)
for layer in self.res_skip_layers:
torch.nn.utils.remove_weight_norm(layer)
class VitsPosteriorEncoder(nn.Module):
def __init__(self, config: VitsConfig):
super().__init__()
self.out_channels = config.flow_size
self.conv_pre = nn.Conv1d(config.spectrogram_bins, config.hidden_size, 1)
self.wavenet = VitsWaveNet(config, num_layers=config.posterior_encoder_num_wavenet_layers)
self.conv_proj = nn.Conv1d(config.hidden_size, self.out_channels * 2, 1)
def forward(self, inputs, padding_mask, global_conditioning=None):
inputs = self.conv_pre(inputs) * padding_mask
inputs = self.wavenet(inputs, padding_mask, global_conditioning)
stats = self.conv_proj(inputs) * padding_mask
mean, log_stddev = torch.split(stats, self.out_channels, dim=1)
sampled = (mean + torch.randn_like(mean) * torch.exp(log_stddev)) * padding_mask
return sampled, mean, log_stddev
# Copied from transformers.models.speecht5.modeling_speecht5.HifiGanResidualBlock
class HifiGanResidualBlock(nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), leaky_relu_slope=0.1):
super().__init__()
self.leaky_relu_slope = leaky_relu_slope
self.convs1 = nn.ModuleList(
[
nn.Conv1d(
channels,
channels,
kernel_size,
stride=1,
dilation=dilation[i],
padding=self.get_padding(kernel_size, dilation[i]),
)
for i in range(len(dilation))
]
)
self.convs2 = nn.ModuleList(
[
nn.Conv1d(
channels,
channels,
kernel_size,
stride=1,
dilation=1,
padding=self.get_padding(kernel_size, 1),
)
for _ in range(len(dilation))
]
)
def get_padding(self, kernel_size, dilation=1):
return (kernel_size * dilation - dilation) // 2
def apply_weight_norm(self):
weight_norm = nn.utils.weight_norm
if hasattr(nn.utils.parametrizations, "weight_norm"):
weight_norm = nn.utils.parametrizations.weight_norm
for layer in self.convs1:
weight_norm(layer)
for layer in self.convs2:
weight_norm(layer)
def remove_weight_norm(self):
for layer in self.convs1:
nn.utils.remove_weight_norm(layer)
for layer in self.convs2:
nn.utils.remove_weight_norm(layer)
def forward(self, hidden_states):
for conv1, conv2 in zip(self.convs1, self.convs2):
residual = hidden_states
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
hidden_states = conv1(hidden_states)
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
hidden_states = conv2(hidden_states)
hidden_states = hidden_states + residual
return hidden_states
class VitsHifiGan(nn.Module):
def __init__(self, config: VitsConfig):
super().__init__()
self.config = config
self.num_kernels = len(config.resblock_kernel_sizes)
self.num_upsamples = len(config.upsample_rates)
self.conv_pre = nn.Conv1d(
config.flow_size,
config.upsample_initial_channel,
kernel_size=7,
stride=1,
padding=3,
)
self.upsampler = nn.ModuleList()
for i, (upsample_rate, kernel_size) in enumerate(zip(config.upsample_rates, config.upsample_kernel_sizes)):
self.upsampler.append(
nn.ConvTranspose1d(
config.upsample_initial_channel // (2**i),
config.upsample_initial_channel // (2 ** (i + 1)),
kernel_size=kernel_size,
stride=upsample_rate,
padding=(kernel_size - upsample_rate) // 2,
)
)
self.resblocks = nn.ModuleList()
for i in range(len(self.upsampler)):
channels = config.upsample_initial_channel // (2 ** (i + 1))
for kernel_size, dilation in zip(config.resblock_kernel_sizes, config.resblock_dilation_sizes):
self.resblocks.append(HifiGanResidualBlock(channels, kernel_size, dilation, config.leaky_relu_slope))
self.conv_post = nn.Conv1d(channels, 1, kernel_size=7, stride=1, padding=3, bias=False)
if config.speaker_embedding_size != 0:
self.cond = nn.Conv1d(config.speaker_embedding_size, config.upsample_initial_channel, 1)
def apply_weight_norm(self):
weight_norm = nn.utils.weight_norm
if hasattr(nn.utils.parametrizations, "weight_norm"):
weight_norm = nn.utils.parametrizations.weight_norm
for layer in self.upsampler:
weight_norm(layer)
for layer in self.resblocks:
layer.apply_weight_norm()
def remove_weight_norm(self):
for layer in self.upsampler:
nn.utils.remove_weight_norm(layer)
for layer in self.resblocks:
layer.remove_weight_norm()
def forward(
self, spectrogram: torch.FloatTensor, global_conditioning: Optional[torch.FloatTensor] = None
) -> torch.FloatTensor:
r"""
Converts a spectrogram into a speech waveform.
Args:
spectrogram (`torch.FloatTensor` of shape `(batch_size, config.spectrogram_bins, sequence_length)`):
Tensor containing the spectrograms.
global_conditioning (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_size, 1)`, *optional*):
Tensor containing speaker embeddings, for multispeaker models.
Returns:
`torch.FloatTensor`: Tensor of shape shape `(batch_size, 1, num_frames)` containing the speech waveform.
