Upload folder using huggingface_hub
Browse files- .DS_Store +0 -0
- README +62 -0
- chat.py +1563 -0
- llama32_part1_lut4.mlmodelc.zip +3 -0
- llama32_part2Q1S_lut4.mlmodelc.zip +3 -0
- llama32_part2Q2S_lut4.mlmodelc.zip +3 -0
- llama32_part2Q3S_lut4.mlmodelc.zip +3 -0
- llama32_part2Q4S_lut4.mlmodelc.zip +3 -0
- llama32_part3_lut4.mlmodelc.zip +3 -0
- tokenizer.json +0 -0
- tokenizer_config.json +35 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
README
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ANEMLL
|
2 |
+
|
3 |
+
ANEMLL (pronounced like “animal”) is an open-source project
|
4 |
+
focused on accelerating the porting of Large Language Models (LLMs)
|
5 |
+
to tensor processors, starting with the Apple Neural Engine (ANE).
|
6 |
+
|
7 |
+
The goal is to provide a fully open-source pipeline
|
8 |
+
from model conversion to inference for common LLM architectures
|
9 |
+
running on ANE.
|
10 |
+
|
11 |
+
This enables seamless integration and on-device inference
|
12 |
+
for low-power applications on edge devices,
|
13 |
+
ensuring maximum privacy and security.
|
14 |
+
|
15 |
+
This is critical for autonomous applications,
|
16 |
+
where models run directly on the device
|
17 |
+
without requiring an internet connection.
|
18 |
+
|
19 |
+
License
|
20 |
+
|
21 |
+
ANEMLL is licensed under the MIT License.
|
22 |
+
https://opensource.org/license/mit
|
23 |
+
The model is based on Meta’s LLaMA 3.2 and may require a separate license.
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
This test model is exclusively for the DeepSeek R1 8B model converted for CoreML,
|
28 |
+
released before the official launch of the ANEMLL repository and minimal documentation.
|
29 |
+
It is intended for early adopters only who requested an early release.
|
30 |
+
|
31 |
+
|
32 |
+
Requirements
|
33 |
+
• macOS Sequoia with Apple Neural Engine and 16GB RAM
|
34 |
+
• CoreML Tools and HuggingFace Transformers libraries
|
35 |
+
• Python 3.9
|
36 |
+
|
37 |
+
chat.py provides a sample inference script.
|
38 |
+
We apologize for the current quality of chat.py and appreciate your patience.
|
39 |
+
|
40 |
+
|
41 |
+
Prerequisites:
|
42 |
+
pip install coremltools transformers
|
43 |
+
|
44 |
+
How to RUN:
|
45 |
+
python chat.py
|
46 |
+
|
47 |
+
Ctr-D to exit, Ctr-C to interrupt inference.
|
48 |
+
|
49 |
+
alternative way to run:
|
50 |
+
python chat.py Q123 -d /path/to/anemll-DeepSeek-8B-ctx1024 ctx=1024
|
51 |
+
|
52 |
+
The first time the model loads, macOS will take some time to place it on the device.
|
53 |
+
Subsequent loads will be instantaneous.
|
54 |
+
|
55 |
+
Please check following links for later updates:
|
56 |
+
https://huggingface.co/anemll
|
57 |
+
https://x.com/anemll
|
58 |
+
https://github.com/anemll
|
59 |
+
https://anemll.com
|
60 |
+
|
61 | |
62 |
+
|
chat.py
ADDED
@@ -0,0 +1,1563 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025, Anemll All rights reserved.
|
2 |
+
#
|
3 |
+
# Use of this source code is governed by a MIT license that can be
|
4 |
+
# found in the LICENSE.txt file or at https://opensource.org/license/mit
|
5 |
+
|
6 |
+
import coremltools as ct
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
from transformers import AutoTokenizer
|
10 |
+
import os
|
11 |
+
import time, sys
|
12 |
+
import signal
|
13 |
+
import traceback
|
14 |
+
import torch.nn.functional as F
|
15 |
+
import queue
|
16 |
+
import threading
|
17 |
+
import re
|
18 |
+
|
19 |
+
# Configuration
|
20 |
+
CONTEXT_LENGTH = 1024 # Changed default from 512 to 1024
|
21 |
+
PREFILL_BATCH_SIZE = 64
|
22 |
+
MODEL_PATH = os.path.expanduser("../DeepSeekR1-8B")
|
23 |
+
ENABLE_VACAB_SPLIT8 = True # Enable 8-way vocab split
|
24 |
+
ENABLE_LOGITS2 = False # Enable 2-way vocab split
|
25 |
+
ENABLE_DEBUG = bool(0)
|
26 |
+
ENABLE_ARGMAX = bool(0)
|
27 |
+
ENABLE_PREFILL_BATCH = bool(1)
|
28 |
+
ENABLE_CHAT_DEBUG = bool(0) # Debug flag for chat loop
|
29 |
+
|
30 |
+
# ANSI color codes
|
31 |
+
LIGHT_BLUE = "\033[94m"
|
32 |
+
DARK_BLUE = "\033[34m"
|
33 |
+
LIGHT_GREEN = "\033[92m"
|
34 |
+
RESET_COLOR = "\033[0m"
|
35 |
+
|
36 |
+
if ENABLE_LOGITS2:
|
37 |
+
assert not ENABLE_ARGMAX, "ENABLE_ARGMAX must be False when ENABLE_LOGITS2 is True"
|
38 |
+
|
39 |
+
|
40 |
+
def load_model(path, compute_unit=ct.ComputeUnit.CPU_AND_NE, function_name=None):
|
41 |
+
"""Load either compiled or uncompiled CoreML model.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
path: Path to the model file (.mlmodelc or .mlpackage)
|
45 |
+
compute_unit: CoreML compute unit to use
|
46 |
+
function_name: Optional function name to select from multi-function models
|
47 |
+
"""
|
48 |
+
DebugLog(f"Attempting to load model: {path}")
|
49 |
+
DebugLog(f"File exists: {os.path.exists(path)}")
|
50 |
+
DebugLog(f"Is directory (for mlmodelc): {os.path.isdir(path)}")
|
51 |
+
|
52 |
+
try:
|
53 |
+
if path.endswith('.mlmodelc'):
|
54 |
+
DebugLog(f"Loading compiled model: {path}")
|
55 |
+
if function_name is None:
|
56 |
+
DebugLog("Loading without function name")
|
57 |
+
model = ct.models.CompiledMLModel(path, compute_unit)
|
58 |
+
else:
|
59 |
+
DebugLog(f"Loading with function name: {function_name}")
|
60 |
+
model = ct.models.CompiledMLModel(path, compute_unit, function_name=function_name)
|
61 |
+
else:
|
62 |
+
DebugLog(f"Loading uncompiled model: {path}")
|
63 |
+
if function_name is None:
|
64 |
+
DebugLog("Loading without function name")
|
65 |
+
model = ct.models.MLModel(model=path, compute_units=compute_unit, is_temp_package=False)
|
66 |
+
else:
|
67 |
+
DebugLog(f"Loading with function name: {function_name}")
|
68 |
+
model = ct.models.MLModel(model=path, compute_units=compute_unit, is_temp_package=False, function_name=function_name)
|
69 |
+
DebugLog("Model loaded successfully")
|
70 |
+
|
71 |
+
return model
|
72 |
+
|
73 |
+
except Exception as e:
|
74 |
+
DebugLog(f"Error loading model: {str(e)}")
|
75 |
+
DebugLog(f"Error type: {type(e)}")
|
76 |
+
raise
|
77 |
+
|
78 |
+
class SplitModelInference:
|
79 |
+
def __init__(self, model_parts, model_dir="."):
|
80 |
+
"""Initialize split model inference.
|
81 |
+
|
82 |
+
Args:
|
83 |
+
model_parts (list): List of model part numbers to load
|
84 |
+
Special cases:
|
85 |
+
- 'C123' for combined part2 with prefill/infer functions
|
86 |
+
- 'S123' for split model with prefill/infer functions
|
87 |
+
- 'Q123' for quad split (2Q1-2Q4)
|
88 |
+
- 'Q123S' for quad split with combined prefill/infer (2Q1S-2Q4S)
|
89 |
+
- '123D' for dual split without prefill/infer (2D1-2D2)
|
90 |
+
model_dir (str): Directory containing the model files (default: current directory)
|
91 |
+
"""
|
92 |
+
self.context_size = CONTEXT_LENGTH
|
93 |
+
self.model_dir = model_dir
|
94 |
+
DebugLog(f"Loading models from directory: {self.model_dir}")
|
95 |
+
|
96 |
+
# Parse configuration
|
97 |
+
self.quant_configs = {}
|
98 |
+
global_lut = None
|
99 |
+
if model_parts and model_parts[-1].startswith('lut'):
|
100 |
+
global_lut = model_parts[-1]
|
101 |
+
model_parts = model_parts[:-1]
|
102 |
+
|
103 |
+
# Special handling for different split modes
|
104 |
+
if len(model_parts) == 1:
|
105 |
+
if model_parts[0] == '123D': # Dual split without prefill/infer
|
106 |
+
self.use_combined_part2 = False
|
107 |
+
self.use_split_model = True
|
108 |
+
self.use_split_functions = False
|
109 |
+
self.use_quad_split = False
|
110 |
+
self.use_quad_split_combined = False
|
111 |
+
self.model_parts = ['1', '2D1', '2D2', '3']
|
112 |
+
if global_lut:
|
113 |
+
self.quant_configs = {part: global_lut for part in self.model_parts}
|
114 |
+
DebugLog(f"Using dual split model with parts: {self.model_parts}")
|
115 |
+
elif model_parts[0].startswith('C123'): # Combined part2
|
116 |
+
self.use_combined_part2 = True
|
117 |
+
self.use_split_model = False
|
118 |
+
self.use_split_functions = False
|
119 |
+
self.use_quad_split = False
|
120 |
+
self.use_quad_split_combined = False
|
121 |
+
self.model_parts = ['1', '2', '3']
|
122 |
+
if global_lut:
|
123 |
+
self.quant_configs = {part: global_lut for part in self.model_parts}
|
124 |
+
DebugLog(f"Using combined part2 model with parts: {self.model_parts}")
|
125 |
+
elif model_parts[0].startswith('S123'): # Split model with prefill/infer functions
|
126 |
+
self.use_combined_part2 = False
|
127 |
+
self.use_split_model = True
|
128 |
+
self.use_split_functions = True
|
129 |
+
self.use_quad_split = False
|
130 |
+
self.use_quad_split_combined = False
|
131 |
+
self.model_parts = ['1', '2D1S', '2D2S', '3']
|
132 |
+
elif model_parts[0].startswith('Q123S'): # Quad split with combined prefill/infer
|
133 |
+
self.use_combined_part2 = False
|
134 |
+
self.use_split_model = True
|
135 |
+
self.use_split_functions = False
|
136 |
+
self.use_quad_split = False
|
137 |
+
self.use_quad_split_combined = True
|
138 |
+
self.model_parts = ['1', '2Q1S', '2Q2S', '2Q3S', '2Q4S', '3']
|
139 |
+
elif model_parts[0].startswith('Q123'): # Regular quad split
|
140 |
+
self.use_combined_part2 = False
|
141 |
+
self.use_split_model = True
|
142 |
+
self.use_split_functions = False
|
143 |
+
self.use_quad_split = True
|
144 |
+
self.use_quad_split_combined = False
|
145 |
+
self.model_parts = ['1', '2Q1', '2Q2', '2Q3', '2Q4', '3']
|
146 |
+
else:
|
147 |
+
self.use_combined_part2 = False
|
148 |
+
self.use_split_model = False
|
149 |
+
self.use_split_functions = False
|
150 |
+
self.use_quad_split = False
|
151 |
+
self.use_quad_split_combined = False
|
152 |
+
self.model_parts = model_parts
|
153 |
+
else:
|
154 |
+
self.use_combined_part2 = False
|
155 |
+
self.use_split_model = False
|
156 |
+
self.use_split_functions = False
|
157 |
+
self.use_quad_split = False
|
158 |
+
self.use_quad_split_combined = False
|
159 |
+
self.model_parts = model_parts
|
160 |
+
|
161 |
+
# Apply global quantization if specified
|
162 |
+
if global_lut and not self.use_combined_part2: # Skip if already applied for C123
|
163 |
+
self.quant_configs = {part: global_lut for part in self.model_parts}
|
164 |
+
|
165 |
+
DebugLog(f"Using model parts: {self.model_parts}")
|
166 |
+
if global_lut:
|
167 |
+
DebugLog(f"With global quantization: {global_lut}")
|
168 |
+
if self.use_combined_part2:
|
169 |
+
DebugLog("Using combined part2 model with prefill/infer functions")
|
170 |
+
elif self.use_split_functions:
|
171 |
+
DebugLog("Using split model with prefill/infer functions")
|
172 |
+
elif self.use_quad_split:
|
173 |
+
DebugLog("Using quad split transformer model (2Q1-2Q4)")
|
174 |
+
elif self.use_quad_split_combined:
|
175 |
+
DebugLog("Using combined quad split transformer model (2Q1S-2Q4S)")
|
176 |
+
|
177 |
+
self.models = {}
|
178 |
+
self.states = {}
|
179 |
+
self.load_models()
|
180 |
+
|
181 |
+
def find_model_path(self, base_name, description="model"):
|
182 |
+
"""Find model path, checking mlmodelc first then mlpackage.
