File size: 75,890 Bytes
a283ad3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
#  Copyright (c) 2025, Anemll  All rights reserved.
#
#  Use of this source code is governed by a MIT license that can be
#  found in the LICENSE.txt file or at https://opensource.org/license/mit

import coremltools as ct
import numpy as np
import torch
from transformers import AutoTokenizer
import os
import time, sys
import signal
import traceback
import torch.nn.functional as F
import queue
import threading
import re

# Configuration
CONTEXT_LENGTH = 1024  # Changed default from 512 to 1024
PREFILL_BATCH_SIZE = 64
MODEL_PATH = os.path.expanduser("../DeepSeekR1-8B")
ENABLE_VACAB_SPLIT8 = True  # Enable 8-way vocab split
ENABLE_LOGITS2 = False      # Enable 2-way vocab split
ENABLE_DEBUG = bool(0)
ENABLE_ARGMAX = bool(0)
ENABLE_PREFILL_BATCH = bool(1)
ENABLE_CHAT_DEBUG = bool(0)  # Debug flag for chat loop

# ANSI color codes
LIGHT_BLUE = "\033[94m"
DARK_BLUE = "\033[34m"
LIGHT_GREEN = "\033[92m"
RESET_COLOR = "\033[0m"

if ENABLE_LOGITS2:
    assert not ENABLE_ARGMAX, "ENABLE_ARGMAX must be False when ENABLE_LOGITS2 is True"


def load_model(path, compute_unit=ct.ComputeUnit.CPU_AND_NE, function_name=None):
    """Load either compiled or uncompiled CoreML model.
    
    Args:
        path: Path to the model file (.mlmodelc or .mlpackage)
        compute_unit: CoreML compute unit to use
        function_name: Optional function name to select from multi-function models
    """
    DebugLog(f"Attempting to load model: {path}")
    DebugLog(f"File exists: {os.path.exists(path)}")
    DebugLog(f"Is directory (for mlmodelc): {os.path.isdir(path)}")
    
    try:
        if path.endswith('.mlmodelc'):
            DebugLog(f"Loading compiled model: {path}")
            if function_name is None:
                DebugLog("Loading without function name")
                model = ct.models.CompiledMLModel(path, compute_unit)
            else:
                DebugLog(f"Loading with function name: {function_name}")
                model = ct.models.CompiledMLModel(path, compute_unit, function_name=function_name)
        else:
            DebugLog(f"Loading uncompiled model: {path}")
            if function_name is None:
                DebugLog("Loading without function name")
                model = ct.models.MLModel(model=path, compute_units=compute_unit, is_temp_package=False)
            else:
                DebugLog(f"Loading with function name: {function_name}")
                model = ct.models.MLModel(model=path, compute_units=compute_unit, is_temp_package=False, function_name=function_name)
        DebugLog("Model loaded successfully")

        return model
        
    except Exception as e:
        DebugLog(f"Error loading model: {str(e)}")
        DebugLog(f"Error type: {type(e)}")
        raise

class SplitModelInference:
    def __init__(self, model_parts, model_dir="."):
        """Initialize split model inference.
        
        Args:
            model_parts (list): List of model part numbers to load
                              Special cases:
                              - 'C123' for combined part2 with prefill/infer functions
                              - 'S123' for split model with prefill/infer functions
                              - 'Q123' for quad split (2Q1-2Q4)
                              - 'Q123S' for quad split with combined prefill/infer (2Q1S-2Q4S)
                              - '123D' for dual split without prefill/infer (2D1-2D2)
            model_dir (str): Directory containing the model files (default: current directory)
        """
        self.context_size = CONTEXT_LENGTH
        self.model_dir = model_dir
        DebugLog(f"Loading models from directory: {self.model_dir}")
        
        # Parse configuration
        self.quant_configs = {}
        global_lut = None
        if model_parts and model_parts[-1].startswith('lut'):
            global_lut = model_parts[-1]
            model_parts = model_parts[:-1]
        
        # Special handling for different split modes
        if len(model_parts) == 1:
            if model_parts[0] == '123D':  # Dual split without prefill/infer
                self.use_combined_part2 = False
                self.use_split_model = True
                self.use_split_functions = False
                self.use_quad_split = False
                self.use_quad_split_combined = False
                self.model_parts = ['1', '2D1', '2D2', '3']
                if global_lut:
                    self.quant_configs = {part: global_lut for part in self.model_parts}
                DebugLog(f"Using dual split model with parts: {self.model_parts}")
            elif model_parts[0].startswith('C123'):  # Combined part2
                self.use_combined_part2 = True
                self.use_split_model = False
                self.use_split_functions = False
                self.use_quad_split = False
                self.use_quad_split_combined = False
                self.model_parts = ['1', '2', '3']
                if global_lut:
                    self.quant_configs = {part: global_lut for part in self.model_parts}
                DebugLog(f"Using combined part2 model with parts: {self.model_parts}")
            elif model_parts[0].startswith('S123'):  # Split model with prefill/infer functions
                self.use_combined_part2 = False
                self.use_split_model = True
                self.use_split_functions = True
                self.use_quad_split = False
                self.use_quad_split_combined = False
                self.model_parts = ['1', '2D1S', '2D2S', '3']
            elif model_parts[0].startswith('Q123S'):  # Quad split with combined prefill/infer
                self.use_combined_part2 = False
                self.use_split_model = True
                self.use_split_functions = False
                self.use_quad_split = False
                self.use_quad_split_combined = True
                self.model_parts = ['1', '2Q1S', '2Q2S', '2Q3S', '2Q4S', '3']
            elif model_parts[0].startswith('Q123'):  # Regular quad split
                self.use_combined_part2 = False
                self.use_split_model = True
                self.use_split_functions = False
                self.use_quad_split = True
                self.use_quad_split_combined = False
                self.model_parts = ['1', '2Q1', '2Q2', '2Q3', '2Q4', '3']
            else:
                self.use_combined_part2 = False
                self.use_split_model = False
                self.use_split_functions = False
                self.use_quad_split = False
                self.use_quad_split_combined = False
                self.model_parts = model_parts
        else:
            self.use_combined_part2 = False
            self.use_split_model = False
            self.use_split_functions = False
            self.use_quad_split = False
            self.use_quad_split_combined = False
            self.model_parts = model_parts

        # Apply global quantization if specified
        if global_lut and not self.use_combined_part2:  # Skip if already applied for C123
            self.quant_configs = {part: global_lut for part in self.model_parts}
            
        DebugLog(f"Using model parts: {self.model_parts}")
        if global_lut:
            DebugLog(f"With global quantization: {global_lut}")
        if self.use_combined_part2:
            DebugLog("Using combined part2 model with prefill/infer functions")
        elif self.use_split_functions:
            DebugLog("Using split model with prefill/infer functions")
        elif self.use_quad_split:
            DebugLog("Using quad split transformer model (2Q1-2Q4)")
        elif self.use_quad_split_combined:
            DebugLog("Using combined quad split transformer model (2Q1S-2Q4S)")

        self.models = {}
        self.states = {}
        self.load_models()
        
    def find_model_path(self, base_name, description="model"):
        """Find model path, checking mlmodelc first then mlpackage.
        Also tries both with and without lut suffix.
        