"""
hidden_states = self.conv_pre(spectrogram)
if global_conditioning is not None:
hidden_states = hidden_states + self.cond(global_conditioning)
for i in range(self.num_upsamples):
hidden_states = nn.functional.leaky_relu(hidden_states, self.config.leaky_relu_slope)
hidden_states = self.upsampler[i](hidden_states)
res_state = self.resblocks[i * self.num_kernels](hidden_states)
for j in range(1, self.num_kernels):
res_state += self.resblocks[i * self.num_kernels + j](hidden_states)
hidden_states = res_state / self.num_kernels
hidden_states = nn.functional.leaky_relu(hidden_states)
hidden_states = self.conv_post(hidden_states)
waveform = torch.tanh(hidden_states)
return waveform
class VitsISTFT(nn.Module):
def __init__(self, config: VitsConfig):
super().__init__()
self.config = config
self.gen_istft_n_fft = config.gen_istft_n_fft
self.gen_istft_hop_size = config.gen_istft_hop_size
self.post_n_fft = config.gen_istft_n_fft
if config.istft_decoder in ["ms_istft", "mb_istft"]:
self.subbands = config.subbands
if config.istft_decoder == "mb_istft":
self.pqmf = PQMF(subbands=self.subbands)
else:
updown_filter = torch.zeros((self.subbands, self.subbands, self.subbands)).float()
for k in range(self.subbands):
updown_filter[k, k, 0] = 1.0
self.register_buffer("updown_filter", updown_filter)
self.multistream_conv_post = nn.Conv1d(
4, 1, kernel_size=63, bias=False, padding=self.get_padding(63, 1)
)
self.num_kernels = len(config.resblock_kernel_sizes)
self.num_upsamples = len(config.upsample_rates)
self.conv_pre = nn.Conv1d(
config.flow_size,
config.upsample_initial_channel,
kernel_size=7,
stride=1,
padding=3,
)
self.upsampler = nn.ModuleList()
for i, (upsample_rate, kernel_size) in enumerate(zip(config.upsample_rates, config.upsample_kernel_sizes)):
self.upsampler.append(
nn.ConvTranspose1d(
config.upsample_initial_channel // (2**i),
config.upsample_initial_channel // (2 ** (i + 1)),
kernel_size=kernel_size,
stride=upsample_rate,
padding=(kernel_size - upsample_rate) // 2,
)
)
self.resblocks = nn.ModuleList()
for i in range(len(self.upsampler)):
channels = config.upsample_initial_channel // (2 ** (i + 1))
for kernel_size, dilation in zip(config.resblock_kernel_sizes, config.resblock_dilation_sizes):
self.resblocks.append(HifiGanResidualBlock(channels, kernel_size, dilation, config.leaky_relu_slope))
if config.istft_decoder == "istft":
self.conv_post = nn.Conv1d(channels, self.post_n_fft + 2, kernel_size=7, stride=1, padding=3, bias=True)
elif config.istft_decoder in ["ms_istft", "mb_istft"]:
self.conv_post = nn.Conv1d(
channels, self.subbands * (self.post_n_fft + 2), kernel_size=7, stride=1, padding=3, bias=True
)
self.reflection_pad = nn.ReflectionPad1d((1, 0))
self.stft = TorchSTFT(
filter_length=self.gen_istft_n_fft, hop_length=self.gen_istft_hop_size, win_length=self.gen_istft_n_fft
)
if config.speaker_embedding_size != 0:
self.cond = nn.Conv1d(config.speaker_embedding_size, config.upsample_initial_channel, 1)
def get_padding(self, kernel_size, dilation=1):
return int((kernel_size * dilation - dilation) / 2)
def apply_weight_norm(self):
weight_norm = nn.utils.weight_norm
if hasattr(nn.utils.parametrizations, "weight_norm"):
weight_norm = nn.utils.parametrizations.weight_norm
for layer in self.upsampler:
weight_norm(layer)
for layer in self.resblocks:
layer.apply_weight_norm()
weight_norm(self.conv_pre)
weight_norm(self.conv_post)
if self.config.istft_decoder == "ms_istft":
weight_norm(self.multistream_conv_post)
def remove_weight_norm(self):
for layer in self.upsampler:
nn.utils.remove_weight_norm(layer)
for layer in self.resblocks:
layer.remove_weight_norm()
nn.utils.remove_weight_norm(self.conv_pre)
nn.utils.remove_weight_norm(self.conv_post)
if self.config.istft_decoder == "ms_istft":
nn.utils.remove_weight_norm(self.multistream_conv_post)
def forward(
self, spectrogram: torch.FloatTensor, global_conditioning: Optional[torch.FloatTensor] = None
) -> torch.FloatTensor:
r"""
Converts a spectrogram into a speech waveform.
Args:
spectrogram (`torch.FloatTensor` of shape `(batch_size, config.spectrogram_bins, sequence_length)`):
Tensor containing the spectrograms.
global_conditioning (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_size, 1)`, *optional*):
Tensor containing speaker embeddings, for multispeaker models.
Returns:
`torch.FloatTensor`: Tensor of shape shape `(batch_size, 1, num_frames)` containing the speech waveform.