|
183 |
+
Also tries both with and without lut suffix.
|
184 |
+
|
185 |
+
Args:
|
186 |
+
base_name: Base name of the model without extension
|
187 |
+
description: Description for error message (e.g., "Split model part 2D1S")
|
188 |
+
|
189 |
+
Returns:
|
190 |
+
str: Path to the found model file
|
191 |
+
|
192 |
+
Raises:
|
193 |
+
FileNotFoundError: If neither mlmodelc nor mlpackage exists
|
194 |
+
"""
|
195 |
+
# For quad split parts, only try mlmodelc
|
196 |
+
if any(part in base_name for part in ['2Q1S', '2Q2S', '2Q3S', '2Q4S', '2Q1', '2Q2', '2Q3', '2Q4']):
|
197 |
+
model_path = os.path.join(self.model_dir, f"{base_name}.mlmodelc")
|
198 |
+
if os.path.exists(model_path):
|
199 |
+
return model_path
|
200 |
+
# If not found, try without lut suffix
|
201 |
+
if '_lut' in base_name:
|
202 |
+
base_without_lut = base_name.split('_lut')[0]
|
203 |
+
model_path = os.path.join(self.model_dir, f"{base_without_lut}.mlmodelc")
|
204 |
+
if os.path.exists(model_path):
|
205 |
+
return model_path
|
206 |
+
# Neither exists
|
207 |
+
raise FileNotFoundError(f"{description} not found: {base_name}.mlmodelc does not exist" +
|
208 |
+
(f" (also tried {base_name.split('_lut')[0]}.mlmodelc)" if '_lut' in base_name else ""))
|
209 |
+
|
210 |
+
# For other parts, try both mlmodelc and mlpackage
|
211 |
+
for ext in ['.mlmodelc', '.mlpackage']:
|
212 |
+
model_path = os.path.join(self.model_dir, f"{base_name}{ext}")
|
213 |
+
if os.path.exists(model_path):
|
214 |
+
return model_path
|
215 |
+
|
216 |
+
# If not found, try without lut suffix
|
217 |
+
if '_lut' in base_name:
|
218 |
+
base_without_lut = base_name.split('_lut')[0]
|
219 |
+
for ext in ['.mlmodelc', '.mlpackage']:
|
220 |
+
model_path = os.path.join(self.model_dir, f"{base_without_lut}{ext}")
|
221 |
+
if os.path.exists(model_path):
|
222 |
+
return model_path
|
223 |
+
|
224 |
+
# Neither exists
|
225 |
+
raise FileNotFoundError(f"{description} not found: neither {base_name}.mlmodelc nor {base_name}.mlpackage exist in {self.model_dir}" +
|
226 |
+
(f" (also tried {base_name.split('_lut')[0]}.mlmodelc/mlpackage)" if '_lut' in base_name else ""))
|
227 |
+
|
228 |
+
def load_models(self):
|
229 |
+
"""Load each model part."""
|
230 |
+
DebugLog("Loading model parts...")
|
231 |
+
|
232 |
+
for part in self.model_parts:
|
233 |
+
quant_suffix = f"_{self.quant_configs[part]}" if part in self.quant_configs else ""
|
234 |
+
model_key = f"{part}{quant_suffix}" # Use this as the key in self.models
|
235 |
+
|
236 |
+
try:
|
237 |
+
if part == '2' and self.use_combined_part2:
|
238 |
+
# Load combined part2 with multiple functions
|
239 |
+
base_name = f"llama32_part2_combined{quant_suffix}"
|
240 |
+
model_path = self.find_model_path(base_name, "Combined part2 model")
|
241 |
+
|
242 |
+
DebugLog(f"Loading combined part2 model: {model_path}")
|
243 |
+
# Load prefill function
|
244 |
+
self.models['2_prefill'] = load_model(model_path, compute_unit=ct.ComputeUnit.CPU_AND_NE, function_name='prefill')
|
245 |
+
# Load infer function
|
246 |
+
self.models['2_infer'] = load_model(model_path, compute_unit=ct.ComputeUnit.CPU_AND_NE, function_name='infer')
|
247 |
+
# Create shared state
|
248 |
+
self.states['transformer'] = self.models['2_prefill'].make_state()
|
249 |
+
DebugLog("Combined part2 model loaded successfully")
|
250 |
+
elif part == '2' and not self.use_combined_part2:
|
251 |
+
# Load regular part2 model
|
252 |
+
base_name = f"llama32_part2{quant_suffix}"
|
253 |
+
model_path = self.find_model_path(base_name, "Regular part2 model")
|
254 |
+
|
255 |
+
DebugLog(f"Loading regular part2 model: {model_path}")
|
256 |
+
self.models[model_key] = load_model(model_path)
|
257 |
+
self.states['transformer'] = self.models[model_key].make_state()
|
258 |
+
DebugLog("Regular part2 model loaded successfully")
|
259 |
+
elif part in ['2D1S', '2D2S'] and self.use_split_functions:
|
260 |
+
# Load split model with prefill/infer functions
|
261 |
+
base_name = f"llama32_part{part}{quant_suffix}"
|
262 |
+
model_path = self.find_model_path(base_name, f"Split model part {part}")
|
263 |
+
|
264 |
+
DebugLog(f"Loading split model part {part}: {model_path}")
|
265 |
+
# Load prefill function
|
266 |
+
self.models[f'{part}_prefill'] = load_model(model_path, compute_unit=ct.ComputeUnit.CPU_AND_NE, function_name='prefill')
|
267 |
+
# Load infer function
|
268 |
+
self.models[f'{part}_infer'] = load_model(model_path, compute_unit=ct.ComputeUnit.CPU_AND_NE, function_name='infer')
|
269 |
+
# Create shared state for first part only
|
270 |
+
if part == '2D1S':
|
271 |
+
self.states['transformer'] = self.models[f'{part}_infer'].make_state()
|
272 |
+
DebugLog(f"Split model part {part} loaded successfully")
|
273 |
+
elif part.endswith('S') and self.use_quad_split_combined:
|
274 |
+
# Load combined quad split model with prefill/infer functions
|
275 |
+
base_name = f"llama32_part{part}{quant_suffix}"
|
276 |
+
model_path = self.find_model_path(base_name, f"Combined quad split part {part}")
|
277 |
+
|
278 |
+
DebugLog(f"Loading combined quad split part {part}: {model_path}")
|
279 |
+
# Load prefill function
|
280 |
+
self.models[f'{part}_prefill'] = load_model(model_path, compute_unit=ct.ComputeUnit.CPU_AND_NE, function_name='prefill')
|
281 |
+
# Load infer function
|
282 |
+
self.models[f'{part}_infer'] = load_model(model_path, compute_unit=ct.ComputeUnit.CPU_AND_NE, function_name='infer')
|
283 |
+
# Create shared state for first part only
|
284 |
+
if part == '2Q1S':
|
285 |
+
self.states['transformer'] = self.models[f'{part}_infer'].make_state()
|
286 |
+
DebugLog(f"Created shared transformer state for all quad split parts")
|
287 |
+
DebugLog(f"Combined quad split part {part} loaded successfully")
|
288 |
+
elif part.startswith('2Q') and self.use_quad_split:
|
289 |
+
# Load quad split model with prefill/infer functions
|
290 |
+
# Append 'S' to part name for file lookup
|
291 |
+
base_name = f"llama32_part{part}S{quant_suffix}"
|
292 |
+
model_path = self.find_model_path(base_name, f"Quad split part {part}")
|
293 |
+
|
294 |
+
DebugLog(f"Loading quad split part {part}: {model_path}")
|
295 |
+
# Load prefill function
|
296 |
+
self.models[f'{part}_prefill'] = load_model(model_path, compute_unit=ct.ComputeUnit.CPU_AND_NE, function_name='prefill')
|
297 |
+
# Load infer function
|
298 |
+
self.models[f'{part}_infer'] = load_model(model_path, compute_unit=ct.ComputeUnit.CPU_AND_NE, function_name='infer')
|
299 |
+
# Create shared state for first part only
|
300 |
+
if part == '2Q1':
|
301 |
+
self.states['transformer'] = self.models[f'{part}_infer'].make_state()
|
302 |
+
DebugLog(f"Created shared transformer state for all quad split parts")
|
303 |
+
print(f"Created shared transformer state for all quad split parts")
|
304 |
+
print(f"Quad split part {part} loaded successfully")
|
305 |
+
else:
|
306 |
+
# Load regular models (part 1 and part3)
|
307 |
+
base_name = f"llama32_part{part}{quant_suffix}"
|
308 |
+
model_path = self.find_model_path(base_name, f"Regular part {part}")
|
309 |
+
|
310 |
+
print(f"[MODEL LOAD] Regular part {part}:")
|
311 |
+
print(f" - File: {model_path}")
|
312 |
+
print(f" - Loading as: '{model_key}'")
|
313 |
+
|
314 |
+
# Try loading with CPU first, then fall back to CPU_AND_NE if needed
|
315 |
+
try:
|
316 |
+
self.models[model_key] = load_model(model_path, compute_unit=ct.ComputeUnit.CPU_AND_NE)
|
317 |
+
print(f" - Loaded with CPU_AND_NE compute unit")
|
318 |
+
except Exception as cpu_error:
|
319 |
+
print(f" - CPU load failed, trying CPU_AND_NE: {str(cpu_error)}")
|
320 |
+
self.models[model_key] = load_model(model_path, compute_unit=ct.ComputeUnit.CPU)
|
321 |
+
print(f" - Loaded with CPU compute unit")
|
322 |
+
|
323 |
+
print(f"[MODEL LOAD] Current model_parts keys: {list(self.models.keys())}")
|
324 |
+
|
325 |
+
except Exception as e:
|
326 |
+
print(f"Error loading model part {part}: {str(e)}")
|
327 |
+
raise
|
328 |
+
|
329 |
+
def run_transformer_prefill(self, hidden_states, update_mask, position_ids, causal_mask, current_pos):
|
330 |
+
"""Run the transformer model in prefill mode."""