        Args:
            base_name: Base name of the model without extension
            description: Description for error message (e.g., "Split model part 2D1S")
        
        Returns:
            str: Path to the found model file
            
        Raises:
            FileNotFoundError: If neither mlmodelc nor mlpackage exists
        """
        # For quad split parts, only try mlmodelc
        if any(part in base_name for part in ['2Q1S', '2Q2S', '2Q3S', '2Q4S', '2Q1', '2Q2', '2Q3', '2Q4']):
            model_path = os.path.join(self.model_dir, f"{base_name}.mlmodelc")
            if os.path.exists(model_path):
                return model_path
            # If not found, try without lut suffix
            if '_lut' in base_name:
                base_without_lut = base_name.split('_lut')[0]
                model_path = os.path.join(self.model_dir, f"{base_without_lut}.mlmodelc")
                if os.path.exists(model_path):
                    return model_path
            # Neither exists
            raise FileNotFoundError(f"{description} not found: {base_name}.mlmodelc does not exist" +
                                  (f" (also tried {base_name.split('_lut')[0]}.mlmodelc)" if '_lut' in base_name else ""))
        
        # For other parts, try both mlmodelc and mlpackage
        for ext in ['.mlmodelc', '.mlpackage']:
            model_path = os.path.join(self.model_dir, f"{base_name}{ext}")
            if os.path.exists(model_path):
                return model_path
        
        # If not found, try without lut suffix
        if '_lut' in base_name:
            base_without_lut = base_name.split('_lut')[0]
            for ext in ['.mlmodelc', '.mlpackage']:
                model_path = os.path.join(self.model_dir, f"{base_without_lut}{ext}")
                if os.path.exists(model_path):
                    return model_path
        
        # Neither exists
        raise FileNotFoundError(f"{description} not found: neither {base_name}.mlmodelc nor {base_name}.mlpackage exist in {self.model_dir}" +
                              (f" (also tried {base_name.split('_lut')[0]}.mlmodelc/mlpackage)" if '_lut' in base_name else ""))

    def load_models(self):
        """Load each model part."""
        DebugLog("Loading model parts...")
        
        for part in self.model_parts:
            quant_suffix = f"_{self.quant_configs[part]}" if part in self.quant_configs else ""
            model_key = f"{part}{quant_suffix}"  # Use this as the key in self.models
            
            try:
                if part == '2' and self.use_combined_part2:
                    # Load combined part2 with multiple functions
                    base_name = f"llama32_part2_combined{quant_suffix}"
                    model_path = self.find_model_path(base_name, "Combined part2 model")
                    
                    DebugLog(f"Loading combined part2 model: {model_path}")
                    # Load prefill function
                    self.models['2_prefill'] = load_model(model_path, compute_unit=ct.ComputeUnit.CPU_AND_NE, function_name='prefill')
                    # Load infer function
                    self.models['2_infer'] = load_model(model_path, compute_unit=ct.ComputeUnit.CPU_AND_NE, function_name='infer')
                    # Create shared state
                    self.states['transformer'] = self.models['2_prefill'].make_state()
                    DebugLog("Combined part2 model loaded successfully")
                elif part == '2' and not self.use_combined_part2:
                    # Load regular part2 model
                    base_name = f"llama32_part2{quant_suffix}"
                    model_path = self.find_model_path(base_name, "Regular part2 model")
                    
                    DebugLog(f"Loading regular part2 model: {model_path}")
                    self.models[model_key] = load_model(model_path)
                    self.states['transformer'] = self.models[model_key].make_state()
                    DebugLog("Regular part2 model loaded successfully")
                elif part in ['2D1S', '2D2S'] and self.use_split_functions:
                    # Load split model with prefill/infer functions
                    base_name = f"llama32_part{part}{quant_suffix}"
                    model_path = self.find_model_path(base_name, f"Split model part {part}")
                    
                    DebugLog(f"Loading split model part {part}: {model_path}")
                    # Load prefill function
                    self.models[f'{part}_prefill'] = load_model(model_path, compute_unit=ct.ComputeUnit.CPU_AND_NE, function_name='prefill')
                    # Load infer function
                    self.models[f'{part}_infer'] = load_model(model_path, compute_unit=ct.ComputeUnit.CPU_AND_NE, function_name='infer')
                    # Create shared state for first part only
                    if part == '2D1S':
                        self.states['transformer'] = self.models[f'{part}_infer'].make_state()
                    DebugLog(f"Split model part {part} loaded successfully")
                elif part.endswith('S') and self.use_quad_split_combined:
                    # Load combined quad split model with prefill/infer functions
                    base_name = f"llama32_part{part}{quant_suffix}"
                    model_path = self.find_model_path(base_name, f"Combined quad split part {part}")
                    
                    DebugLog(f"Loading combined quad split part {part}: {model_path}")
                    # Load prefill function
                    self.models[f'{part}_prefill'] = load_model(model_path, compute_unit=ct.ComputeUnit.CPU_AND_NE, function_name='prefill')
                    # Load infer function
                    self.models[f'{part}_infer'] = load_model(model_path, compute_unit=ct.ComputeUnit.CPU_AND_NE, function_name='infer')
                    # Create shared state for first part only
                    if part == '2Q1S':
                        self.states['transformer'] = self.models[f'{part}_infer'].make_state()
                        DebugLog(f"Created shared transformer state for all quad split parts")
                    DebugLog(f"Combined quad split part {part} loaded successfully")
                elif part.startswith('2Q') and self.use_quad_split:
                    # Load quad split model with prefill/infer functions
                    # Append 'S' to part name for file lookup
                    base_name = f"llama32_part{part}S{quant_suffix}"
                    model_path = self.find_model_path(base_name, f"Quad split part {part}")
                    
                    DebugLog(f"Loading quad split part {part}: {model_path}")
                    # Load prefill function
                    self.models[f'{part}_prefill'] = load_model(model_path, compute_unit=ct.ComputeUnit.CPU_AND_NE, function_name='prefill')
                    # Load infer function
                    self.models[f'{part}_infer'] = load_model(model_path, compute_unit=ct.ComputeUnit.CPU_AND_NE, function_name='infer')
                    # Create shared state for first part only
                    if part == '2Q1':
                        self.states['transformer'] = self.models[f'{part}_infer'].make_state()
                        DebugLog(f"Created shared transformer state for all quad split parts")
                        print(f"Created shared transformer state for all quad split parts")
                    print(f"Quad split part {part} loaded successfully")
                else:
                    # Load regular models (part 1 and part3)
                    base_name = f"llama32_part{part}{quant_suffix}"
                    model_path = self.find_model_path(base_name, f"Regular part {part}")
                    
                    print(f"[MODEL LOAD] Regular part {part}:")
                    print(f"  - File: {model_path}")
                    print(f"  - Loading as: '{model_key}'")
                    
                    # Try loading with CPU first, then fall back to CPU_AND_NE if needed
                    try:
                        self.models[model_key] = load_model(model_path, compute_unit=ct.ComputeUnit.CPU_AND_NE)
                        print(f"  - Loaded with CPU_AND_NE compute unit")
                    except Exception as cpu_error:
                        print(f"  - CPU load failed, trying CPU_AND_NE: {str(cpu_error)}")
                        self.models[model_key] = load_model(model_path, compute_unit=ct.ComputeUnit.CPU)
                        print(f"  - Loaded with CPU compute unit")
                    
                print(f"[MODEL LOAD] Current model_parts keys: {list(self.models.keys())}")
                    
            except Exception as e:
                print(f"Error loading model part {part}: {str(e)}")
                raise

    def run_transformer_prefill(self, hidden_states, update_mask, position_ids, causal_mask, current_pos):
        """Run the transformer model in prefill mode."""
        if self.use_split_functions:
            # Use prefill variants for split model
            for part in ['2D1S', '2D2S']:
                inputs = {
                    'hidden_states': hidden_states.numpy(),
                    'position_ids': position_ids.numpy(),
                    'causal_mask': causal_mask.numpy(),
                    'start_pos': current_pos.numpy()
                }
                output = self.models[f'{part}_prefill'].predict(inputs, self.states['transformer'])
                hidden_states = torch.from_numpy(output['dummy_output'])
            return hidden_states
        else:
            # Use existing prefill implementation
            return super().run_transformer_prefill(hidden_states, update_mask, position_ids, causal_mask, current_pos)