"""
hidden_states = self.conv_pre(spectrogram)
if global_conditioning is not None:
hidden_states = hidden_states + self.cond(global_conditioning)
for i in range(self.num_upsamples):
hidden_states = nn.functional.leaky_relu(hidden_states, self.config.leaky_relu_slope)
hidden_states = self.upsampler[i](hidden_states)
res_state = self.resblocks[i * self.num_kernels](hidden_states)
for j in range(1, self.num_kernels):
res_state += self.resblocks[i * self.num_kernels + j](hidden_states)
hidden_states = res_state / self.num_kernels
hidden_states = nn.functional.leaky_relu(hidden_states)
hidden_states = self.reflection_pad(hidden_states)
hidden_states = self.conv_post(hidden_states)
if self.config.istft_decoder == "istft":
spec = torch.exp(hidden_states[:, : self.post_n_fft // 2 + 1, :])
phase = math.pi * torch.sin(hidden_states[:, self.post_n_fft // 2 + 1 :, :])
waveform = self.stft.inverse(spec, phase)
elif self.config.istft_decoder in ["mb_istft", "ms_istft"]:
hidden_states = torch.reshape(
hidden_states,
(
hidden_states.shape[0],
self.subbands,
hidden_states.shape[1] // self.subbands,
hidden_states.shape[-1],
),
)
spec = torch.exp(hidden_states[:, :, : self.post_n_fft // 2 + 1, :])
phase = math.pi * torch.sin(hidden_states[:, :, self.post_n_fft // 2 + 1 :, :])
waveform_mb = self.stft.inverse(
torch.reshape(spec, (spec.shape[0] * self.subbands, self.gen_istft_n_fft // 2 + 1, spec.shape[-1])),
torch.reshape(phase, (phase.shape[0] * self.subbands, self.gen_istft_n_fft // 2 + 1, phase.shape[-1])),
)
waveform_mb = torch.reshape(waveform_mb, (hidden_states.shape[0], self.subbands, 1, waveform_mb.shape[-1]))
waveform_mb = waveform_mb.squeeze(-2)
if self.config.istft_decoder == "mb_istft":
waveform = self.pqmf.synthesis(waveform_mb)
else:
waveform_mb = torch.nn.functional.conv_transpose1d(
waveform_mb, self.updown_filter * self.subbands, stride=self.subbands
)
waveform = self.multistream_conv_post(waveform_mb)
return waveform
class PQMF(torch.nn.Module):
"""PQMF module.
This module is based on `Near-perfect-reconstruction pseudo-QMF banks`_.
.. _`Near-perfect-reconstruction pseudo-QMF banks`:
https://ieeexplore.ieee.org/document/258122
"""
def __init__(self, subbands=4, taps=62, cutoff_ratio=0.15, beta=9.0):
"""Initilize PQMF module.
Args:
subbands (int): The number of subbands.
taps (int): The number of filter taps.
cutoff_ratio (float): Cut-off frequency ratio.
beta (float): Beta coefficient for kaiser window.
"""
super(PQMF, self).__init__()
# define filter coefficient
h_proto = self.design_prototype_filter(taps, cutoff_ratio, beta)
h_analysis = np.zeros((subbands, len(h_proto)))
h_synthesis = np.zeros((subbands, len(h_proto)))
for k in range(subbands):
h_analysis[k] = (
2
* h_proto
* np.cos(
(2 * k + 1) * (np.pi / (2 * subbands)) * (np.arange(taps + 1) - ((taps - 1) / 2))
+ (-1) ** k * np.pi / 4
)
)
h_synthesis[k] = (
2
* h_proto
* np.cos(
(2 * k + 1) * (np.pi / (2 * subbands)) * (np.arange(taps + 1) - ((taps - 1) / 2))
- (-1) ** k * np.pi / 4
)
)
# convert to tensor
analysis_filter = torch.from_numpy(h_analysis).float().unsqueeze(1)
synthesis_filter = torch.from_numpy(h_synthesis).float().unsqueeze(0)
# register coefficients as beffer
self.register_buffer("analysis_filter", analysis_filter)
self.register_buffer("synthesis_filter", synthesis_filter)
# filter for downsampling & upsampling
updown_filter = torch.zeros((subbands, subbands, subbands)).float()
for k in range(subbands):
updown_filter[k, k, 0] = 1.0
self.register_buffer("updown_filter", updown_filter)
self.subbands = subbands
# keep padding info
self.pad_fn = torch.nn.ConstantPad1d(taps // 2, 0.0)
def design_prototype_filter(self, taps=62, cutoff_ratio=0.15, beta=9.0):
"""Design prototype filter for PQMF.
This method is based on `A Kaiser window approach for the design of prototype
filters of cosine modulated filterbanks`_.
Args:
taps (int): The number of filter taps.
cutoff_ratio (float): Cut-off frequency ratio.
beta (float): Beta coefficient for kaiser window.
Returns:
ndarray: Impluse response of prototype filter (taps + 1,).
.. _`A Kaiser window approach for the design of prototype filters of cosine modulated filterbanks`:
https://ieeexplore.ieee.org/abstract/document/681427
"""
# check the arguments are valid
assert taps % 2 == 0, "The number of taps mush be even number."
assert 0.0 < cutoff_ratio < 1.0, "Cutoff ratio must be > 0.0 and < 1.0."
# make initial filter
omega_c = np.pi * cutoff_ratio
with np.errstate(invalid="ignore"):
h_i = np.sin(omega_c * (np.arange(taps + 1) - 0.5 * taps)) / (np.pi * (np.arange(taps + 1) - 0.5 * taps))
h_i[taps // 2] = np.cos(0) * cutoff_ratio # fix nan due to indeterminate form
# apply kaiser window
w = kaiser(taps + 1, beta)
h = h_i * w
return h
def analysis(self, x):
"""Analysis with PQMF.