|
331 |
+
if self.use_split_functions:
|
332 |
+
# Use prefill variants for split model
|
333 |
+
for part in ['2D1S', '2D2S']:
|
334 |
+
inputs = {
|
335 |
+
'hidden_states': hidden_states.numpy(),
|
336 |
+
'position_ids': position_ids.numpy(),
|
337 |
+
'causal_mask': causal_mask.numpy(),
|
338 |
+
'start_pos': current_pos.numpy()
|
339 |
+
}
|
340 |
+
output = self.models[f'{part}_prefill'].predict(inputs, self.states['transformer'])
|
341 |
+
hidden_states = torch.from_numpy(output['dummy_output'])
|
342 |
+
return hidden_states
|
343 |
+
else:
|
344 |
+
# Use existing prefill implementation
|
345 |
+
return super().run_transformer_prefill(hidden_states, update_mask, position_ids, causal_mask, current_pos)
|
346 |
+
|
347 |
+
def run_transformer_infer(self, hidden_states, update_mask, position_ids, causal_mask, current_pos):
|
348 |
+
"""Run the transformer model in infer mode."""
|
349 |
+
if self.use_split_functions:
|
350 |
+
# Use infer variants for split model
|
351 |
+
for part in ['2D1S', '2D2S']:
|
352 |
+
inputs = {
|
353 |
+
'hidden_states': hidden_states.numpy(),
|
354 |
+
'update_mask': update_mask.numpy(),
|
355 |
+
'position_ids': position_ids.numpy(),
|
356 |
+
'causal_mask': causal_mask.numpy(),
|
357 |
+
'current_pos': current_pos.numpy()
|
358 |
+
}
|
359 |
+
output = self.models[f'{part}_infer'].predict(inputs, self.states['transformer'])
|
360 |
+
hidden_states = torch.from_numpy(output['transformer_output'])
|
361 |
+
return hidden_states
|
362 |
+
else:
|
363 |
+
# Use existing infer implementation
|
364 |
+
return super().run_transformer_infer(hidden_states, update_mask, position_ids, causal_mask, current_pos)
|
365 |
+
|
366 |
+
def get_state(self, part):
|
367 |
+
"""Get the appropriate state for a model part."""
|
368 |
+
return self.states['transformer']
|
369 |
+
|
370 |
+
def run_embeddings(self, input_ids):
|
371 |
+
"""Run the embeddings model (part 1)."""
|
372 |
+
if '1' not in self.models:
|
373 |
+
raise ValueError("Embeddings model (part 1) not loaded")
|
374 |
+
|
375 |
+
output_dict = self.models['1'].predict({
|
376 |
+
'input_ids': input_ids.numpy()
|
377 |
+
})
|
378 |
+
return torch.from_numpy(output_dict['hidden_states'])
|
379 |
+
|
380 |
+
def run_transformer(self, hidden_states, update_mask, position_ids, causal_mask, current_pos, part='2'):
|
381 |
+
"""Run the transformer model."""
|
382 |
+
if part not in self.models:
|
383 |
+
raise ValueError(f"Transformer model (part {part}) not loaded")
|
384 |
+
|
385 |
+
inputs = {
|
386 |
+
'hidden_states': hidden_states.numpy(),
|
387 |
+
'update_mask': update_mask.numpy(),
|
388 |
+
'position_ids': position_ids.numpy(),
|
389 |
+
'causal_mask': causal_mask.numpy(),
|
390 |
+
'current_pos': current_pos.numpy()
|
391 |
+
}
|
392 |
+
|
393 |
+
output_dict = self.models[part].predict(inputs, self.get_state(part))
|
394 |
+
return torch.from_numpy(output_dict['transformer_output'])
|
395 |
+
|
396 |
+
def run_transformer_splits(self, hidden_states, update_mask, position_ids, causal_mask, current_pos):
|
397 |
+
"""Run through transformer splits based on model configuration."""
|
398 |
+
if not self.use_split_model:
|
399 |
+
return self.run_transformer(hidden_states, update_mask, position_ids, causal_mask, current_pos)
|
400 |
+
|
401 |
+
# Handle different split configurations
|
402 |
+
if any(part.startswith('2Q') for part in self.model_parts): # Quad split
|
403 |
+
for i in range(1, 5):
|
404 |
+
part = f'2Q{i}'
|
405 |
+
hidden_states = self.run_transformer(
|
406 |
+
hidden_states, update_mask, position_ids, causal_mask, current_pos, part=part
|
407 |
+
)
|
408 |
+
elif any(part.startswith('2O') for part in self.model_parts): # Octa split
|
409 |
+
for i in range(1, 9):
|
410 |
+
part = f'2O{i}'
|
411 |
+
hidden_states = self.run_transformer(
|
412 |
+
hidden_states, update_mask, position_ids, causal_mask, current_pos, part=part
|
413 |
+
)
|
414 |
+
elif any(part.startswith('2D') for part in self.model_parts): # Dual split
|
415 |
+
# Run through both parts of the dual split
|
416 |
+
for base_part in ['2D1', '2D2']:
|
417 |
+
# Find the correct model key (with lut suffix if present)
|
418 |
+
part_key = next(key for key in self.models.keys() if key.startswith(f'{base_part}_') or key == base_part)
|
419 |
+
|
420 |
+
# Use the shared transformer state
|
421 |
+
if 'transformer' not in self.states:
|
422 |
+
raise ValueError("Transformer state not initialized. Make sure 2D1 is loaded first.")
|
423 |
+
|
424 |
+
inputs = {
|
425 |
+
'hidden_states': hidden_states.numpy(),
|
426 |
+
'update_mask': update_mask.numpy(),
|
427 |
+
'position_ids': position_ids.numpy(),
|
428 |
+
'causal_mask': causal_mask.numpy(),
|
429 |
+
'current_pos': current_pos.numpy()
|
430 |
+
}
|
431 |
+
output_dict = self.models[part_key].predict(inputs, self.states['transformer'])
|
432 |
+
hidden_states = torch.from_numpy(output_dict['transformer_output'])
|
433 |
+
|
434 |
+
return hidden_states
|
435 |
+
|
436 |
+
def run_lm_head(self, hidden_states):
|
437 |
+
"""Run the LM head model (part 3)."""
|
438 |
+
if '3' not in self.models:
|
439 |
+
raise ValueError("LM head model (part 3) not loaded")
|
440 |
+
|
441 |
+
output_dict = self.models['3'].predict({
|
442 |
+
'hidden_states': hidden_states.numpy()
|
443 |
+
})
|
444 |
+
|
445 |
+
# Handle split logits
|
446 |
+
logits_parts = []
|
447 |
+
for i in range(1, 9): # logits1 through logits8
|
448 |
+
logits_key = f'logits{i}'
|
449 |
+
if logits_key in output_dict:
|
450 |
+
logits_part = torch.from_numpy(output_dict[logits_key])
|
451 |
+
logits_parts.append(logits_part)
|
452 |
+
|
453 |
+
# Concatenate along the vocabulary dimension
|
454 |
+
return torch.cat(logits_parts, dim=-1)
|
455 |
+
|
456 |
+
def run_full_model(self, input_ids, update_mask, position_ids, causal_mask, current_pos):
|
457 |
+
"""Run the full model."""
|
458 |
+
if 'full' not in self.models:
|
459 |
+
raise ValueError("Full model not loaded")
|
460 |
+
|
461 |
+
# Update context size from global
|
462 |
+
self.context_size = CONTEXT_LENGTH
|
463 |
+
|
464 |
+
#kv_ was removed from the input names
|
465 |
+
inputs = {
|
466 |
+
'input_ids': input_ids.numpy(),
|
467 |
+
'update_mask': update_mask.numpy(),
|
468 |
+
'position_ids': position_ids.numpy(),
|
469 |
+
'causal_mask': causal_mask.numpy(),
|
470 |
+
'current_pos': current_pos.numpy()
|
471 |
+
}
|
472 |
+
|
473 |
+
# Print shapes of all inputs
|
474 |
+
if False:
|
475 |
+
print("[DEBUG] Input shapes:")
|
476 |
+
for key, value in inputs.items():
|
477 |
+
print(f" {key}: {value.shape}")
|
478 |
+
|
479 |
+
output_dict = self.models['full'].predict(inputs, self.states['transformer'])
|
480 |
+
|
481 |
+
# Handle split logits if necessary
|
482 |
+
if ENABLE_VACAB_SPLIT8:
|
483 |
+
logits_parts = []
|
484 |
+
for i in range(1, 9):
|
485 |
+
logits_parts.append(output_dict[f'logits{i}'])
|
486 |
+
logits = np.concatenate(logits_parts, axis=-1)
|
487 |
+
else:
|
488 |
+
logits = output_dict['logits']
|
489 |
+
|
490 |
+
return torch.from_numpy(logits)
|
491 |
+
|
492 |
+
def make_causal_mask(length, start):
|
493 |
+
|
494 |
+
# Initialize the mask with -inf
|
495 |
+
mask = np.full((1, 1, length, length), -np.inf, dtype=np.float16)
|
496 |
+
|
497 |
+
# Create row and column indices
|
498 |
+
row_indices = np.arange(length).reshape(length, 1) # Column vector
|
499 |
+
col_indices = np.arange(length).reshape(1, length) # Row vector
|
500 |
+
|
501 |
+
# Set allowed positions to 0 where col_index is within the allowed range of row_index
|
502 |
+
mask[:, :, col_indices <= (row_indices + start)] = 0
|
503 |
+
return mask
|
504 |
+
|
505 |
+
def initialize_tokenizer(model_path):
|
506 |
+
"""Initialize and configure the tokenizer."""