    def run_transformer_infer(self, hidden_states, update_mask, position_ids, causal_mask, current_pos):
        """Run the transformer model in infer mode."""
        if self.use_split_functions:
            # Use infer variants for split model
            for part in ['2D1S', '2D2S']:
                inputs = {
                    'hidden_states': hidden_states.numpy(),
                    'update_mask': update_mask.numpy(),
                    'position_ids': position_ids.numpy(),
                    'causal_mask': causal_mask.numpy(),
                    'current_pos': current_pos.numpy()
                }
                output = self.models[f'{part}_infer'].predict(inputs, self.states['transformer'])
                hidden_states = torch.from_numpy(output['transformer_output'])
            return hidden_states
        else:
            # Use existing infer implementation
            return super().run_transformer_infer(hidden_states, update_mask, position_ids, causal_mask, current_pos)

    def get_state(self, part):
        """Get the appropriate state for a model part."""
        return self.states['transformer']

    def run_embeddings(self, input_ids):
        """Run the embeddings model (part 1)."""
        if '1' not in self.models:
            raise ValueError("Embeddings model (part 1) not loaded")
            
        output_dict = self.models['1'].predict({
            'input_ids': input_ids.numpy()
        })
        return torch.from_numpy(output_dict['hidden_states'])
    
    def run_transformer(self, hidden_states, update_mask, position_ids, causal_mask, current_pos, part='2'):
        """Run the transformer model."""
        if part not in self.models:
            raise ValueError(f"Transformer model (part {part}) not loaded")
            
        inputs = {
            'hidden_states': hidden_states.numpy(),
            'update_mask': update_mask.numpy(),
            'position_ids': position_ids.numpy(),
            'causal_mask': causal_mask.numpy(),
            'current_pos': current_pos.numpy()
        }
        
        output_dict = self.models[part].predict(inputs, self.get_state(part))
        return torch.from_numpy(output_dict['transformer_output'])

    def run_transformer_splits(self, hidden_states, update_mask, position_ids, causal_mask, current_pos):
        """Run through transformer splits based on model configuration."""
        if not self.use_split_model:
            return self.run_transformer(hidden_states, update_mask, position_ids, causal_mask, current_pos)
            
        # Handle different split configurations
        if any(part.startswith('2Q') for part in self.model_parts):  # Quad split
            for i in range(1, 5):
                part = f'2Q{i}'
                hidden_states = self.run_transformer(
                    hidden_states, update_mask, position_ids, causal_mask, current_pos, part=part
                )
        elif any(part.startswith('2O') for part in self.model_parts):  # Octa split
            for i in range(1, 9):
                part = f'2O{i}'
                hidden_states = self.run_transformer(
                    hidden_states, update_mask, position_ids, causal_mask, current_pos, part=part
                )
        elif any(part.startswith('2D') for part in self.model_parts):  # Dual split
            # Run through both parts of the dual split
            for base_part in ['2D1', '2D2']:
                # Find the correct model key (with lut suffix if present)
                part_key = next(key for key in self.models.keys() if key.startswith(f'{base_part}_') or key == base_part)
                
                # Use the shared transformer state
                if 'transformer' not in self.states:
                    raise ValueError("Transformer state not initialized. Make sure 2D1 is loaded first.")
                
                inputs = {
                    'hidden_states': hidden_states.numpy(),
                    'update_mask': update_mask.numpy(),
                    'position_ids': position_ids.numpy(),
                    'causal_mask': causal_mask.numpy(),
                    'current_pos': current_pos.numpy()
                }
                output_dict = self.models[part_key].predict(inputs, self.states['transformer'])
                hidden_states = torch.from_numpy(output_dict['transformer_output'])
        
        return hidden_states

    def run_lm_head(self, hidden_states):
        """Run the LM head model (part 3)."""
        if '3' not in self.models:
            raise ValueError("LM head model (part 3) not loaded")
            
        output_dict = self.models['3'].predict({
            'hidden_states': hidden_states.numpy()
        })
        
        # Handle split logits
        logits_parts = []
        for i in range(1, 9):  # logits1 through logits8
            logits_key = f'logits{i}'
            if logits_key in output_dict:
                logits_part = torch.from_numpy(output_dict[logits_key])
                logits_parts.append(logits_part)
        
        # Concatenate along the vocabulary dimension
        return torch.cat(logits_parts, dim=-1)

    def run_full_model(self, input_ids, update_mask, position_ids, causal_mask, current_pos):
        """Run the full model."""
        if 'full' not in self.models:
            raise ValueError("Full model not loaded")
            
        # Update context size from global
        self.context_size = CONTEXT_LENGTH
            
        #kv_ was removed from the input names
        inputs = {
            'input_ids': input_ids.numpy(),
            'update_mask': update_mask.numpy(),
            'position_ids': position_ids.numpy(),
            'causal_mask': causal_mask.numpy(),
            'current_pos': current_pos.numpy()
        }
        
        # Print shapes of all inputs
        if False:
            print("[DEBUG] Input shapes:")
            for key, value in inputs.items():
                print(f"  {key}: {value.shape}")

        output_dict = self.models['full'].predict(inputs, self.states['transformer'])
        
        # Handle split logits if necessary
        if ENABLE_VACAB_SPLIT8:
            logits_parts = []
            for i in range(1, 9):
                logits_parts.append(output_dict[f'logits{i}'])
            logits = np.concatenate(logits_parts, axis=-1)
        else:
            logits = output_dict['logits']
        
        return torch.from_numpy(logits)

def make_causal_mask(length, start):

    # Initialize the mask with -inf
    mask = np.full((1, 1, length, length), -np.inf, dtype=np.float16)

    # Create row and column indices
    row_indices = np.arange(length).reshape(length, 1)  # Column vector
    col_indices = np.arange(length).reshape(1, length)  # Row vector

    # Set allowed positions to 0 where col_index is within the allowed range of row_index
    mask[:, :, col_indices <= (row_indices + start)] = 0
    return mask

def initialize_tokenizer(model_path):
    """Initialize and configure the tokenizer."""
    try:
        print(f"[DEBUG] Loading tokenizer from model path: {model_path}")
        tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
        
        print("\n[DEBUG] Tokenizer Configuration:")
        print(f"Tokenizer type: {type(tokenizer)}")
        print(f"Tokenizer name: {tokenizer.__class__.__name__}")
        print(f"Vocabulary size: {len(tokenizer)}")
        print(f"Model max length: {tokenizer.model_max_length}")
        #print(f"Chat template: {tokenizer.chat_template if hasattr(tokenizer, 'chat_template') else 'None'}")

        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token
            tokenizer.pad_token_id = tokenizer.eos_token_id
            print("[DEBUG] Set PAD token to EOS token")
        
        print(f"\n[DEBUG] Special Tokens:")
        print(f"PAD token: '{tokenizer.pad_token}' (ID: {tokenizer.pad_token_id})")
        print(f"EOS token: '{tokenizer.eos_token}' (ID: {tokenizer.eos_token_id})")
        print(f"BOS token: '{tokenizer.bos_token}' (ID: {tokenizer.bos_token_id})")
        print(f"UNK token: '{tokenizer.unk_token}' (ID: {tokenizer.unk_token_id})")

        return tokenizer
        
    except Exception as e:
        print(f"[ERROR] Failed to load tokenizer from {model_path}")
        return None

class TokenPrinter:
    """Handles background printing of generated tokens."""
    def __init__(self, tokenizer):
        self.tokenizer = tokenizer
        self.token_queue = queue.Queue()
        self.stop_event = threading.Event()
        self.thread = None
        self.buffer = ""
        self.lock = threading.Lock()
        self.thinking = True  # Track if we're still in thinking mode
        self.decoding_buffer = []  # <-- Buffer for token IDs
        self.start()

    def start(self):
        """Start the printer thread."""
        if self.thread is None:
            self.thread = threading.Thread(target=self._print_worker)
            self.thread.daemon = True
            self.thread.start()

    def add_token(self, token_id):
        """Add a token to the print queue."""
        if not self.stop_event.is_set():
            self.token_queue.put(token_id)

    def drain_buffer(self):
        """
        Decode token IDs from self.decoding_buffer in the main thread,
        then print them with the correct color logic.
        """
        if not self.decoding_buffer:
            return