Args:
x (Tensor): Input tensor (B, 1, T).
Returns:
Tensor: Output tensor (B, subbands, T // subbands).
"""
x = torch.nn.functional.conv1d(self.pad_fn(x), self.analysis_filter)
return torch.nn.functional.conv1d(x, self.updown_filter, stride=self.subbands)
def synthesis(self, x):
"""Synthesis with PQMF.
Args:
x (Tensor): Input tensor (B, subbands, T // subbands).
Returns:
Tensor: Output tensor (B, 1, T).
"""
# NOTE(kan-bayashi): Power will be dreased so here multipy by # subbands.
# Not sure this is the correct way, it is better to check again.
# TODO(kan-bayashi): Understand the reconstruction procedure
x = torch.nn.functional.conv_transpose1d(x, self.updown_filter * self.subbands, stride=self.subbands)
return torch.nn.functional.conv1d(self.pad_fn(x), self.synthesis_filter)
class TorchSTFT(torch.nn.Module):
def __init__(self, filter_length=800, hop_length=200, win_length=800, window="hann"):
super().__init__()
self.filter_length = filter_length
self.hop_length = hop_length
self.win_length = win_length
self.window = torch.from_numpy(get_window(window, win_length, fftbins=True).astype(np.float32))
def transform(self, input_data):
forward_transform = torch.stft(
input_data, self.filter_length, self.hop_length, self.win_length, window=self.window, return_complex=True
)
return torch.abs(forward_transform), torch.angle(forward_transform)
def inverse(self, magnitude, phase):
inverse_transform = torch.istft(
magnitude * torch.exp(phase * 1j),
self.filter_length,
self.hop_length,
self.win_length,
window=self.window.to(magnitude.device),
)
return inverse_transform.unsqueeze(-2) # unsqueeze to stay consistent with conv_transpose1d implementation
def forward(self, input_data):
self.magnitude, self.phase = self.transform(input_data)
reconstruction = self.inverse(self.magnitude, self.phase)
return reconstruction
class VitsResidualCouplingLayer(nn.Module):
def __init__(self, config: VitsConfig):
super().__init__()
self.half_channels = config.flow_size // 2
self.conv_pre = nn.Conv1d(self.half_channels, config.hidden_size, 1)
self.wavenet = VitsWaveNet(config, num_layers=config.prior_encoder_num_wavenet_layers)
self.conv_post = nn.Conv1d(config.hidden_size, self.half_channels, 1)
def forward(self, inputs, padding_mask, global_conditioning=None, reverse=False):
first_half, second_half = torch.split(inputs, [self.half_channels] * 2, dim=1)
hidden_states = self.conv_pre(first_half) * padding_mask
hidden_states = self.wavenet(hidden_states, padding_mask, global_conditioning)
mean = self.conv_post(hidden_states) * padding_mask
log_stddev = torch.zeros_like(mean)
if not reverse:
second_half = mean + second_half * torch.exp(log_stddev) * padding_mask
outputs = torch.cat([first_half, second_half], dim=1)
log_determinant = torch.sum(log_stddev, [1, 2])
return outputs, log_determinant
else:
second_half = (second_half - mean) * torch.exp(-log_stddev) * padding_mask
outputs = torch.cat([first_half, second_half], dim=1)
return outputs, None
class VitsResidualCouplingBlock(nn.Module):
def __init__(self, config: VitsConfig):
super().__init__()
self.flows = nn.ModuleList()
for _ in range(config.prior_encoder_num_flows):
self.flows.append(VitsResidualCouplingLayer(config))
def forward(self, inputs, padding_mask, global_conditioning=None, reverse=False):
if not reverse:
for flow in self.flows:
inputs, _ = flow(inputs, padding_mask, global_conditioning)
inputs = torch.flip(inputs, [1])
else:
for flow in reversed(self.flows):
inputs = torch.flip(inputs, [1])
inputs, _ = flow(inputs, padding_mask, global_conditioning, reverse=True)
return inputs
class VitsDilatedDepthSeparableConv(nn.Module):
def __init__(self, config: VitsConfig, dropout_rate=0.0):
super().__init__()
kernel_size = config.duration_predictor_kernel_size
channels = config.hidden_size
self.num_layers = config.depth_separable_num_layers
self.dropout = nn.Dropout(dropout_rate)
self.convs_dilated = nn.ModuleList()
self.convs_pointwise = nn.ModuleList()
self.norms_1 = nn.ModuleList()
self.norms_2 = nn.ModuleList()
for i in range(self.num_layers):
dilation = kernel_size**i
padding = (kernel_size * dilation - dilation) // 2
self.convs_dilated.append(
nn.Conv1d(
in_channels=channels,
out_channels=channels,
kernel_size=kernel_size,
groups=channels,
dilation=dilation,
padding=padding,
)
)
self.convs_pointwise.append(nn.Conv1d(channels, channels, 1))
self.norms_1.append(nn.LayerNorm(channels))
self.norms_2.append(nn.LayerNorm(channels))
def forward(self, inputs, padding_mask, global_conditioning=None):
if global_conditioning is not None:
inputs = inputs + global_conditioning
for i in range(self.num_layers):
hidden_states = self.convs_dilated[i](inputs * padding_mask)
hidden_states = self.norms_1[i](hidden_states.transpose(1, -1)).transpose(1, -1)
hidden_states = nn.functional.gelu(hidden_states)
hidden_states = self.convs_pointwise[i](hidden_states)