|
507 |
+
try:
|
508 |
+
print(f"[DEBUG] Loading tokenizer from model path: {model_path}")
|
509 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
|
510 |
+
|
511 |
+
print("\n[DEBUG] Tokenizer Configuration:")
|
512 |
+
print(f"Tokenizer type: {type(tokenizer)}")
|
513 |
+
print(f"Tokenizer name: {tokenizer.__class__.__name__}")
|
514 |
+
print(f"Vocabulary size: {len(tokenizer)}")
|
515 |
+
print(f"Model max length: {tokenizer.model_max_length}")
|
516 |
+
#print(f"Chat template: {tokenizer.chat_template if hasattr(tokenizer, 'chat_template') else 'None'}")
|
517 |
+
|
518 |
+
if tokenizer.pad_token is None:
|
519 |
+
tokenizer.pad_token = tokenizer.eos_token
|
520 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
521 |
+
print("[DEBUG] Set PAD token to EOS token")
|
522 |
+
|
523 |
+
print(f"\n[DEBUG] Special Tokens:")
|
524 |
+
print(f"PAD token: '{tokenizer.pad_token}' (ID: {tokenizer.pad_token_id})")
|
525 |
+
print(f"EOS token: '{tokenizer.eos_token}' (ID: {tokenizer.eos_token_id})")
|
526 |
+
print(f"BOS token: '{tokenizer.bos_token}' (ID: {tokenizer.bos_token_id})")
|
527 |
+
print(f"UNK token: '{tokenizer.unk_token}' (ID: {tokenizer.unk_token_id})")
|
528 |
+
|
529 |
+
return tokenizer
|
530 |
+
|
531 |
+
except Exception as e:
|
532 |
+
print(f"[ERROR] Failed to load tokenizer from {model_path}")
|
533 |
+
return None
|
534 |
+
|
535 |
+
class TokenPrinter:
|
536 |
+
"""Handles background printing of generated tokens."""
|
537 |
+
def __init__(self, tokenizer):
|
538 |
+
self.tokenizer = tokenizer
|
539 |
+
self.token_queue = queue.Queue()
|
540 |
+
self.stop_event = threading.Event()
|
541 |
+
self.thread = None
|
542 |
+
self.buffer = ""
|
543 |
+
self.lock = threading.Lock()
|
544 |
+
self.thinking = True # Track if we're still in thinking mode
|
545 |
+
self.decoding_buffer = [] # <-- Buffer for token IDs
|
546 |
+
self.start()
|
547 |
+
|
548 |
+
def start(self):
|
549 |
+
"""Start the printer thread."""
|
550 |
+
if self.thread is None:
|
551 |
+
self.thread = threading.Thread(target=self._print_worker)
|
552 |
+
self.thread.daemon = True
|
553 |
+
self.thread.start()
|
554 |
+
|
555 |
+
def add_token(self, token_id):
|
556 |
+
"""Add a token to the print queue."""
|
557 |
+
if not self.stop_event.is_set():
|
558 |
+
self.token_queue.put(token_id)
|
559 |
+
|
560 |
+
def drain_buffer(self):
|
561 |
+
"""
|
562 |
+
Decode token IDs from self.decoding_buffer in the main thread,
|
563 |
+
then print them with the correct color logic.
|
564 |
+
"""
|
565 |
+
if not self.decoding_buffer:
|
566 |
+
return
|
567 |
+
|
568 |
+
# Decode all tokens at once in the main thread.
|
569 |
+
token_str = self.tokenizer.decode(self.decoding_buffer)
|
570 |
+
self.decoding_buffer.clear()
|
571 |
+
|
572 |
+
# Color-handling logic. Check for "</think>" and handle self.thinking.
|
573 |
+
if self.thinking and "</think>" in token_str:
|
574 |
+
self.thinking = False
|
575 |
+
parts = token_str.split("</think>")
|
576 |
+
if len(parts) > 0:
|
577 |
+
print(parts[0] + "</think>", end='', flush=True)
|
578 |
+
if len(parts) > 1:
|
579 |
+
print(LIGHT_BLUE + parts[1], end='', flush=True)
|
580 |
+
else:
|
581 |
+
if not self.thinking:
|
582 |
+
print(LIGHT_BLUE + token_str, end='', flush=True)
|
583 |
+
else:
|
584 |
+
print(token_str, end='', flush=True)
|
585 |
+
|
586 |
+
def _print_worker(self):
|
587 |
+
"""Worker thread that takes token_ids from the queue but doesn't decode."""
|
588 |
+
while not self.stop_event.is_set():
|
589 |
+
try:
|
590 |
+
token_id = self.token_queue.get(timeout=0.01)
|
591 |
+
with self.lock:
|
592 |
+
# Just store the token_id, decode later on the main thread
|
593 |
+
self.decoding_buffer.append(token_id)
|
594 |
+
self.token_queue.task_done()
|
595 |
+
except queue.Empty:
|
596 |
+
continue
|
597 |
+
except Exception as e:
|
598 |
+
print(f"\n[ERROR] Token printer error: {str(e)}")
|
599 |
+
break
|
600 |
+
|
601 |
+
def stop(self):
|
602 |
+
"""Stop the printer thread."""
|
603 |
+
if self.thread and self.thread.is_alive():
|
604 |
+
self.stop_event.set()
|
605 |
+
try:
|
606 |
+
self.thread.join(timeout=1.0)
|
607 |
+
except Exception:
|
608 |
+
pass
|
609 |
+
print(RESET_COLOR) # Reset color at the end
|
610 |
+
return self.buffer
|
611 |
+
|
612 |
+
def parse_coreml_error(error_str):
|
613 |
+
"""Parse CoreML error message to extract shape information.
|
614 |
+
|
615 |
+
Args:
|
616 |
+
error_str: The error message string from CoreML
|
617 |
+
|
618 |
+
Returns:
|
619 |
+
tuple: (got_shape, expected_shape) or None if parsing fails
|
620 |
+
"""
|
621 |
+
try:
|
622 |
+
# Extract shapes from error message using regex
|
623 |
+
pattern = r"shape \(([\d\s x]+)\) does not match the shape \(([\d\s x]+)\)"
|
624 |
+
match = re.search(pattern, str(error_str))
|
625 |
+
if match:
|
626 |
+
got_shape = tuple(int(x) for x in match.group(1).split('x'))
|
627 |
+
expected_shape = tuple(int(x) for x in match.group(2).split('x'))
|
628 |
+
return got_shape, expected_shape
|
629 |
+
return None
|
630 |
+
except Exception as e:
|
631 |
+
print(f"Error parsing CoreML error message: {e}")
|
632 |
+
return None
|
633 |
+
|
634 |
+
def handle_coreml_shape_error(e, model_name=""):
|
635 |
+
"""Handle CoreML shape mismatch errors with detailed information.
|
636 |
+
|
637 |
+
Args:
|
638 |
+
e: The exception object
|
639 |
+
model_name: Name of the model for better error reporting
|
640 |
+
"""
|
641 |
+
error_str = str(e)
|
642 |
+
if "MultiArray shape" in error_str:
|
643 |
+
shape_info = parse_coreml_error(error_str)
|
644 |
+
if shape_info:
|
645 |
+
got_shape, expected_shape = shape_info
|
646 |
+
print(f"\n[ERROR] Shape mismatch in {model_name}:")
|
647 |
+
print(f" Got shape: {' x '.join(str(x) for x in got_shape)}")
|
648 |
+
print(f" Expected shape: {' x '.join(str(x) for x in expected_shape)}")
|
649 |
+
print("This usually indicates a mismatch between the model's expected context length")
|
650 |
+
print("and the actual input being provided.")