        # Decode all tokens at once in the main thread.
        token_str = self.tokenizer.decode(self.decoding_buffer)
        self.decoding_buffer.clear()

        # Color-handling logic. Check for "</think>" and handle self.thinking.
        if self.thinking and "</think>" in token_str:
            self.thinking = False
            parts = token_str.split("</think>")
            if len(parts) > 0:
                print(parts[0] + "</think>", end='', flush=True)
                if len(parts) > 1:
                    print(LIGHT_BLUE + parts[1], end='', flush=True)
        else:
            if not self.thinking:
                print(LIGHT_BLUE + token_str, end='', flush=True)
            else:
                print(token_str, end='', flush=True)

    def _print_worker(self):
        """Worker thread that takes token_ids from the queue but doesn't decode."""
        while not self.stop_event.is_set():
            try:
                token_id = self.token_queue.get(timeout=0.01)
                with self.lock:
                    # Just store the token_id, decode later on the main thread
                    self.decoding_buffer.append(token_id)
                self.token_queue.task_done()
            except queue.Empty:
                continue
            except Exception as e:
                print(f"\n[ERROR] Token printer error: {str(e)}")
                break

    def stop(self):
        """Stop the printer thread."""
        if self.thread and self.thread.is_alive():
            self.stop_event.set()
            try:
                self.thread.join(timeout=1.0)
            except Exception:
                pass
            print(RESET_COLOR)  # Reset color at the end
        return self.buffer

def parse_coreml_error(error_str):
    """Parse CoreML error message to extract shape information.
    
    Args:
        error_str: The error message string from CoreML
        
    Returns:
        tuple: (got_shape, expected_shape) or None if parsing fails
    """
    try:
        # Extract shapes from error message using regex
        pattern = r"shape \(([\d\s x]+)\) does not match the shape \(([\d\s x]+)\)"
        match = re.search(pattern, str(error_str))
        if match:
            got_shape = tuple(int(x) for x in match.group(1).split('x'))
            expected_shape = tuple(int(x) for x in match.group(2).split('x'))
            return got_shape, expected_shape
        return None
    except Exception as e:
        print(f"Error parsing CoreML error message: {e}")
        return None

def handle_coreml_shape_error(e, model_name=""):
    """Handle CoreML shape mismatch errors with detailed information.
    
    Args:
        e: The exception object
        model_name: Name of the model for better error reporting
    """
    error_str = str(e)
    if "MultiArray shape" in error_str:
        shape_info = parse_coreml_error(error_str)
        if shape_info:
            got_shape, expected_shape = shape_info
            print(f"\n[ERROR] Shape mismatch in {model_name}:")
            print(f"  Got shape:      {' x '.join(str(x) for x in got_shape)}")
            print(f"  Expected shape: {' x '.join(str(x) for x in expected_shape)}")
            print("This usually indicates a mismatch between the model's expected context length")
            print("and the actual input being provided.")
        else:
            print(f"\n[ERROR] Shape mismatch error in {model_name}:")
            print(f"  {error_str}")
    else:
        print(f"\n[ERROR] CoreML error in {model_name}:")
        print(f"  {error_str}")

def PreFillChunk(model_parts, input_ids, current_pos, context_size, causal_mask, batch_size=64):
    tokens_to_process = current_pos
    batch_pos = 0
    
    while batch_pos < tokens_to_process:
        batch_end = min(batch_pos + batch_size, tokens_to_process)
        current_batch_size = batch_end - batch_pos
        
        try:
            # Get current batch of tokens
            batch_input = input_ids[:, batch_pos:batch_end]
            
            # Pad if needed
            if current_batch_size < batch_size:
                batch_input = F.pad(
                    batch_input,
                    (0, batch_size - current_batch_size),
                    value=0
                )
            
            # Generate position IDs for this batch
            position_ids = torch.arange(batch_pos, batch_pos + batch_size, dtype=torch.int32)
            
            # Prepare causal mask for this batch
            multiple_causal_mask = causal_mask[:, :, batch_pos:batch_pos + batch_size, :]
            
            # Find the correct model key for part 1 (with lut suffix if present)
            part1_key = next(key for key in model_parts.keys() if key.startswith('1_') or key == '1')
            
            try:
                # Run embeddings (part 1)
                hidden_states = model_parts[part1_key].predict({'input_ids': batch_input.numpy()})['hidden_states']
                hidden_states = torch.from_numpy(hidden_states)
            except Exception as e:
                handle_coreml_shape_error(e, f"embeddings model (part {part1_key})")
                raise

            # Get shared transformer state
            shared_state = model_parts['states']['transformer']

            # Handle different model configurations
            if any(f'{part}_prefill' in model_parts for part in ['2D1S', '2D2S']):
                # S123 mode with prefill/infer functions
                for part in ['2D1S', '2D2S']:
                    try:
                        inputs = {
                            'hidden_states': hidden_states.numpy(),
                            'position_ids': position_ids.numpy(),
                            'causal_mask': multiple_causal_mask.numpy(),
                            'start_pos': np.array([batch_pos], dtype=np.int32)
                        }
                        output = model_parts[f'{part}_prefill'].predict(inputs, shared_state)
                        hidden_states = torch.from_numpy(output['dummy_output'])
                    except Exception as e:
                        handle_coreml_shape_error(e, f"transformer model (part {part})")
                        raise
            elif any(part.endswith('S') for part in model_parts if part.startswith('2Q')):
                # Q123S mode with combined quad split
                for i in range(1, 5):
                    part = f'2Q{i}S'
                    try:
                        inputs = {
                            'hidden_states': hidden_states.numpy(),
                            'position_ids': position_ids.numpy(),
                            'causal_mask': multiple_causal_mask.numpy(),
                            'start_pos': np.array([batch_pos], dtype=np.int32)
                        }
                        output = model_parts[f'{part}_prefill'].predict(inputs, shared_state)
                        hidden_states = torch.from_numpy(output['dummy_output'])
                    except Exception as e:
                        handle_coreml_shape_error(e, f"transformer model (part {part})")
                        raise
            elif any(part.startswith('2Q') for part in model_parts):
                # Q123 mode with quad split
                for i in range(1, 5):
                    part = f'2Q{i}'
                    if f'{part}_prefill' in model_parts:
                        # Use prefill function if available
                        try:
                            inputs = {
                                'hidden_states': hidden_states.numpy(),
                                'position_ids': position_ids.numpy(),
                                'causal_mask': multiple_causal_mask.numpy(),
                                'start_pos': np.array([batch_pos], dtype=np.int32)
                            }
                            output = model_parts[f'{part}_prefill'].predict(inputs, shared_state)
                            hidden_states = torch.from_numpy(output['dummy_output'])
                        except Exception as e:
                            handle_coreml_shape_error(e, f"transformer model (part {part})")
                            raise
                    else:
                        # Use regular predict if no prefill function
                        try:
                            inputs = {
                                'hidden_states': hidden_states.numpy(),
                                'update_mask': torch.zeros((1, 1, context_size, 1), dtype=torch.float16).numpy(),
                                'position_ids': position_ids.numpy(),
                                'causal_mask': multiple_causal_mask.numpy(),
                                'current_pos': position_ids[0].numpy()
                            }
                            output = model_parts[part].predict(inputs, shared_state)
                            hidden_states = torch.from_numpy(output['transformer_output'])
                        except Exception as e:
                            handle_coreml_shape_error(e, f"transformer model (part {part})")
                            raise
            elif any(key.startswith('2D') for key in model_parts.keys()):
                # 123D mode with dual split (no prefill functions)
                for base_part in ['2D1', '2D2']:
                    # Find the correct model key (with lut suffix if present)
                    part_key = next(key for key in model_parts.keys() if key.startswith(f'{base_part}_') or key == base_part)
                    try:
                        inputs = {
                            'hidden_states': hidden_states.numpy(),
                            'update_mask': torch.zeros((1, 1, context_size, 1), dtype=torch.float16).numpy(),
                            'position_ids': position_ids.numpy(),
                            'causal_mask': multiple_causal_mask.numpy(),
                            'current_pos': position_ids[0].numpy()
                        }
                        output = model_parts[part_key].predict(inputs, shared_state)
                        hidden_states = torch.from_numpy(output['transformer_output'])
                    except Exception as e:
                        handle_coreml_shape_error(e, f"transformer model (part {part_key})")
                        raise
            