hidden_states = self.norms_2[i](hidden_states.transpose(1, -1)).transpose(1, -1)
hidden_states = nn.functional.gelu(hidden_states)
hidden_states = self.dropout(hidden_states)
inputs = inputs + hidden_states
return inputs * padding_mask
class VitsConvFlow(nn.Module):
def __init__(self, config: VitsConfig):
super().__init__()
self.filter_channels = config.hidden_size
self.half_channels = config.depth_separable_channels // 2
self.num_bins = config.duration_predictor_flow_bins
self.tail_bound = config.duration_predictor_tail_bound
self.conv_pre = nn.Conv1d(self.half_channels, self.filter_channels, 1)
self.conv_dds = VitsDilatedDepthSeparableConv(config)
self.conv_proj = nn.Conv1d(self.filter_channels, self.half_channels * (self.num_bins * 3 - 1), 1)
def forward(self, inputs, padding_mask, global_conditioning=None, reverse=False):
first_half, second_half = torch.split(inputs, [self.half_channels] * 2, dim=1)
hidden_states = self.conv_pre(first_half)
hidden_states = self.conv_dds(hidden_states, padding_mask, global_conditioning)
hidden_states = self.conv_proj(hidden_states) * padding_mask
batch_size, channels, length = first_half.shape
hidden_states = hidden_states.reshape(batch_size, channels, -1, length).permute(0, 1, 3, 2)
unnormalized_widths = hidden_states[..., : self.num_bins] / math.sqrt(self.filter_channels)
unnormalized_heights = hidden_states[..., self.num_bins : 2 * self.num_bins] / math.sqrt(self.filter_channels)
unnormalized_derivatives = hidden_states[..., 2 * self.num_bins :]
second_half, log_abs_det = _unconstrained_rational_quadratic_spline(
second_half,
unnormalized_widths,
unnormalized_heights,
unnormalized_derivatives,
reverse=reverse,
tail_bound=self.tail_bound,
)
outputs = torch.cat([first_half, second_half], dim=1) * padding_mask
if not reverse:
log_determinant = torch.sum(log_abs_det * padding_mask, [1, 2])
return outputs, log_determinant
else:
return outputs, None
class VitsElementwiseAffine(nn.Module):
def __init__(self, config: VitsConfig):
super().__init__()
self.channels = config.depth_separable_channels
self.translate = nn.Parameter(torch.zeros(self.channels, 1))
self.log_scale = nn.Parameter(torch.zeros(self.channels, 1))
def forward(self, inputs, padding_mask, global_conditioning=None, reverse=False):
if not reverse:
outputs = self.translate + torch.exp(self.log_scale) * inputs
outputs = outputs * padding_mask
log_determinant = torch.sum(self.log_scale * padding_mask, [1, 2])
return outputs, log_determinant
else:
outputs = (inputs - self.translate) * torch.exp(-self.log_scale) * padding_mask
return outputs, None
class VitsStochasticDurationPredictor(nn.Module):
def __init__(self, config):
super().__init__()
embed_dim = config.speaker_embedding_size
filter_channels = config.hidden_size
self.conv_pre = nn.Conv1d(filter_channels, filter_channels, 1)
self.conv_proj = nn.Conv1d(filter_channels, filter_channels, 1)
self.conv_dds = VitsDilatedDepthSeparableConv(
config,
dropout_rate=config.duration_predictor_dropout,
)
if embed_dim != 0:
self.cond = nn.Conv1d(embed_dim, filter_channels, 1)
self.flows = nn.ModuleList()
self.flows.append(VitsElementwiseAffine(config))
for _ in range(config.duration_predictor_num_flows):
self.flows.append(VitsConvFlow(config))
self.post_conv_pre = nn.Conv1d(1, filter_channels, 1)
self.post_conv_proj = nn.Conv1d(filter_channels, filter_channels, 1)
self.post_conv_dds = VitsDilatedDepthSeparableConv(
config,
dropout_rate=config.duration_predictor_dropout,
)
self.post_flows = nn.ModuleList()
self.post_flows.append(VitsElementwiseAffine(config))
for _ in range(config.duration_predictor_num_flows):
self.post_flows.append(VitsConvFlow(config))
def forward(self, inputs, padding_mask, global_conditioning=None, durations=None, reverse=False, noise_scale=1.0):
inputs = torch.detach(inputs)
inputs = self.conv_pre(inputs)
if global_conditioning is not None:
global_conditioning = torch.detach(global_conditioning)
inputs = inputs + self.cond(global_conditioning)
inputs = self.conv_dds(inputs, padding_mask)
inputs = self.conv_proj(inputs) * padding_mask
if not reverse:
hidden_states = self.post_conv_pre(durations)
hidden_states = self.post_conv_dds(hidden_states, padding_mask)
hidden_states = self.post_conv_proj(hidden_states) * padding_mask
random_posterior = (
torch.randn(durations.size(0), 2, durations.size(2)).to(device=inputs.device, dtype=inputs.dtype)
* padding_mask
)
log_determinant_posterior_sum = 0
latents_posterior = random_posterior
for flow in self.post_flows:
latents_posterior, log_determinant = flow(
latents_posterior, padding_mask, global_conditioning=inputs + hidden_states
)
latents_posterior = torch.flip(latents_posterior, [1])
log_determinant_posterior_sum += log_determinant
first_half, second_half = torch.split(latents_posterior, [1, 1], dim=1)
log_determinant_posterior_sum += torch.sum(