|
651 |
+
else:
|
652 |
+
print(f"\n[ERROR] Shape mismatch error in {model_name}:")
|
653 |
+
print(f" {error_str}")
|
654 |
+
else:
|
655 |
+
print(f"\n[ERROR] CoreML error in {model_name}:")
|
656 |
+
print(f" {error_str}")
|
657 |
+
|
658 |
+
def PreFillChunk(model_parts, input_ids, current_pos, context_size, causal_mask, batch_size=64):
|
659 |
+
tokens_to_process = current_pos
|
660 |
+
batch_pos = 0
|
661 |
+
|
662 |
+
while batch_pos < tokens_to_process:
|
663 |
+
batch_end = min(batch_pos + batch_size, tokens_to_process)
|
664 |
+
current_batch_size = batch_end - batch_pos
|
665 |
+
|
666 |
+
try:
|
667 |
+
# Get current batch of tokens
|
668 |
+
batch_input = input_ids[:, batch_pos:batch_end]
|
669 |
+
|
670 |
+
# Pad if needed
|
671 |
+
if current_batch_size < batch_size:
|
672 |
+
batch_input = F.pad(
|
673 |
+
batch_input,
|
674 |
+
(0, batch_size - current_batch_size),
|
675 |
+
value=0
|
676 |
+
)
|
677 |
+
|
678 |
+
# Generate position IDs for this batch
|
679 |
+
position_ids = torch.arange(batch_pos, batch_pos + batch_size, dtype=torch.int32)
|
680 |
+
|
681 |
+
# Prepare causal mask for this batch
|
682 |
+
multiple_causal_mask = causal_mask[:, :, batch_pos:batch_pos + batch_size, :]
|
683 |
+
|
684 |
+
# Find the correct model key for part 1 (with lut suffix if present)
|
685 |
+
part1_key = next(key for key in model_parts.keys() if key.startswith('1_') or key == '1')
|
686 |
+
|
687 |
+
try:
|
688 |
+
# Run embeddings (part 1)
|
689 |
+
hidden_states = model_parts[part1_key].predict({'input_ids': batch_input.numpy()})['hidden_states']
|
690 |
+
hidden_states = torch.from_numpy(hidden_states)
|
691 |
+
except Exception as e:
|
692 |
+
handle_coreml_shape_error(e, f"embeddings model (part {part1_key})")
|
693 |
+
raise
|
694 |
+
|
695 |
+
# Get shared transformer state
|
696 |
+
shared_state = model_parts['states']['transformer']
|
697 |
+
|
698 |
+
# Handle different model configurations
|
699 |
+
if any(f'{part}_prefill' in model_parts for part in ['2D1S', '2D2S']):
|
700 |
+
# S123 mode with prefill/infer functions
|
701 |
+
for part in ['2D1S', '2D2S']:
|
702 |
+
try:
|
703 |
+
inputs = {
|
704 |
+
'hidden_states': hidden_states.numpy(),
|
705 |
+
'position_ids': position_ids.numpy(),
|
706 |
+
'causal_mask': multiple_causal_mask.numpy(),
|
707 |
+
'start_pos': np.array([batch_pos], dtype=np.int32)
|
708 |
+
}
|
709 |
+
output = model_parts[f'{part}_prefill'].predict(inputs, shared_state)
|
710 |
+
hidden_states = torch.from_numpy(output['dummy_output'])
|
711 |
+
except Exception as e:
|
712 |
+
handle_coreml_shape_error(e, f"transformer model (part {part})")
|
713 |
+
raise
|
714 |
+
elif any(part.endswith('S') for part in model_parts if part.startswith('2Q')):
|
715 |
+
# Q123S mode with combined quad split
|
716 |
+
for i in range(1, 5):
|
717 |
+
part = f'2Q{i}S'
|
718 |
+
try:
|
719 |
+
inputs = {
|
720 |
+
'hidden_states': hidden_states.numpy(),
|
721 |
+
'position_ids': position_ids.numpy(),
|
722 |
+
'causal_mask': multiple_causal_mask.numpy(),
|
723 |
+
'start_pos': np.array([batch_pos], dtype=np.int32)
|
724 |
+
}
|
725 |
+
output = model_parts[f'{part}_prefill'].predict(inputs, shared_state)
|
726 |
+
hidden_states = torch.from_numpy(output['dummy_output'])
|
727 |
+
except Exception as e:
|
728 |
+
handle_coreml_shape_error(e, f"transformer model (part {part})")
|
729 |
+
raise
|
730 |
+
elif any(part.startswith('2Q') for part in model_parts):
|
731 |
+
# Q123 mode with quad split
|
732 |
+
for i in range(1, 5):
|
733 |
+
part = f'2Q{i}'
|
734 |
+
if f'{part}_prefill' in model_parts:
|
735 |
+
# Use prefill function if available
|
736 |
+
try:
|
737 |
+
inputs = {
|
738 |
+
'hidden_states': hidden_states.numpy(),
|
739 |
+
'position_ids': position_ids.numpy(),
|
740 |
+
'causal_mask': multiple_causal_mask.numpy(),
|
741 |
+
'start_pos': np.array([batch_pos], dtype=np.int32)
|
742 |
+
}
|
743 |
+
output = model_parts[f'{part}_prefill'].predict(inputs, shared_state)
|
744 |
+
hidden_states = torch.from_numpy(output['dummy_output'])
|
745 |
+
except Exception as e:
|
746 |
+
handle_coreml_shape_error(e, f"transformer model (part {part})")
|
747 |
+
raise
|
748 |
+
else:
|
749 |
+
# Use regular predict if no prefill function
|
750 |
+
try:
|
751 |
+
inputs = {
|
752 |
+
'hidden_states': hidden_states.numpy(),
|
753 |
+
'update_mask': torch.zeros((1, 1, context_size, 1), dtype=torch.float16).numpy(),
|
754 |
+
'position_ids': position_ids.numpy(),
|
755 |
+
'causal_mask': multiple_causal_mask.numpy(),
|
756 |
+
'current_pos': position_ids[0].numpy()
|
757 |
+
}
|
758 |
+
output = model_parts[part].predict(inputs, shared_state)
|
759 |
+
hidden_states = torch.from_numpy(output['transformer_output'])
|
760 |
+
except Exception as e:
|
761 |
+
handle_coreml_shape_error(e, f"transformer model (part {part})")
|
762 |
+
raise
|
763 |
+
elif any(key.startswith('2D') for key in model_parts.keys()):
|
764 |
+
# 123D mode with dual split (no prefill functions)
|
765 |
+
for base_part in ['2D1', '2D2']:
|
766 |
+
# Find the correct model key (with lut suffix if present)
|
767 |
+
part_key = next(key for key in model_parts.keys() if key.startswith(f'{base_part}_') or key == base_part)
|
768 |
+
try:
|
769 |
+
inputs = {
|
770 |
+
'hidden_states': hidden_states.numpy(),
|
771 |
+
'update_mask': torch.zeros((1, 1, context_size, 1), dtype=torch.float16).numpy(),
|
772 |
+
'position_ids': position_ids.numpy(),
|
773 |
+
'causal_mask': multiple_causal_mask.numpy(),
|
774 |
+
'current_pos': position_ids[0].numpy()
|
775 |
+
}
|
776 |
+
output = model_parts[part_key].predict(inputs, shared_state)
|
777 |
+
hidden_states = torch.from_numpy(output['transformer_output'])
|
778 |
+
except Exception as e:
|
779 |
+
handle_coreml_shape_error(e, f"transformer model (part {part_key})")
|
780 |
+
raise
|
781 |
+
|
782 |
+
batch_pos = batch_end
|
783 |
+
|
784 |
+
except Exception as e:
|
785 |
+
print(f"\n[ERROR] Failed processing batch {batch_pos}-{batch_end}:")
|
786 |
+
print(f" {str(e)}")
|
787 |
+
raise
|
788 |
+
|
789 |
+
return torch.tensor([current_pos], dtype=torch.int32)
|
790 |
+
|
791 |
+
def PreFillChunkOneByOne(model_parts, input_ids, current_pos, context_size, causal_mask):
|
792 |
+
"""Process prefill tokens one at a time using infer function."""
|
793 |
+
#print(f"[DEBUG] Starting one-by-one prefill for {current_pos} tokens")
|
794 |
+
|
795 |
+
for pos in range(current_pos):
|
796 |
+
# Get current token
|
797 |
+
current_token = input_ids[:, pos:pos+1]
|
798 |
+
single_causal_mask = causal_mask[:, :, pos:pos+1, :]
|
799 |
+
current_pos_tensor = torch.tensor([pos], dtype=torch.int32)
|
800 |
+
|
801 |
+
# Find the correct model key for part 1 (with lut suffix if present)
|
802 |
+
part1_key = next(key for key in model_parts.keys() if key.startswith('1_') or key == '1')
|
803 |
+
|
804 |
+
# Run embeddings (part 1)
|
805 |
+
hidden_states = torch.from_numpy(model_parts[part1_key].predict({
|
806 |
+
'input_ids': current_token.numpy()
|
807 |
+
})['hidden_states'])
|
808 |
+
|
809 |
+
#print(f"[DEBUG] pos: {pos} token: {current_token.item()} states: {hidden_states.shape}")
|
810 |
+
|
811 |
+
# Get shared transformer state
|
812 |
+
shared_state = model_parts['states']['transformer']
|
813 |
+
|
814 |
+
# Handle different model configurations
|
815 |
+
if any(f'{part}_infer' in model_parts for part in ['2D1S', '2D2S']):
|
816 |
+
# S123 mode with prefill/infer functions
|
817 |
+
for part in ['2D1S', '2D2S']:
|
818 |
+
inputs = {
|
819 |
+
'hidden_states': hidden_states.numpy(),
|
820 |
+
'update_mask': np.zeros((1, 1, context_size, 1), dtype=np.float16),
|
821 |
+
'position_ids': current_pos_tensor.numpy(),
|
822 |
+
'causal_mask': single_causal_mask.numpy(),
|
823 |
+
'current_pos': current_pos_tensor.numpy()
|
824 |
+
}
|
825 |
+
output = model_parts[f'{part}_infer'].predict(inputs, shared_state)
|
826 |
+
hidden_states = torch.from_numpy(output['transformer_output'])
|
827 |
+
elif any(key.startswith('2D') for key in model_parts.keys()):
|
828 |
+
# 123D mode or individual parts mode
|
829 |
+
for base_part in ['2D1', '2D2']:
|
830 |
+
# Find the correct model key (with lut suffix if present)
|
831 |
+
part_key = next(key for key in model_parts.keys() if key.startswith(f'{base_part}_') or key == base_part)
|
832 |
+
inputs = {
|
833 |
+
'hidden_states': hidden_states.numpy(),
|
834 |
+
'update_mask': np.zeros((1, 1, context_size, 1), dtype=np.float16),
|
835 |
+
'position_ids': current_pos_tensor.numpy(),
|
836 |
+
'causal_mask': single_causal_mask.numpy(),
|
837 |
+
'current_pos': current_pos_tensor.numpy()
|
838 |
+
}
|
839 |
+
output = model_parts[part_key].predict(inputs, shared_state)
|
840 |
+
hidden_states = torch.from_numpy(output['transformer_output'])
|
841 |
+
|
842 |
+
return torch.tensor([current_pos], dtype=torch.int32)
|
843 |
+
|
844 |
+
def run_inference(model_parts, tokenizer, prompt, context_size=CONTEXT_LENGTH, num_iterations=5, temperature=0.0):
|
845 |
+
"""Run inference using model parts."""
|
846 |
+
DebugLog(f"\nPrompt: {prompt}")
|
847 |
+
if temperature > 0:
|
848 |
+
DebugLog(f"Using temperature: {temperature}")
|
849 |
+
|
850 |
+
# Prepare the prompt
|
851 |
+
messages = [{"role": "user", "content": prompt}]
|
852 |
+
formatted_input = tokenizer.apply_chat_template(
|
853 |
+
messages,
|
854 |
+
return_tensors="pt",
|
855 |
+
add_generation_prompt=False
|
856 |
+
)
|
857 |
+
decoded_input = tokenizer.decode(formatted_input[0])
|
858 |
+
DebugLog(f"Decoded input: {decoded_input}")
|
859 |
+
DebugLog(f"prompt: {prompt}")
|
860 |
+
DebugLog(f"formatted_input size: {formatted_input.size()}")
|
861 |
+
DebugLog(f"formatted_input: {formatted_input}")
|
862 |
+
|
863 |
+
base_input_ids = formatted_input.to(torch.int32)
|
864 |
+
context_pos = base_input_ids.size(1)
|
865 |
+
prompt_tokens = context_pos - 1
|
866 |
+
|
867 |
+
# Pad sequence to context_size
|
868 |
+
input_ids = F.pad(
|
869 |
+
base_input_ids,
|
870 |
+
(0, context_size - context_pos),
|
871 |
+
value=0
|
872 |
+
)
|
873 |
+
|
874 |
+
DebugLog(f"context_pos (prompt length) = {context_pos}")
|
875 |
+
|
876 |
+
# Create causal mask
|
877 |
+
causal_mask = make_causal_mask(context_size, 0)
|
878 |
+
causal_mask = torch.tensor(causal_mask, dtype=torch.float16)
|
879 |
+
|
880 |
+
# Prefill phase
|
881 |
+
DebugLog("\nStarting prefill...")
|
882 |
+
start_time = time.time()
|
883 |
+
|
884 |
+
# Check if we're using 123D mode or individual parts
|
885 |
+
use_single_token = any(key.contains('2D') for key in model_parts.keys()) or any(part.contains('2D') for part in model_parts)
|
886 |
+
|
887 |
+
if False: #use_single_token:
|
888 |
+
print("\nRunning ST prefill...")