            batch_pos = batch_end
            
        except Exception as e:
            print(f"\n[ERROR] Failed processing batch {batch_pos}-{batch_end}:")
            print(f"  {str(e)}")
            raise

    return torch.tensor([current_pos], dtype=torch.int32)

def PreFillChunkOneByOne(model_parts, input_ids, current_pos, context_size, causal_mask):
    """Process prefill tokens one at a time using infer function."""
    #print(f"[DEBUG] Starting one-by-one prefill for {current_pos} tokens")
    
    for pos in range(current_pos):
        # Get current token
        current_token = input_ids[:, pos:pos+1]
        single_causal_mask = causal_mask[:, :, pos:pos+1, :]
        current_pos_tensor = torch.tensor([pos], dtype=torch.int32)
        
        # Find the correct model key for part 1 (with lut suffix if present)
        part1_key = next(key for key in model_parts.keys() if key.startswith('1_') or key == '1')
        
        # Run embeddings (part 1)
        hidden_states = torch.from_numpy(model_parts[part1_key].predict({
            'input_ids': current_token.numpy()
        })['hidden_states'])
        
        #print(f"[DEBUG] pos: {pos} token: {current_token.item()} states: {hidden_states.shape}")
        
        # Get shared transformer state
        shared_state = model_parts['states']['transformer']
        
        # Handle different model configurations
        if any(f'{part}_infer' in model_parts for part in ['2D1S', '2D2S']):
            # S123 mode with prefill/infer functions
            for part in ['2D1S', '2D2S']:
                inputs = {
                    'hidden_states': hidden_states.numpy(),
                    'update_mask': np.zeros((1, 1, context_size, 1), dtype=np.float16),
                    'position_ids': current_pos_tensor.numpy(),
                    'causal_mask': single_causal_mask.numpy(),
                    'current_pos': current_pos_tensor.numpy()
                }
                output = model_parts[f'{part}_infer'].predict(inputs, shared_state)
                hidden_states = torch.from_numpy(output['transformer_output'])
        elif any(key.startswith('2D') for key in model_parts.keys()):
            # 123D mode or individual parts mode
            for base_part in ['2D1', '2D2']:
                # Find the correct model key (with lut suffix if present)
                part_key = next(key for key in model_parts.keys() if key.startswith(f'{base_part}_') or key == base_part)
                inputs = {
                    'hidden_states': hidden_states.numpy(),
                    'update_mask': np.zeros((1, 1, context_size, 1), dtype=np.float16),
                    'position_ids': current_pos_tensor.numpy(),
                    'causal_mask': single_causal_mask.numpy(),
                    'current_pos': current_pos_tensor.numpy()
                }
                output = model_parts[part_key].predict(inputs, shared_state)
                hidden_states = torch.from_numpy(output['transformer_output'])
    
    return torch.tensor([current_pos], dtype=torch.int32)

def run_inference(model_parts, tokenizer, prompt, context_size=CONTEXT_LENGTH, num_iterations=5, temperature=0.0):
    """Run inference using model parts."""
    DebugLog(f"\nPrompt: {prompt}")
    if temperature > 0:
        DebugLog(f"Using temperature: {temperature}")
    
    # Prepare the prompt
    messages = [{"role": "user", "content": prompt}]
    formatted_input = tokenizer.apply_chat_template(
        messages,
        return_tensors="pt",
        add_generation_prompt=False
    )
    decoded_input = tokenizer.decode(formatted_input[0])    
    DebugLog(f"Decoded input: {decoded_input}")
    DebugLog(f"prompt: {prompt}")
    DebugLog(f"formatted_input size: {formatted_input.size()}")
    DebugLog(f"formatted_input: {formatted_input}")

    base_input_ids = formatted_input.to(torch.int32)
    context_pos = base_input_ids.size(1)
    prompt_tokens = context_pos - 1

    # Pad sequence to context_size
    input_ids = F.pad(
        base_input_ids,
        (0, context_size - context_pos),
        value=0
    )

    DebugLog(f"context_pos (prompt length) = {context_pos}")
    
    # Create causal mask
    causal_mask = make_causal_mask(context_size, 0)
    causal_mask = torch.tensor(causal_mask, dtype=torch.float16)

    # Prefill phase
    DebugLog("\nStarting prefill...")
    start_time = time.time()
    
    # Check if we're using 123D mode or individual parts
    use_single_token = any(key.contains('2D') for key in model_parts.keys()) or any(part.contains('2D') for part in model_parts)
    
    if False: #use_single_token:
        print("\nRunning ST prefill...")
        current_pos = PreFillChunkOneByOne(
            model_parts,
            input_ids,
            context_pos - 1,
            context_size,
            causal_mask
        )
        sequential_prefill_time = time.time() - start_time
        batch_prefll_time = 0.0
    else:
        print("\nRunning batch prefill...")
        current_pos = PreFillChunk(
            model_parts,
            input_ids,
            context_pos - 1,
            context_size,
            causal_mask,
            batch_size=PREFILL_BATCH_SIZE
        )
        batch_prefill_time = time.time() - start_time
        sequential_prefill_time = 0.0

    # Initialize token printer
    token_printer = TokenPrinter(tokenizer)
    print("\nGenerated response:", end=' ', flush=True)

    # Generation loop
    start_gen_time = time.time()
    pos = context_pos - 1
    
    tokens_generated = 0
    try:
        DebugLog(f"\nStarting inference... context_pos: {context_pos}")
        pos = context_pos
        for step in range(num_iterations):
            with torch.no_grad():
                # Check if we need to shift cache
                if pos >= context_size - 2:
                    shift_size = context_size // 4
                    new_size = context_size - shift_size
                    
                    # Create shifted input_ids and preserve the most recent context
                    # Don't add BOS token since this is a continuation
                    tmp = torch.zeros((1, context_size), dtype=torch.int32)
                    tmp[:,0:new_size] = input_ids[:,shift_size:context_size]
                    input_ids = tmp
                    
                    # Adjust position after shift
                    pos = new_size
                    
                    # Create update mask for current position
                    update_mask = torch.zeros((1, 1, context_size, 1), dtype=torch.float16)
                    update_mask[0, 0, pos-1, 0] = 1.0
                    
                    #print(f"\n[DEBUG] Shifted cache by {shift_size} tokens, maintaining context window of {new_size} tokens, new pos: {pos}")
                    
                    # For Q123 mode, we need to run prefill on the shifted sequence
                    if any(part.startswith('2Q') for part in model_parts):
                        # Run prefill using PreFillChunk with proper batch size
                        # No need to adjust position since we're not adding BOS
                        current_pos = PreFillChunk(
                            model_parts,
                            input_ids,
                            pos-1,  # how much ob
                            context_size,  # Use full context size
                            causal_mask,
                            batch_size=PREFILL_BATCH_SIZE
                        )
                        #print(f"[DEBUG] Ran prefill after shift for position {pos} with batch_size={PREFILL_BATCH_SIZE}")
                        # Position should already be correct since we didn't add BOS
                        pos = current_pos
                
                # Get current token
                current_token = input_ids[:, pos-1:pos]
                
                # Find the correct model key for part 1 (with lut suffix if present)
                part1_key = next(key for key in model_parts.keys() if key.startswith('1_') or key == '1')
                
                # Run embeddings (part 1)
                hidden_states = model_parts[part1_key].predict({
                    'input_ids': current_token.numpy()
                })['hidden_states']
                hidden_states = torch.from_numpy(hidden_states)
                