(nn.functional.logsigmoid(first_half) + nn.functional.logsigmoid(-first_half)) * padding_mask, [1, 2]
)
logq = (
torch.sum(-0.5 * (math.log(2 * math.pi) + (random_posterior**2)) * padding_mask, [1, 2])
- log_determinant_posterior_sum
)
first_half = (durations - torch.sigmoid(first_half)) * padding_mask
first_half = torch.log(torch.clamp_min(first_half, 1e-5)) * padding_mask
log_determinant_sum = torch.sum(-first_half, [1, 2])
latents = torch.cat([first_half, second_half], dim=1)
for flow in self.flows:
latents, log_determinant = flow(latents, padding_mask, global_conditioning=inputs)
latents = torch.flip(latents, [1])
log_determinant_sum += log_determinant
nll = torch.sum(0.5 * (math.log(2 * math.pi) + (latents**2)) * padding_mask, [1, 2]) - log_determinant_sum
return nll + logq
else:
flows = list(reversed(self.flows))
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
latents = (
torch.randn(inputs.size(0), 2, inputs.size(2)).to(device=inputs.device, dtype=inputs.dtype)
* noise_scale
)
for flow in flows:
latents = torch.flip(latents, [1])
latents, _ = flow(latents, padding_mask, global_conditioning=inputs, reverse=True)
log_duration, _ = torch.split(latents, [1, 1], dim=1)
return log_duration
class VitsDurationPredictor(nn.Module):
def __init__(self, config):
super().__init__()
kernel_size = config.duration_predictor_kernel_size
filter_channels = config.duration_predictor_filter_channels
self.dropout = nn.Dropout(config.duration_predictor_dropout)
self.conv_1 = nn.Conv1d(config.hidden_size, filter_channels, kernel_size, padding=kernel_size // 2)
self.norm_1 = nn.LayerNorm(filter_channels, eps=config.layer_norm_eps)
self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
self.norm_2 = nn.LayerNorm(filter_channels, eps=config.layer_norm_eps)
self.proj = nn.Conv1d(filter_channels, 1, 1)
if config.speaker_embedding_size != 0:
self.cond = nn.Conv1d(config.speaker_embedding_size, config.hidden_size, 1)
def forward(self, inputs, padding_mask, global_conditioning=None):
inputs = torch.detach(inputs)
if global_conditioning is not None:
global_conditioning = torch.detach(global_conditioning)
inputs = inputs + self.cond(global_conditioning)
inputs = self.conv_1(inputs * padding_mask)
inputs = torch.relu(inputs)
inputs = self.norm_1(inputs.transpose(1, -1)).transpose(1, -1)
inputs = self.dropout(inputs)
inputs = self.conv_2(inputs * padding_mask)
inputs = torch.relu(inputs)
inputs = self.norm_2(inputs.transpose(1, -1)).transpose(1, -1)
inputs = self.dropout(inputs)
inputs = self.proj(inputs * padding_mask)
return inputs * padding_mask
class VitsAttention(nn.Module):
"""Multi-headed attention with relative positional representation."""
def __init__(self, config: VitsConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.dropout = config.attention_dropout
self.window_size = config.window_size
self.head_dim = self.embed_dim // self.num_heads
self.scaling = self.head_dim**-0.5
if (self.head_dim * self.num_heads) != self.embed_dim:
raise ValueError(
f"hidden_size must be divisible by num_attention_heads (got `hidden_size`: {self.embed_dim}"
f" and `num_attention_heads`: {self.num_heads})."
)
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias)
if self.window_size:
self.emb_rel_k = nn.Parameter(torch.randn(1, self.window_size * 2 + 1, self.head_dim) * self.scaling)
self.emb_rel_v = nn.Parameter(torch.randn(1, self.window_size * 2 + 1, self.head_dim) * self.scaling)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if self.window_size is not None:
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, src_len)
relative_logits = torch.matmul(query_states, key_relative_embeddings.transpose(-2, -1))
rel_pos_bias = self._relative_position_to_absolute_position(relative_logits)
attn_weights += rel_pos_bias
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
if self.window_size is not None:
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, src_len)
relative_weights = self._absolute_position_to_relative_position(attn_probs)
rel_pos_bias = torch.matmul(relative_weights, value_relative_embeddings)
attn_output += rel_pos_bias
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned aross GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped
def _get_relative_embeddings(self, relative_embeddings, length):
pad_length = max(length - (self.window_size + 1), 0)
if pad_length > 0:
relative_embeddings = nn.functional.pad(relative_embeddings, [0, 0, pad_length, pad_length, 0, 0])
slice_start_position = max((self.window_size + 1) - length, 0)
slice_end_position = slice_start_position + 2 * length - 1
return relative_embeddings[:, slice_start_position:slice_end_position]
def _relative_position_to_absolute_position(self, x):
batch_heads, length, _ = x.size()
# Concat columns of pad to shift from relative to absolute indexing.
x = nn.functional.pad(x, [0, 1, 0, 0, 0, 0])