|
889 |
+
current_pos = PreFillChunkOneByOne(
|
890 |
+
model_parts,
|
891 |
+
input_ids,
|
892 |
+
context_pos - 1,
|
893 |
+
context_size,
|
894 |
+
causal_mask
|
895 |
+
)
|
896 |
+
sequential_prefill_time = time.time() - start_time
|
897 |
+
batch_prefll_time = 0.0
|
898 |
+
else:
|
899 |
+
print("\nRunning batch prefill...")
|
900 |
+
current_pos = PreFillChunk(
|
901 |
+
model_parts,
|
902 |
+
input_ids,
|
903 |
+
context_pos - 1,
|
904 |
+
context_size,
|
905 |
+
causal_mask,
|
906 |
+
batch_size=PREFILL_BATCH_SIZE
|
907 |
+
)
|
908 |
+
batch_prefill_time = time.time() - start_time
|
909 |
+
sequential_prefill_time = 0.0
|
910 |
+
|
911 |
+
# Initialize token printer
|
912 |
+
token_printer = TokenPrinter(tokenizer)
|
913 |
+
print("\nGenerated response:", end=' ', flush=True)
|
914 |
+
|
915 |
+
# Generation loop
|
916 |
+
start_gen_time = time.time()
|
917 |
+
pos = context_pos - 1
|
918 |
+
|
919 |
+
tokens_generated = 0
|
920 |
+
try:
|
921 |
+
DebugLog(f"\nStarting inference... context_pos: {context_pos}")
|
922 |
+
pos = context_pos
|
923 |
+
for step in range(num_iterations):
|
924 |
+
with torch.no_grad():
|
925 |
+
# Check if we need to shift cache
|
926 |
+
if pos >= context_size - 2:
|
927 |
+
shift_size = context_size // 4
|
928 |
+
new_size = context_size - shift_size
|
929 |
+
|
930 |
+
# Create shifted input_ids and preserve the most recent context
|
931 |
+
# Don't add BOS token since this is a continuation
|
932 |
+
tmp = torch.zeros((1, context_size), dtype=torch.int32)
|
933 |
+
tmp[:,0:new_size] = input_ids[:,shift_size:context_size]
|
934 |
+
input_ids = tmp
|
935 |
+
|
936 |
+
# Adjust position after shift
|
937 |
+
pos = new_size
|
938 |
+
|
939 |
+
# Create update mask for current position
|
940 |
+
update_mask = torch.zeros((1, 1, context_size, 1), dtype=torch.float16)
|
941 |
+
update_mask[0, 0, pos-1, 0] = 1.0
|
942 |
+
|
943 |
+
#print(f"\n[DEBUG] Shifted cache by {shift_size} tokens, maintaining context window of {new_size} tokens, new pos: {pos}")
|
944 |
+
|
945 |
+
# For Q123 mode, we need to run prefill on the shifted sequence
|
946 |
+
if any(part.startswith('2Q') for part in model_parts):
|
947 |
+
# Run prefill using PreFillChunk with proper batch size
|
948 |
+
# No need to adjust position since we're not adding BOS
|
949 |
+
current_pos = PreFillChunk(
|
950 |
+
model_parts,
|
951 |
+
input_ids,
|
952 |
+
pos-1, # how much ob
|
953 |
+
context_size, # Use full context size
|
954 |
+
causal_mask,
|
955 |
+
batch_size=PREFILL_BATCH_SIZE
|
956 |
+
)
|
957 |
+
#print(f"[DEBUG] Ran prefill after shift for position {pos} with batch_size={PREFILL_BATCH_SIZE}")
|
958 |
+
# Position should already be correct since we didn't add BOS
|
959 |
+
pos = current_pos
|
960 |
+
|
961 |
+
# Get current token
|
962 |
+
current_token = input_ids[:, pos-1:pos]
|
963 |
+
|
964 |
+
# Find the correct model key for part 1 (with lut suffix if present)
|
965 |
+
part1_key = next(key for key in model_parts.keys() if key.startswith('1_') or key == '1')
|
966 |
+
|
967 |
+
# Run embeddings (part 1)
|
968 |
+
hidden_states = model_parts[part1_key].predict({
|
969 |
+
'input_ids': current_token.numpy()
|
970 |
+
})['hidden_states']
|
971 |
+
hidden_states = torch.from_numpy(hidden_states)
|
972 |
+
|
973 |
+
# Get shared transformer state
|
974 |
+
shared_state = model_parts['states']['transformer']
|
975 |
+
|
976 |
+
# Create update mask for current position
|
977 |
+
update_mask = torch.zeros((1, 1, context_size, 1), dtype=torch.float16)
|
978 |
+
update_mask[0, 0, pos-1, 0] = 1.0
|
979 |
+
|
980 |
+
# Create position IDs tensor
|
981 |
+
position_ids = torch.tensor([pos-1], dtype=torch.int32)
|
982 |
+
|
983 |
+
# Create causal mask for current position
|
984 |
+
single_causal_mask = causal_mask[:, :, pos-1:pos, :]
|
985 |
+
|
986 |
+
# Run transformer layers based on model type
|
987 |
+
if any(f'{part}_infer' in model_parts for part in ['2D1S', '2D2S']):
|
988 |
+
# S123 mode with prefill/infer functions
|
989 |
+
for part in ['2D1S', '2D2S']:
|
990 |
+
inputs = {
|
991 |
+
'hidden_states': hidden_states.numpy(),
|
992 |
+
'update_mask': update_mask.numpy(),
|
993 |
+
'position_ids': position_ids.numpy(),
|
994 |
+
'causal_mask': single_causal_mask.numpy(),
|
995 |
+
'current_pos': position_ids.numpy()
|
996 |
+
}
|
997 |
+
output = model_parts[f'{part}_infer'].predict(inputs, shared_state)
|
998 |
+
hidden_states = torch.from_numpy(output['transformer_output'])
|
999 |
+
elif any(part.startswith('2Q') for part in model_parts.keys()):
|
1000 |
+
# Q123S mode with combined quad split
|
1001 |
+
for i in range(1, 5):
|
1002 |
+
part = f'2Q{i}S'
|
1003 |
+
inputs = {
|
1004 |
+
'hidden_states': hidden_states.numpy(),
|
1005 |
+
'update_mask': update_mask.numpy(),
|
1006 |
+
'position_ids': position_ids.numpy(),
|
1007 |
+
'causal_mask': single_causal_mask.numpy(),
|
1008 |
+
'current_pos': position_ids.numpy()
|
1009 |
+
}
|
1010 |
+
output = model_parts[f'{part}_infer'].predict(inputs, shared_state)
|
1011 |
+
hidden_states = torch.from_numpy(output['transformer_output'])
|
1012 |
+
elif any(part.startswith('2Q') for part in model_parts):
|
1013 |
+
# Q123 mode with quad split
|
1014 |
+
#print(f"[DEBUG] Running quad split inference at position {pos}")
|
1015 |
+
for i in range(1, 5):
|
1016 |
+
part = f'2Q{i}'
|
1017 |
+
if f'{part}_infer' in model_parts:
|
1018 |
+
# Use infer function if available
|
1019 |
+
inputs = {
|
1020 |
+
'hidden_states': hidden_states.numpy(),
|
1021 |
+
'update_mask': update_mask.numpy(),
|
1022 |
+
'position_ids': position_ids.numpy(),
|
1023 |
+
'causal_mask': single_causal_mask.numpy(),
|
1024 |
+
'current_pos': position_ids.numpy()
|
1025 |
+
}
|
1026 |
+
output = model_parts[f'{part}_infer'].predict(inputs, shared_state)
|
1027 |
+
else:
|
1028 |
+
# Use regular predict if no infer function
|
1029 |
+
inputs = {
|
1030 |
+
'hidden_states': hidden_states.numpy(),
|
1031 |
+
'update_mask': update_mask.numpy(),
|
1032 |
+
'position_ids': position_ids.numpy(),
|
1033 |
+
'causal_mask': single_causal_mask.numpy(),
|
1034 |
+
'current_pos': position_ids.numpy()
|
1035 |
+
}
|
1036 |
+
output = model_parts[part].predict(inputs, shared_state)
|
1037 |
+
hidden_states = torch.from_numpy(output['transformer_output'])
|
1038 |
+
elif any(key.startswith('2D') for key in model_parts.keys()):
|
1039 |
+
# 123D mode or individual parts mode
|
1040 |
+
for base_part in ['2D1', '2D2']:
|
1041 |
+
# Find the correct model key (with lut suffix if present)
|
1042 |
+
part_key = next(key for key in model_parts.keys() if key.startswith(f'{base_part}_') or key == base_part)
|
1043 |
+
inputs = {
|
1044 |
+
'hidden_states': hidden_states.numpy(),
|
1045 |
+
'update_mask': update_mask.numpy(),
|
1046 |
+
'position_ids': position_ids.numpy(),
|
1047 |
+
'causal_mask': single_causal_mask.numpy(),
|
1048 |
+
'current_pos': position_ids.numpy()
|
1049 |
+
}
|
1050 |
+
output = model_parts[part_key].predict(inputs, shared_state)
|
1051 |
+
hidden_states = torch.from_numpy(output['transformer_output'])
|
1052 |
+
else:
|
1053 |
+
print("\n[ERROR] No transformer model parts found!")
|
1054 |
+
break
|
1055 |
+
|
1056 |
+
try:
|
1057 |
+
# Run final layer norm and get logits
|
1058 |
+
# Find the correct model key for part 3 (with lut suffix if present)
|
1059 |
+
part3_key = next(key for key in model_parts.keys() if key.startswith('3_') or key == '3')
|
1060 |
+
output_dict = model_parts[part3_key].predict({
|
1061 |
+
'hidden_states': hidden_states.numpy()
|
1062 |
+
})
|
1063 |
+
|
1064 |
+
if ENABLE_VACAB_SPLIT8:
|
1065 |
+
# Get all logits parts in a single call
|
1066 |
+
logits_parts = []
|
1067 |
+
for i in range(1, 9):
|
1068 |
+
logits_parts.append(output_dict[f'logits{i}'])
|
1069 |
+
logits = np.concatenate(logits_parts, axis=-1)
|
1070 |
+
elif ENABLE_LOGITS2:
|
1071 |
+
# Get both logits parts in a single call
|
1072 |
+
logits = np.concatenate([
|
1073 |
+
output_dict['logits1'],
|
1074 |
+
output_dict['logits2']
|
1075 |
+
], axis=-1)
|
1076 |
+
else:
|
1077 |
+
logits = output_dict['logits']
|
1078 |
+
|
1079 |
+
# Convert to tensor and get next token
|
1080 |
+
logits = torch.from_numpy(logits)
|
1081 |
+
|
1082 |
+
# Apply temperature if specified
|
1083 |
+
if temperature > 0:
|
1084 |
+
# Scale logits by temperature
|
1085 |
+
logits = logits / temperature
|
1086 |
+
# Apply softmax to get probabilities
|
1087 |
+
probs = F.softmax(logits[0, -1, :], dim=-1)
|
1088 |
+
# Sample from the distribution
|
1089 |
+
next_token = torch.multinomial(probs, num_samples=1).item()
|
1090 |
+
else:
|
1091 |
+
# Use argmax if no temperature
|
1092 |
+
next_token = torch.argmax(logits[0, -1, :]).item()
|
1093 |
+
|
1094 |
+
# Add token to input sequence
|
1095 |
+
input_ids[0, pos] = next_token
|
1096 |
+
token_printer.add_token(next_token)
|
1097 |
+
|
1098 |
+
# Safely decode tokens in the main thread
|
1099 |
+
token_printer.drain_buffer()
|
1100 |
+
|
1101 |
+
# Update position and count
|
1102 |
+
pos += 1
|
1103 |
+
tokens_generated += 1
|
1104 |
+
|
1105 |
+
if next_token == tokenizer.eos_token_id:
|
1106 |
+
print("\n[DEBUG] Generated EOS token, stopping...")