                # Get shared transformer state
                shared_state = model_parts['states']['transformer']
                
                # Create update mask for current position
                update_mask = torch.zeros((1, 1, context_size, 1), dtype=torch.float16)
                update_mask[0, 0, pos-1, 0] = 1.0
                
                # Create position IDs tensor
                position_ids = torch.tensor([pos-1], dtype=torch.int32)
                
                # Create causal mask for current position
                single_causal_mask = causal_mask[:, :, pos-1:pos, :]
                
                # Run transformer layers based on model type
                if any(f'{part}_infer' in model_parts for part in ['2D1S', '2D2S']):
                    # S123 mode with prefill/infer functions
                    for part in ['2D1S', '2D2S']:
                        inputs = {
                            'hidden_states': hidden_states.numpy(),
                            'update_mask': update_mask.numpy(),
                            'position_ids': position_ids.numpy(),
                            'causal_mask': single_causal_mask.numpy(),
                            'current_pos': position_ids.numpy()
                        }
                        output = model_parts[f'{part}_infer'].predict(inputs, shared_state)
                        hidden_states = torch.from_numpy(output['transformer_output'])
                elif any(part.startswith('2Q') for part in model_parts.keys()):
                    # Q123S mode with combined quad split
                    for i in range(1, 5):
                        part = f'2Q{i}S'
                        inputs = {
                            'hidden_states': hidden_states.numpy(),
                            'update_mask': update_mask.numpy(),
                            'position_ids': position_ids.numpy(),
                            'causal_mask': single_causal_mask.numpy(),
                            'current_pos': position_ids.numpy()
                        }
                        output = model_parts[f'{part}_infer'].predict(inputs, shared_state)
                        hidden_states = torch.from_numpy(output['transformer_output'])
                elif any(part.startswith('2Q') for part in model_parts):
                    # Q123 mode with quad split
                    #print(f"[DEBUG] Running quad split inference at position {pos}")
                    for i in range(1, 5):
                        part = f'2Q{i}'
                        if f'{part}_infer' in model_parts:
                            # Use infer function if available
                            inputs = {
                                'hidden_states': hidden_states.numpy(),
                                'update_mask': update_mask.numpy(),
                                'position_ids': position_ids.numpy(),
                                'causal_mask': single_causal_mask.numpy(),
                                'current_pos': position_ids.numpy()
                            }
                            output = model_parts[f'{part}_infer'].predict(inputs, shared_state)
                        else:
                            # Use regular predict if no infer function
                            inputs = {
                                'hidden_states': hidden_states.numpy(),
                                'update_mask': update_mask.numpy(),
                                'position_ids': position_ids.numpy(),
                                'causal_mask': single_causal_mask.numpy(),
                                'current_pos': position_ids.numpy()
                            }
                            output = model_parts[part].predict(inputs, shared_state)
                        hidden_states = torch.from_numpy(output['transformer_output'])
                elif any(key.startswith('2D') for key in model_parts.keys()):
                    # 123D mode or individual parts mode
                    for base_part in ['2D1', '2D2']:
                        # Find the correct model key (with lut suffix if present)
                        part_key = next(key for key in model_parts.keys() if key.startswith(f'{base_part}_') or key == base_part)
                        inputs = {
                            'hidden_states': hidden_states.numpy(),
                            'update_mask': update_mask.numpy(),
                            'position_ids': position_ids.numpy(),
                            'causal_mask': single_causal_mask.numpy(),
                            'current_pos': position_ids.numpy()
                        }
                        output = model_parts[part_key].predict(inputs, shared_state)
                        hidden_states = torch.from_numpy(output['transformer_output'])
                else:
                    print("\n[ERROR] No transformer model parts found!")
                    break
                
                try:
                    # Run final layer norm and get logits
                    # Find the correct model key for part 3 (with lut suffix if present)
                    part3_key = next(key for key in model_parts.keys() if key.startswith('3_') or key == '3')
                    output_dict = model_parts[part3_key].predict({
                        'hidden_states': hidden_states.numpy()
                    })
                        
                    if ENABLE_VACAB_SPLIT8:
                        # Get all logits parts in a single call
                        logits_parts = []
                        for i in range(1, 9):
                            logits_parts.append(output_dict[f'logits{i}'])
                        logits = np.concatenate(logits_parts, axis=-1)
                    elif ENABLE_LOGITS2:
                        # Get both logits parts in a single call
                        logits = np.concatenate([
                            output_dict['logits1'],
                            output_dict['logits2']
                        ], axis=-1)
                    else:
                        logits = output_dict['logits']
                    
                    # Convert to tensor and get next token
                    logits = torch.from_numpy(logits)
                    
                    # Apply temperature if specified
                    if temperature > 0:
                        # Scale logits by temperature
                        logits = logits / temperature
                        # Apply softmax to get probabilities
                        probs = F.softmax(logits[0, -1, :], dim=-1)
                        # Sample from the distribution
                        next_token = torch.multinomial(probs, num_samples=1).item()
                    else:
                        # Use argmax if no temperature
                        next_token = torch.argmax(logits[0, -1, :]).item()
                    
                    # Add token to input sequence
                    input_ids[0, pos] = next_token
                    token_printer.add_token(next_token)
                    
                    # Safely decode tokens in the main thread
                    token_printer.drain_buffer()
                    
                    # Update position and count
                    pos += 1
                    tokens_generated += 1
                    
                    if next_token == tokenizer.eos_token_id:
                        print("\n[DEBUG] Generated EOS token, stopping...")
                        break
                except Exception as e:
                    print(f"\n[ERROR] Error in final layer or token generation: {str(e)}")
                    break
        
    except KeyboardInterrupt:
        print("\n[DEBUG] Interrupted by user")
    except Exception as e:
        print(f"\n[ERROR] Exception during inference: {str(e)}")
        print(traceback.format_exc())
    
    # Print timing statistics
    end_time = time.time()
    total_time = end_time - start_gen_time
    
    print(f"\n\nTotal time: {total_time:.2f} seconds")
    print(f"Generation tokens: {tokens_generated}")
    print(f"Prefill tokens: {prompt_tokens}")
    print(f"Total tokens (prefill + generation): {prompt_tokens + tokens_generated}")
    
    if prompt_tokens > 0:
        if batch_prefill_time > 0:  # If using batch prefill
            prefill_tokens_per_second = prompt_tokens / batch_prefill_time
            effective_prefill_tokens_per_second = prompt_tokens / batch_prefill_time  # Don't multiply by batch size
            print(f"Actual prefill tokens per second: {prefill_tokens_per_second:.2f}")
            print(f"Effective prefill tokens per second (batch={PREFILL_BATCH_SIZE}): {effective_prefill_tokens_per_second:.2f}")
        elif sequential_prefill_time > 0:  # If using sequential prefill
            prefill_tokens_per_second = prompt_tokens / sequential_prefill_time
            print(f"Sequential prefill tokens per second: {prefill_tokens_per_second:.2f}")
    
    if tokens_generated > 0:
        total_processing_time = total_time + (batch_prefill_time if batch_prefill_time > 0 else sequential_prefill_time)
        overall_tokens_per_second = (prompt_tokens + tokens_generated) / total_processing_time
        generation_tokens_per_second = tokens_generated / total_time
        print(f"Overall tokens processed per second (including prefill): {overall_tokens_per_second:.2f}")
        print(f"Generation-only tokens per second: {generation_tokens_per_second:.2f}")
    
    return token_printer.stop(), {
        'total_time': total_time,
        'batch_prefill_time': batch_prefill_time,
        'sequential_prefill_time': sequential_prefill_time,
        'tokens_generated': tokens_generated,
        'prompt_tokens': prompt_tokens
    }

def DebugLog(message, always_print=False):
    """Print debug message if ENABLE_CHAT_DEBUG is True or always_print is True.
    