# Concat extra elements so to add up to shape (len+1, 2*len-1).
x_flat = x.view([batch_heads, length * 2 * length])
x_flat = nn.functional.pad(x_flat, [0, length - 1, 0, 0])
# Reshape and slice out the padded elements.
x_final = x_flat.view([batch_heads, length + 1, 2 * length - 1])
x_final = x_final[:, :length, length - 1 :]
return x_final
def _absolute_position_to_relative_position(self, x):
batch_heads, length, _ = x.size()
# Pad along column
x = nn.functional.pad(x, [0, length - 1, 0, 0, 0, 0])
x_flat = x.view([batch_heads, length * (2 * length - 1)])
# Add 0's in the beginning that will skew the elements after reshape
x_flat = nn.functional.pad(x_flat, [length, 0, 0, 0])
x_final = x_flat.view([batch_heads, length, 2 * length])[:, :, 1:]
return x_final
class VitsFeedForward(nn.Module):
def __init__(self, config):
super().__init__()
self.conv_1 = nn.Conv1d(config.hidden_size, config.ffn_dim, config.ffn_kernel_size)
self.conv_2 = nn.Conv1d(config.ffn_dim, config.hidden_size, config.ffn_kernel_size)
self.dropout = nn.Dropout(config.activation_dropout)
if isinstance(config.hidden_act, str):
self.act_fn = ACT2FN[config.hidden_act]
else:
self.act_fn = config.hidden_act
if config.ffn_kernel_size > 1:
pad_left = (config.ffn_kernel_size - 1) // 2
pad_right = config.ffn_kernel_size // 2
self.padding = [pad_left, pad_right, 0, 0, 0, 0]
else:
self.padding = None
def forward(self, hidden_states, padding_mask):
hidden_states = hidden_states.permute(0, 2, 1)
padding_mask = padding_mask.permute(0, 2, 1)
hidden_states = hidden_states * padding_mask
if self.padding is not None:
hidden_states = nn.functional.pad(hidden_states, self.padding)
hidden_states = self.conv_1(hidden_states)
hidden_states = self.act_fn(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states * padding_mask
if self.padding is not None:
hidden_states = nn.functional.pad(hidden_states, self.padding)
hidden_states = self.conv_2(hidden_states)
hidden_states = hidden_states * padding_mask
hidden_states = hidden_states.permute(0, 2, 1)
return hidden_states
class VitsEncoderLayer(nn.Module):
def __init__(self, config: VitsConfig):
super().__init__()
self.attention = VitsAttention(config)
self.dropout = nn.Dropout(config.hidden_dropout)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.feed_forward = VitsFeedForward(config)
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
padding_mask: torch.FloatTensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
):
residual = hidden_states
hidden_states, attn_weights = self.attention(
hidden_states=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states = self.dropout(hidden_states)
hidden_states = self.layer_norm(residual + hidden_states)
residual = hidden_states
hidden_states = self.feed_forward(hidden_states, padding_mask)
hidden_states = self.dropout(hidden_states)
hidden_states = self.final_layer_norm(residual + hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class VitsEncoder(nn.Module):
def __init__(self, config: VitsConfig):
super().__init__()
self.config = config
self.layers = nn.ModuleList([VitsEncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
self.layerdrop = config.layerdrop
def forward(
self,
hidden_states: torch.FloatTensor,
padding_mask: torch.FloatTensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
hidden_states = hidden_states * padding_mask
synced_gpus = is_deepspeed_zero3_enabled() or is_fsdp_managed_module(self)
for encoder_layer in self.layers:
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = np.random.uniform(0, 1)
skip_the_layer = self.training and (dropout_probability < self.layerdrop)
if not skip_the_layer or synced_gpus:
# under fsdp or deepspeed zero3 all gpus must run in sync
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
padding_mask,
attention_mask,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask=attention_mask,
padding_mask=padding_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if skip_the_layer:
layer_outputs = (None, None)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
hidden_states = hidden_states * padding_mask
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class VitsTextEncoder(nn.Module):
"""
Transformer encoder that uses relative positional representation instead of absolute positional encoding.
"""
def __init__(self, config: VitsConfig):
super().__init__()
self.config = config
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
self.encoder = VitsEncoder(config)
self.project = nn.Conv1d(config.hidden_size, config.flow_size * 2, kernel_size=1)
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids: torch.Tensor,
padding_mask: torch.FloatTensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], VitsTextEncoderOutput]:
hidden_states = self.embed_tokens(input_ids) * math.sqrt(self.config.hidden_size)
encoder_outputs = self.encoder(
hidden_states=hidden_states,
padding_mask=padding_mask,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0] if not return_dict else encoder_outputs.last_hidden_state
stats = self.project(last_hidden_state.transpose(1, 2)).transpose(1, 2) * padding_mask
prior_means, prior_log_variances = torch.split(stats, self.config.flow_size, dim=2)
if not return_dict:
outputs = (last_hidden_state, prior_means, prior_log_variances) + encoder_outputs[1:]
return outputs
return VitsTextEncoderOutput(
last_hidden_state=last_hidden_state,
prior_means=prior_means,
prior_log_variances=prior_log_variances,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class VitsPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = VitsConfig
base_model_prefix = "vits"
main_input_name = "input_ids"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Conv1d):
nn.init.kaiming_normal_(module.weight)
if module.bias is not None:
k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
nn.init.uniform_(module.bias, a=-k, b=k)
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
VITS_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`VitsConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
VITS_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0,
1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
speaker_id (`int`, *optional*):
Which speaker embedding to use. Only used for multispeaker models.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The complete VITS model, for text-to-speech synthesis.",
VITS_START_DOCSTRING,
)
class VitsModel(VitsPreTrainedModel):
def __init__(self, config: VitsConfig):
super().__init__(config)
self.config = config
self.text_encoder = VitsTextEncoder(config)
self.flow = VitsResidualCouplingBlock(config)
if config.istft_decoder in ["istft", "mb_istft", "ms_istft"]:
self.decoder = VitsISTFT(config)
else:
self.decoder = VitsHifiGan(config)
if config.use_stochastic_duration_prediction:
self.duration_predictor = VitsStochasticDurationPredictor(config)
else:
self.duration_predictor = VitsDurationPredictor(config)
if config.num_speakers > 1:
self.embed_speaker = nn.Embedding(config.num_speakers, config.speaker_embedding_size)