|
1107 |
+
break
|
1108 |
+
except Exception as e:
|
1109 |
+
print(f"\n[ERROR] Error in final layer or token generation: {str(e)}")
|
1110 |
+
break
|
1111 |
+
|
1112 |
+
except KeyboardInterrupt:
|
1113 |
+
print("\n[DEBUG] Interrupted by user")
|
1114 |
+
except Exception as e:
|
1115 |
+
print(f"\n[ERROR] Exception during inference: {str(e)}")
|
1116 |
+
print(traceback.format_exc())
|
1117 |
+
|
1118 |
+
# Print timing statistics
|
1119 |
+
end_time = time.time()
|
1120 |
+
total_time = end_time - start_gen_time
|
1121 |
+
|
1122 |
+
print(f"\n\nTotal time: {total_time:.2f} seconds")
|
1123 |
+
print(f"Generation tokens: {tokens_generated}")
|
1124 |
+
print(f"Prefill tokens: {prompt_tokens}")
|
1125 |
+
print(f"Total tokens (prefill + generation): {prompt_tokens + tokens_generated}")
|
1126 |
+
|
1127 |
+
if prompt_tokens > 0:
|
1128 |
+
if batch_prefill_time > 0: # If using batch prefill
|
1129 |
+
prefill_tokens_per_second = prompt_tokens / batch_prefill_time
|
1130 |
+
effective_prefill_tokens_per_second = prompt_tokens / batch_prefill_time # Don't multiply by batch size
|
1131 |
+
print(f"Actual prefill tokens per second: {prefill_tokens_per_second:.2f}")
|
1132 |
+
print(f"Effective prefill tokens per second (batch={PREFILL_BATCH_SIZE}): {effective_prefill_tokens_per_second:.2f}")
|
1133 |
+
elif sequential_prefill_time > 0: # If using sequential prefill
|
1134 |
+
prefill_tokens_per_second = prompt_tokens / sequential_prefill_time
|
1135 |
+
print(f"Sequential prefill tokens per second: {prefill_tokens_per_second:.2f}")
|
1136 |
+
|
1137 |
+
if tokens_generated > 0:
|
1138 |
+
total_processing_time = total_time + (batch_prefill_time if batch_prefill_time > 0 else sequential_prefill_time)
|
1139 |
+
overall_tokens_per_second = (prompt_tokens + tokens_generated) / total_processing_time
|
1140 |
+
generation_tokens_per_second = tokens_generated / total_time
|
1141 |
+
print(f"Overall tokens processed per second (including prefill): {overall_tokens_per_second:.2f}")
|
1142 |
+
print(f"Generation-only tokens per second: {generation_tokens_per_second:.2f}")
|
1143 |
+
|
1144 |
+
return token_printer.stop(), {
|
1145 |
+
'total_time': total_time,
|
1146 |
+
'batch_prefill_time': batch_prefill_time,
|
1147 |
+
'sequential_prefill_time': sequential_prefill_time,
|
1148 |
+
'tokens_generated': tokens_generated,
|
1149 |
+
'prompt_tokens': prompt_tokens
|
1150 |
+
}
|
1151 |
+
|
1152 |
+
def DebugLog(message, always_print=False):
|
1153 |
+
"""Print debug message if ENABLE_CHAT_DEBUG is True or always_print is True.
|
1154 |
+
|
1155 |
+
Args:
|
1156 |
+
message: Message to print
|
1157 |
+
always_print: If True, print regardless of ENABLE_CHAT_DEBUG setting
|
1158 |
+
"""
|
1159 |
+
if ENABLE_CHAT_DEBUG or always_print:
|
1160 |
+
print(f"[DEBUG] {message}")
|
1161 |
+
|
1162 |
+
def chat_loop(model_parts, tokenizer, context_size=CONTEXT_LENGTH, temperature=0.0):
|
1163 |
+
"""Interactive chat loop that maintains conversation history."""
|
1164 |
+
print("\nStarting chat session. Press Ctrl+D to exit.")
|
1165 |
+
print("Type your message and press Enter to chat.")
|
1166 |
+
|
1167 |
+
DebugLog(f"Using context size: {context_size}")
|
1168 |
+
DebugLog(f"Temperature: {temperature}")
|
1169 |
+
DebugLog(f"Model parts loaded: {list(model_parts.keys())}")
|
1170 |
+
|
1171 |
+
# Initialize conversation history
|
1172 |
+
conversation = []
|
1173 |
+
input_ids = None
|
1174 |
+
current_pos = 0
|
1175 |
+
|
1176 |
+
try:
|
1177 |
+
while True:
|
1178 |
+
try:
|
1179 |
+
print(f"\n{LIGHT_GREEN}You:{RESET_COLOR}", end=' ', flush=True)
|
1180 |
+
user_input = input().strip()
|
1181 |
+
except EOFError:
|
1182 |
+
print("\nExiting chat...")
|
1183 |
+
break
|
1184 |
+
|
1185 |
+
if not user_input:
|
1186 |
+
continue
|
1187 |
+
|
1188 |
+
# Add user message to conversation
|
1189 |
+
conversation.append({"role": "user", "content": user_input})
|
1190 |
+
|
1191 |
+
DebugLog("\nFormatting conversation:")
|
1192 |
+
for msg in conversation:
|
1193 |
+
DebugLog(f" {msg['role']}: {msg['content'][:50]}...")
|
1194 |
+
|
1195 |
+
# Format entire conversation
|
1196 |
+
formatted_input = tokenizer.apply_chat_template(
|
1197 |
+
conversation,
|
1198 |
+
return_tensors="pt",
|
1199 |
+
add_generation_prompt=True
|
1200 |
+
)
|
1201 |
+
|
1202 |
+
DebugLog("\nTokenization:")
|
1203 |
+
DebugLog(f"Input token IDs: {formatted_input[0][:50]}...")
|
1204 |
+
DebugLog(f"Decoded tokens: {tokenizer.decode(formatted_input[0][:50])}...")
|
1205 |
+
DebugLog(f"Total tokens: {formatted_input.size(1)}")
|
1206 |
+
|
1207 |
+
# Convert to int32 tensor
|
1208 |
+
base_input_ids = formatted_input.to(torch.int32)
|
1209 |
+
context_pos = base_input_ids.size(1)
|
1210 |
+
|
1211 |
+
DebugLog(f"Context position: {context_pos}")
|
1212 |
+
|
1213 |
+
# Check if we need to truncate history
|
1214 |
+
if context_pos >= context_size - 100:
|
1215 |
+
DebugLog(f"\nNeed to truncate: {context_pos} tokens > {context_size-100} limit")
|
1216 |
+
while context_pos >= context_size - 100 and len(conversation) > 2:
|
1217 |
+
removed = conversation.pop(0)
|
1218 |
+
DebugLog(f"Removed message: {removed['role']}: {removed['content'][:30]}...")
|
1219 |
+
formatted_input = tokenizer.apply_chat_template(
|
1220 |
+
conversation,
|
1221 |
+
return_tensors="pt",
|
1222 |
+
add_generation_prompt=True
|
1223 |
+
)
|
1224 |
+
base_input_ids = formatted_input.to(torch.int32)
|
1225 |
+
context_pos = base_input_ids.size(1)
|
1226 |
+
DebugLog(f"New context size: {context_pos}")
|
1227 |
+
|
1228 |
+
# Pad sequence to context_size
|
1229 |
+
input_ids = F.pad(
|
1230 |
+
base_input_ids,
|
1231 |
+
(0, context_size - context_pos),
|
1232 |
+
value=0
|
1233 |
+
)
|
1234 |
+
|
1235 |
+
# Create causal mask for the entire context
|
1236 |
+
causal_mask = make_causal_mask(context_size, 0)
|
1237 |
+
causal_mask = torch.tensor(causal_mask, dtype=torch.float16)
|
1238 |
+
DebugLog(f"Created causal mask with shape: {causal_mask.shape}")
|
1239 |
+
|
1240 |
+
print(f"\n{LIGHT_BLUE}Assistant:{RESET_COLOR}", end=' ', flush=True)
|
1241 |
+
|
1242 |
+
# Run prefill on entire context
|
1243 |
+
if False: #any(key.contains('2D') for key in model_parts.keys()):
|
1244 |
+
DebugLog("Using sequential prefill")
|
1245 |
+
current_pos = PreFillChunkOneByOne(
|
1246 |
+
model_parts,
|
1247 |
+
input_ids,
|
1248 |
+
context_pos,
|
1249 |
+
context_size,
|
1250 |
+
causal_mask
|
1251 |
+
)
|
1252 |
+
elif any(part.startswith('2Q') for part in model_parts.keys()):
|
1253 |
+
DebugLog(f"Using quad split prefill (size={PREFILL_BATCH_SIZE})")
|
1254 |
+
current_pos = PreFillChunk(
|
1255 |
+
model_parts,
|
1256 |
+
input_ids,
|
1257 |
+
context_pos,
|
1258 |
+
context_size,
|
1259 |
+
causal_mask,
|
1260 |
+
batch_size=PREFILL_BATCH_SIZE
|
1261 |
+
)
|
1262 |
+
else:
|
1263 |
+
DebugLog(f"Using standard batch prefill (size={PREFILL_BATCH_SIZE})")
|
1264 |
+
current_pos = PreFillChunk(
|
1265 |
+
model_parts,
|
1266 |
+
input_ids,
|
1267 |
+
context_pos,
|
1268 |
+
context_size,
|
1269 |
+
causal_mask,
|
1270 |
+
batch_size=PREFILL_BATCH_SIZE
|
1271 |
+
)
|
1272 |
+
|
1273 |
+
# Initialize token printer
|
1274 |
+
token_printer = TokenPrinter(tokenizer)
|
1275 |
+
|
1276 |
+
# Generation loop
|
1277 |
+
pos = context_pos
|
1278 |
+
response_tokens = []
|
1279 |
+
generation_start_time = time.time() # Add timing
|
1280 |
+
|
1281 |
+
try:
|
1282 |
+
while True: # Changed from context_size - 1 to True for continuous generation
|
1283 |
+
# Check if we need to shift window
|
1284 |
+
if pos >= context_size - 2:
|
1285 |
+
DebugLog("\nShifting context window...")