    Args:
        message: Message to print
        always_print: If True, print regardless of ENABLE_CHAT_DEBUG setting
    """
    if ENABLE_CHAT_DEBUG or always_print:
        print(f"[DEBUG] {message}")

def chat_loop(model_parts, tokenizer, context_size=CONTEXT_LENGTH, temperature=0.0):
    """Interactive chat loop that maintains conversation history."""
    print("\nStarting chat session. Press Ctrl+D to exit.")
    print("Type your message and press Enter to chat.")
    
    DebugLog(f"Using context size: {context_size}")
    DebugLog(f"Temperature: {temperature}")
    DebugLog(f"Model parts loaded: {list(model_parts.keys())}")
    
    # Initialize conversation history
    conversation = []
    input_ids = None
    current_pos = 0
    
    try:
        while True:
            try:
                print(f"\n{LIGHT_GREEN}You:{RESET_COLOR}", end=' ', flush=True)
                user_input = input().strip()
            except EOFError:
                print("\nExiting chat...")
                break
            
            if not user_input:
                continue
                
            # Add user message to conversation
            conversation.append({"role": "user", "content": user_input})
            
            DebugLog("\nFormatting conversation:")
            for msg in conversation:
                DebugLog(f"  {msg['role']}: {msg['content'][:50]}...")
            
            # Format entire conversation
            formatted_input = tokenizer.apply_chat_template(
                conversation,
                return_tensors="pt",
                add_generation_prompt=True
            )
            
            DebugLog("\nTokenization:")
            DebugLog(f"Input token IDs: {formatted_input[0][:50]}...")
            DebugLog(f"Decoded tokens: {tokenizer.decode(formatted_input[0][:50])}...")
            DebugLog(f"Total tokens: {formatted_input.size(1)}")
            
            # Convert to int32 tensor
            base_input_ids = formatted_input.to(torch.int32)
            context_pos = base_input_ids.size(1)
            
            DebugLog(f"Context position: {context_pos}")
            
            # Check if we need to truncate history
            if context_pos >= context_size - 100:
                DebugLog(f"\nNeed to truncate: {context_pos} tokens > {context_size-100} limit")
                while context_pos >= context_size - 100 and len(conversation) > 2:
                    removed = conversation.pop(0)
                    DebugLog(f"Removed message: {removed['role']}: {removed['content'][:30]}...")
                    formatted_input = tokenizer.apply_chat_template(
                        conversation,
                        return_tensors="pt",
                        add_generation_prompt=True
                    )
                    base_input_ids = formatted_input.to(torch.int32)
                    context_pos = base_input_ids.size(1)
                    DebugLog(f"New context size: {context_pos}")
            
            # Pad sequence to context_size
            input_ids = F.pad(
                base_input_ids,
                (0, context_size - context_pos),
                value=0
            )
            
            # Create causal mask for the entire context
            causal_mask = make_causal_mask(context_size, 0)
            causal_mask = torch.tensor(causal_mask, dtype=torch.float16)
            DebugLog(f"Created causal mask with shape: {causal_mask.shape}")
            
            print(f"\n{LIGHT_BLUE}Assistant:{RESET_COLOR}", end=' ', flush=True)
            
            # Run prefill on entire context
            if False: #any(key.contains('2D') for key in model_parts.keys()):
                DebugLog("Using sequential prefill")
                current_pos = PreFillChunkOneByOne(
                    model_parts,
                    input_ids,
                    context_pos,
                    context_size,
                    causal_mask
                )
            elif any(part.startswith('2Q') for part in model_parts.keys()):
                DebugLog(f"Using quad split prefill (size={PREFILL_BATCH_SIZE})")
                current_pos = PreFillChunk(
                    model_parts,
                    input_ids,
                    context_pos,
                    context_size,
                    causal_mask,
                    batch_size=PREFILL_BATCH_SIZE
                )
            else:
                DebugLog(f"Using standard batch prefill (size={PREFILL_BATCH_SIZE})")
                current_pos = PreFillChunk(
                    model_parts,
                    input_ids,
                    context_pos,
                    context_size,
                    causal_mask,
                    batch_size=PREFILL_BATCH_SIZE
                )
            
            # Initialize token printer
            token_printer = TokenPrinter(tokenizer)
            
            # Generation loop
            pos = context_pos
            response_tokens = []
            generation_start_time = time.time()  # Add timing
            
            try:
                while True:  # Changed from context_size - 1 to True for continuous generation
                    # Check if we need to shift window
                    if pos >= context_size - 2:
                        DebugLog("\nShifting context window...")
                        
                        shift_size = context_size // 4  # Shift by 1/4 of context
                        new_size = context_size - shift_size
                        
                        # Create shifted input_ids and preserve the most recent context
                        tmp = torch.zeros((1, context_size), dtype=torch.int32)
                        tmp[:,0:new_size] = input_ids[:,shift_size:context_size]
                        input_ids = tmp
                        
                        # Adjust position after shift
                        pos = new_size
                        
                        DebugLog(f"Shifted window by {shift_size} tokens, new position: {pos}")
                        
                        # Run prefill on the shifted sequence
                        if False: #if any(key.contains('2D') for key in model_parts.keys()):
                            DebugLog("Running sequential prefill after shift")
                            current_pos = PreFillChunkOneByOne(
                                model_parts,
                                input_ids,
                                pos,
                                context_size,
                                causal_mask
                            )
                        else:
                            DebugLog("Running batch prefill after shift (size={PREFILL_BATCH_SIZE})")
                            current_pos = PreFillChunk(
                                model_parts,
                                input_ids,
                                pos,
                                context_size,
                                causal_mask,
                                batch_size=PREFILL_BATCH_SIZE
                            )
                    
                    # Get current token
                    current_token = input_ids[:, pos-1:pos]
                    
                    # Find the correct model key for part 1
                    part1_key = next(key for key in model_parts.keys() if key.startswith('1_') or key == '1')
                    
                    # Run embeddings (part 1)
                    hidden_states = model_parts[part1_key].predict({
                        'input_ids': current_token.numpy()
                    })['hidden_states']
                    hidden_states = torch.from_numpy(hidden_states)
                    
                    # Get shared transformer state
                    shared_state = model_parts['states']['transformer']
                    
                    # Create update mask for current position
                    update_mask = torch.zeros((1, 1, context_size, 1), dtype=torch.float16)
                    update_mask[0, 0, pos-1, 0] = 1.0
                    
                    # Create position IDs tensor
                    position_ids = torch.tensor([pos-1], dtype=torch.int32)
                    
                    # Create causal mask for current position
                    single_causal_mask = causal_mask[:, :, pos-1:pos, :]
                    
                    # Run transformer layers based on model type
                    if any(f'{part}_infer' in model_parts for part in ['2D1S', '2D2S']):
                        for part in ['2D1S', '2D2S']:
                            inputs = {
                                'hidden_states': hidden_states.numpy(),
                                'update_mask': update_mask.numpy(),
                                'position_ids': position_ids.numpy(),
                                'causal_mask': single_causal_mask.numpy(),
                                'current_pos': position_ids.numpy()
                            }
                            output = model_parts[f'{part}_infer'].predict(inputs, shared_state)
                            hidden_states = torch.from_numpy(output['transformer_output'])
                    elif any(part.startswith('2Q') for part in model_parts.keys()):
                        DebugLog(f"Running quad split inference at position {pos}")
                        for i in range(1, 5):
                            part = f'2Q{i}'
                            if f'{part}_infer' in model_parts:
                                # Use infer function if available
                                inputs = {
                                    'hidden_states': hidden_states.numpy(),
                                    'update_mask': update_mask.numpy(),
                                    'position_ids': position_ids.numpy(),
                                    'causal_mask': single_causal_mask.numpy(),
                                    'current_pos': position_ids.numpy()
                                }
                                output = model_parts[f'{part}_infer'].predict(inputs, shared_state)
                            else:
                                # Use regular predict if no infer function
                                inputs = {
                                    'hidden_states': hidden_states.numpy(),
                                    'update_mask': update_mask.numpy(),
                                    'position_ids': position_ids.numpy(),
                                    'causal_mask': single_causal_mask.numpy(),
                                    'current_pos': position_ids.numpy()
                                }
                                output = model_parts[part].predict(inputs, shared_state)
                            hidden_states = torch.from_numpy(output['transformer_output'])
                    elif any(key.startswith('2D') for key in model_parts.keys()):
                        for base_part in ['2D1', '2D2']:
                            part_key = next(key for key in model_parts.keys() if key.startswith(f'{base_part}_') or key == base_part)
                            inputs = {
                                'hidden_states': hidden_states.numpy(),
                                'update_mask': update_mask.numpy(),
                                'position_ids': position_ids.numpy(),
                                'causal_mask': single_causal_mask.numpy(),
                                'current_pos': position_ids.numpy()
                            }
                            output = model_parts[part_key].predict(inputs, shared_state)
                            hidden_states = torch.from_numpy(output['transformer_output'])
                    