# This is used only for training.
self.posterior_encoder = VitsPosteriorEncoder(config)
# These parameters control the synthesised speech properties
self.speaking_rate = config.speaking_rate
self.noise_scale = config.noise_scale
self.noise_scale_duration = config.noise_scale_duration
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.text_encoder
@add_start_docstrings_to_model_forward(VITS_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=VitsModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
speaker_id: Optional[int] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.FloatTensor] = None,
) -> Union[Tuple[Any], VitsModelOutput]:
r"""
labels (`torch.FloatTensor` of shape `(batch_size, config.spectrogram_bins, sequence_length)`, *optional*):
Float values of target spectrogram. Timesteps set to `-100.0` are ignored (masked) for the loss
computation.
Returns:
Example:
```python
>>> from transformers import VitsTokenizer, VitsModel, set_seed
>>> import torch
>>> tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-eng")
>>> model = VitsModel.from_pretrained("facebook/mms-tts-eng")
>>> inputs = tokenizer(text="Hello - my dog is cute", return_tensors="pt")
>>> set_seed(555) # make deterministic
>>> with torch.no_grad():
... outputs = model(inputs["input_ids"])
>>> outputs.waveform.shape
torch.Size([1, 45824])
```
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
raise NotImplementedError("Training of VITS is not supported yet.")
if attention_mask is not None:
input_padding_mask = attention_mask.unsqueeze(-1).float()
else:
input_padding_mask = torch.ones_like(input_ids).unsqueeze(-1).float()
if self.config.num_speakers > 1 and speaker_id is not None:
if not 0 <= speaker_id < self.config.num_speakers:
raise ValueError(f"Set `speaker_id` in the range 0-{self.config.num_speakers - 1}.")
if isinstance(speaker_id, int):
speaker_id = torch.full(size=(1,), fill_value=speaker_id, device=self.device)
speaker_embeddings = self.embed_speaker(speaker_id).unsqueeze(-1)
else:
speaker_embeddings = None
text_encoder_output = self.text_encoder(
input_ids=input_ids,
padding_mask=input_padding_mask,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state
hidden_states = hidden_states.transpose(1, 2)
input_padding_mask = input_padding_mask.transpose(1, 2)
prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means
prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances
if self.config.use_stochastic_duration_prediction:
log_duration = self.duration_predictor(
hidden_states,
input_padding_mask,
speaker_embeddings,
reverse=True,
noise_scale=self.noise_scale_duration,
)
else:
log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings)
length_scale = 1.0 / self.speaking_rate
duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale)
predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long()
# Create a padding mask for the output lengths of shape (batch, 1, max_output_length)
indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device)
output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1)
output_padding_mask = output_padding_mask.unsqueeze(1).to(input_padding_mask.dtype)
# Reconstruct an attention tensor of shape (batch, 1, out_length, in_length)
attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(output_padding_mask, -1)
batch_size, _, output_length, input_length = attn_mask.shape
cum_duration = torch.cumsum(duration, -1).view(batch_size * input_length, 1)
indices = torch.arange(output_length, dtype=duration.dtype, device=duration.device)
valid_indices = indices.unsqueeze(0) < cum_duration
valid_indices = valid_indices.to(attn_mask.dtype).view(batch_size, input_length, output_length)
padded_indices = valid_indices - nn.functional.pad(valid_indices, [0, 0, 1, 0, 0, 0])[:, :-1]
attn = padded_indices.unsqueeze(1).transpose(2, 3) * attn_mask
# Expand prior distribution
prior_means = torch.matmul(attn.squeeze(1), prior_means).transpose(1, 2)
prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances).transpose(1, 2)
prior_latents = prior_means + torch.randn_like(prior_means) * torch.exp(prior_log_variances) * self.noise_scale
latents = self.flow(prior_latents, output_padding_mask, speaker_embeddings, reverse=True)
spectrogram = latents * output_padding_mask
waveform = self.decoder(spectrogram, speaker_embeddings)
waveform = waveform.squeeze(1)
sequence_lengths = predicted_lengths * np.prod(self.config.upsample_rates)
if not return_dict:
outputs = (waveform, sequence_lengths, spectrogram) + text_encoder_output[3:]
return outputs
return VitsModelOutput(
waveform=waveform,
sequence_lengths=sequence_lengths,
spectrogram=spectrogram,
hidden_states=text_encoder_output.hidden_states,
attentions=text_encoder_output.attentions,
)
|