                    # Run final layer norm and get logits
                    part3_key = next(key for key in model_parts.keys() if key.startswith('3_') or key == '3')
                    output_dict = model_parts[part3_key].predict({
                        'hidden_states': hidden_states.numpy()
                    })
                    
                    if ENABLE_VACAB_SPLIT8:
                        logits_parts = []
                        for i in range(1, 9):
                            logits_parts.append(output_dict[f'logits{i}'])
                        logits = np.concatenate(logits_parts, axis=-1)
                    else:
                        logits = output_dict['logits']
                    
                    # Convert to tensor and get next token
                    logits = torch.from_numpy(logits)
                    
                    # Apply temperature if specified
                    if temperature > 0:
                        logits = logits / temperature
                        probs = F.softmax(logits[0, -1, :], dim=-1)
                        next_token = torch.multinomial(probs, num_samples=1).item()
                    else:
                        next_token = torch.argmax(logits[0, -1, :]).item()
                    
                    # Add token to input sequence and response
                    input_ids[0, pos] = next_token
                    response_tokens.append(next_token)
                    token_printer.add_token(next_token)
                    
                    # Safely decode tokens in the main thread
                    token_printer.drain_buffer()
                    
                    pos += 1
                    
                    # Add debug output for generated tokens
                    if ENABLE_CHAT_DEBUG and len(response_tokens) > 0 and len(response_tokens) % 10 == 0:
                        DebugLog(f"\nGenerated {len(response_tokens)} tokens")
                        DebugLog(f"Last token: {next_token} -> '{tokenizer.decode([next_token])}'")
                    
                    if next_token == tokenizer.eos_token_id:
                        DebugLog("\nGenerated EOS token")
                        break
                
                # Get the complete response text and calculate stats
                response_text = token_printer.stop()
                generation_time = time.time() - generation_start_time
                tokens_per_second = len(response_tokens) / generation_time if generation_time > 0 else 0
                
                DebugLog(f"\nFinal response length: {len(response_tokens)} tokens")
                
                # Print generation stats in dark blue
                print(f"\n{DARK_BLUE}[{len(response_tokens)} tokens, {tokens_per_second:.1f} tokens/s]{RESET_COLOR}")
                
            except KeyboardInterrupt:
                DebugLog("\nGeneration interrupted by user")
                response_text = token_printer.stop()
                generation_time = time.time() - generation_start_time
                tokens_per_second = len(response_tokens) / generation_time if generation_time > 0 else 0
                print(f"\n{DARK_BLUE}[{len(response_tokens)} tokens, {tokens_per_second:.1f} tokens/s]{RESET_COLOR}")
            
            # Add assistant's response to conversation history
            conversation.append({"role": "assistant", "content": response_text})
                
    except Exception as e:
        print(f"\n[ERROR] Chat loop error: {str(e)}")
        print(traceback.format_exc())

def main():
    global CONTEXT_LENGTH, PREFILL_BATCH_SIZE, MODEL_PATH
    
    print("ANEMLL Chat. Pre-relase alpha version, 2025-01-31")
    print("Copyright (c) 2025, Anemll  All rights reserved.")
    # Set default parameters
    model_type = "Q123"  # Default model type
    lut_suffix = "lut4"  # Default LUT suffix
    temperature = 0.0
    model_parts = {}
    model_path = "."  # Default to current directory
    
    if len(sys.argv) < 2:
        print("Usage: python chat.py [model_parts] [options]")
        print("Usage: python chat.py [model_parts] [options]")
        print("\nOptions:")
        print("  -d PATH                  # Model directory path (for both tokenizer and CoreML models)")
        print("  S123                     # Combined split model (2D1S+2D2S)")
        print("  C123                     # Combined part2 model with prefill/infer")
        print("  Q123                     # Quad split model (2Q1-2Q4) [default]")
        print("  Q123S                    # Combined quad split model (2Q1S-2Q4S)")
        print("  1 2D1 2D2 3             # Individual split parts")
        print("  pfN                      # Prefill batch size (e.g., pf128)")
        print("  ctx=N                    # Context length (e.g., ctx=2048) [default: 1024]")
        print("  temp=X                   # Temperature for sampling (e.g., temp=0.01)")
        print("  lut4                     # LUT suffix [default]")
        print("\nDefault configuration: Q123 lut4 ctx=1024")
        print("         python chat.py Q123 -d  ../anemll-DeepSeek-8B-ctx1024")
        # Use defaults instead of exiting
        print("\nUsing default configuration...")
    else:
        # Process command line arguments
        i = 1
        while i < len(sys.argv):
            if sys.argv[i] == '-d' and i + 1 < len(sys.argv):
                model_path = sys.argv[i + 1]
                i += 2
                # Extract context length from model path if present
                ctx_match = re.search(r'ctx(\d+)', model_path)
                if ctx_match:
                    ctx_value = int(ctx_match.group(1))
                    if 512 <= ctx_value <= 4096*2:
                        CONTEXT_LENGTH = ctx_value
                        print(f"Setting context length to {CONTEXT_LENGTH} from model path")
                continue
            elif sys.argv[i].startswith('lut'):
                lut_suffix = sys.argv[i]
            elif sys.argv[i] in ['S123', 'Q123', 'Q123S', 'C123', '123D']:
                model_type = sys.argv[i]
            i += 1

    # Initialize tokenizer using the same path
    tokenizer = initialize_tokenizer(model_path)
    if tokenizer is None:
        print("[ERROR] Failed to initialize tokenizer. Exiting.")
        return

    # Process model parts
    parts = [model_type]
    if lut_suffix:
        parts.append(lut_suffix)
    
    try:
        split_model = SplitModelInference(parts, model_dir=model_path)
        model_parts.update(split_model.models)
        model_parts['states'] = {'transformer': split_model.states['transformer']}
    except Exception as e:
        print(f"Error loading model parts: {str(e)}")
        return
    
    # Process remaining arguments
    i = 1
    while i < len(sys.argv):
        arg = sys.argv[i]
        if arg.startswith('pf') and arg[2:].isdigit():
            PREFILL_BATCH_SIZE = int(arg[2:])
        elif arg.startswith('ctx='):
            try:
                CONTEXT_LENGTH = int(arg.split('=')[1])
            except (IndexError, ValueError):
                print(f"[WARNING] Invalid context length format. Using default: {CONTEXT_LENGTH}")
        elif arg.startswith('temp='):
            try:
                temperature = float(arg.split('=')[1])
                if temperature < 0:
                    print(f"[WARNING] Temperature must be non-negative. Using default: 0.0")
                    temperature = 0.0
            except (IndexError, ValueError):
                print(f"[WARNING] Invalid temperature format. Using default: 0.0")
        i += 1

    try:
        # Start interactive chat loop
        chat_loop(model_parts, tokenizer, context_size=CONTEXT_LENGTH, temperature=temperature)
    except Exception as e:
        print("An error occurred:")
        print(traceback.format_exc())

if __name__ == "__main__":
    main()