|
1286 |
+
|
1287 |
+
shift_size = context_size // 4 # Shift by 1/4 of context
|
1288 |
+
new_size = context_size - shift_size
|
1289 |
+
|
1290 |
+
# Create shifted input_ids and preserve the most recent context
|
1291 |
+
tmp = torch.zeros((1, context_size), dtype=torch.int32)
|
1292 |
+
tmp[:,0:new_size] = input_ids[:,shift_size:context_size]
|
1293 |
+
input_ids = tmp
|
1294 |
+
|
1295 |
+
# Adjust position after shift
|
1296 |
+
pos = new_size
|
1297 |
+
|
1298 |
+
DebugLog(f"Shifted window by {shift_size} tokens, new position: {pos}")
|
1299 |
+
|
1300 |
+
# Run prefill on the shifted sequence
|
1301 |
+
if False: #if any(key.contains('2D') for key in model_parts.keys()):
|
1302 |
+
DebugLog("Running sequential prefill after shift")
|
1303 |
+
current_pos = PreFillChunkOneByOne(
|
1304 |
+
model_parts,
|
1305 |
+
input_ids,
|
1306 |
+
pos,
|
1307 |
+
context_size,
|
1308 |
+
causal_mask
|
1309 |
+
)
|
1310 |
+
else:
|
1311 |
+
DebugLog("Running batch prefill after shift (size={PREFILL_BATCH_SIZE})")
|
1312 |
+
current_pos = PreFillChunk(
|
1313 |
+
model_parts,
|
1314 |
+
input_ids,
|
1315 |
+
pos,
|
1316 |
+
context_size,
|
1317 |
+
causal_mask,
|
1318 |
+
batch_size=PREFILL_BATCH_SIZE
|
1319 |
+
)
|
1320 |
+
|
1321 |
+
# Get current token
|
1322 |
+
current_token = input_ids[:, pos-1:pos]
|
1323 |
+
|
1324 |
+
# Find the correct model key for part 1
|
1325 |
+
part1_key = next(key for key in model_parts.keys() if key.startswith('1_') or key == '1')
|
1326 |
+
|
1327 |
+
# Run embeddings (part 1)
|
1328 |
+
hidden_states = model_parts[part1_key].predict({
|
1329 |
+
'input_ids': current_token.numpy()
|
1330 |
+
})['hidden_states']
|
1331 |
+
hidden_states = torch.from_numpy(hidden_states)
|
1332 |
+
|
1333 |
+
# Get shared transformer state
|
1334 |
+
shared_state = model_parts['states']['transformer']
|
1335 |
+
|
1336 |
+
# Create update mask for current position
|
1337 |
+
update_mask = torch.zeros((1, 1, context_size, 1), dtype=torch.float16)
|
1338 |
+
update_mask[0, 0, pos-1, 0] = 1.0
|
1339 |
+
|
1340 |
+
# Create position IDs tensor
|
1341 |
+
position_ids = torch.tensor([pos-1], dtype=torch.int32)
|
1342 |
+
|
1343 |
+
# Create causal mask for current position
|
1344 |
+
single_causal_mask = causal_mask[:, :, pos-1:pos, :]
|
1345 |
+
|
1346 |
+
# Run transformer layers based on model type
|
1347 |
+
if any(f'{part}_infer' in model_parts for part in ['2D1S', '2D2S']):
|
1348 |
+
for part in ['2D1S', '2D2S']:
|
1349 |
+
inputs = {
|
1350 |
+
'hidden_states': hidden_states.numpy(),
|
1351 |
+
'update_mask': update_mask.numpy(),
|
1352 |
+
'position_ids': position_ids.numpy(),
|
1353 |
+
'causal_mask': single_causal_mask.numpy(),
|
1354 |
+
'current_pos': position_ids.numpy()
|
1355 |
+
}
|
1356 |
+
output = model_parts[f'{part}_infer'].predict(inputs, shared_state)
|
1357 |
+
hidden_states = torch.from_numpy(output['transformer_output'])
|
1358 |
+
elif any(part.startswith('2Q') for part in model_parts.keys()):
|
1359 |
+
DebugLog(f"Running quad split inference at position {pos}")
|
1360 |
+
for i in range(1, 5):
|
1361 |
+
part = f'2Q{i}'
|
1362 |
+
if f'{part}_infer' in model_parts:
|
1363 |
+
# Use infer function if available
|
1364 |
+
inputs = {
|
1365 |
+
'hidden_states': hidden_states.numpy(),
|
1366 |
+
'update_mask': update_mask.numpy(),
|
1367 |
+
'position_ids': position_ids.numpy(),
|
1368 |
+
'causal_mask': single_causal_mask.numpy(),
|
1369 |
+
'current_pos': position_ids.numpy()
|
1370 |
+
}
|
1371 |
+
output = model_parts[f'{part}_infer'].predict(inputs, shared_state)
|
1372 |
+
else:
|
1373 |
+
# Use regular predict if no infer function
|
1374 |
+
inputs = {
|
1375 |
+
'hidden_states': hidden_states.numpy(),
|
1376 |
+
'update_mask': update_mask.numpy(),
|
1377 |
+
'position_ids': position_ids.numpy(),
|
1378 |
+
'causal_mask': single_causal_mask.numpy(),
|
1379 |
+
'current_pos': position_ids.numpy()
|
1380 |
+
}
|
1381 |
+
output = model_parts[part].predict(inputs, shared_state)
|
1382 |
+
hidden_states = torch.from_numpy(output['transformer_output'])
|
1383 |
+
elif any(key.startswith('2D') for key in model_parts.keys()):
|
1384 |
+
for base_part in ['2D1', '2D2']:
|
1385 |
+
part_key = next(key for key in model_parts.keys() if key.startswith(f'{base_part}_') or key == base_part)
|
1386 |
+
inputs = {
|
1387 |
+
'hidden_states': hidden_states.numpy(),
|
1388 |
+
'update_mask': update_mask.numpy(),
|
1389 |
+
'position_ids': position_ids.numpy(),
|
1390 |
+
'causal_mask': single_causal_mask.numpy(),
|
1391 |
+
'current_pos': position_ids.numpy()
|
1392 |
+
}
|
1393 |
+
output = model_parts[part_key].predict(inputs, shared_state)
|
1394 |
+
hidden_states = torch.from_numpy(output['transformer_output'])
|
1395 |
+
|
1396 |
+
# Run final layer norm and get logits
|
1397 |
+
part3_key = next(key for key in model_parts.keys() if key.startswith('3_') or key == '3')
|
1398 |
+
output_dict = model_parts[part3_key].predict({
|
1399 |
+
'hidden_states': hidden_states.numpy()
|
1400 |
+
})
|
1401 |
+
|
1402 |
+
if ENABLE_VACAB_SPLIT8:
|
1403 |
+
logits_parts = []
|
1404 |
+
for i in range(1, 9):
|
1405 |
+
logits_parts.append(output_dict[f'logits{i}'])
|
1406 |
+
logits = np.concatenate(logits_parts, axis=-1)
|
1407 |
+
else:
|
1408 |
+
logits = output_dict['logits']
|
1409 |
+
|
1410 |
+
# Convert to tensor and get next token
|
1411 |
+
logits = torch.from_numpy(logits)
|
1412 |
+
|
1413 |
+
# Apply temperature if specified
|
1414 |
+
if temperature > 0:
|
1415 |
+
logits = logits / temperature
|
1416 |
+
probs = F.softmax(logits[0, -1, :], dim=-1)
|
1417 |
+
next_token = torch.multinomial(probs, num_samples=1).item()
|
1418 |
+
else:
|
1419 |
+
next_token = torch.argmax(logits[0, -1, :]).item()
|
1420 |
+
|
1421 |
+
# Add token to input sequence and response
|
1422 |
+
input_ids[0, pos] = next_token
|
1423 |
+
response_tokens.append(next_token)
|
1424 |
+
token_printer.add_token(next_token)
|
1425 |
+
|
1426 |
+
# Safely decode tokens in the main thread
|
1427 |
+
token_printer.drain_buffer()
|
1428 |
+
|
1429 |
+
pos += 1
|
1430 |
+
|
1431 |
+
# Add debug output for generated tokens
|
1432 |
+
if ENABLE_CHAT_DEBUG and len(response_tokens) > 0 and len(response_tokens) % 10 == 0:
|
1433 |
+
DebugLog(f"\nGenerated {len(response_tokens)} tokens")
|
1434 |
+
DebugLog(f"Last token: {next_token} -> '{tokenizer.decode([next_token])}'")
|
1435 |
+
|
1436 |
+
if next_token == tokenizer.eos_token_id:
|
1437 |
+
DebugLog("\nGenerated EOS token")
|
1438 |
+
break
|
1439 |
+
|
1440 |
+
# Get the complete response text and calculate stats
|
1441 |
+
response_text = token_printer.stop()
|
1442 |
+
generation_time = time.time() - generation_start_time
|
1443 |
+
tokens_per_second = len(response_tokens) / generation_time if generation_time > 0 else 0
|
1444 |
+
|
1445 |
+
DebugLog(f"\nFinal response length: {len(response_tokens)} tokens")
|
1446 |
+
|
1447 |
+
# Print generation stats in dark blue
|
1448 |
+
print(f"\n{DARK_BLUE}[{len(response_tokens)} tokens, {tokens_per_second:.1f} tokens/s]{RESET_COLOR}")
|
1449 |
+
|
1450 |
+
except KeyboardInterrupt:
|
1451 |
+
DebugLog("\nGeneration interrupted by user")
|
1452 |
+
response_text = token_printer.stop()
|
1453 |
+
generation_time = time.time() - generation_start_time
|
1454 |
+
tokens_per_second = len(response_tokens) / generation_time if generation_time > 0 else 0
|
1455 |
+
print(f"\n{DARK_BLUE}[{len(response_tokens)} tokens, {tokens_per_second:.1f} tokens/s]{RESET_COLOR}")
|
1456 |
+
|
1457 |
+
# Add assistant's response to conversation history
|
1458 |
+
conversation.append({"role": "assistant", "content": response_text})
|
1459 |
+
|
1460 |
+
except Exception as e:
|
1461 |
+
print(f"\n[ERROR] Chat loop error: {str(e)}")
|
1462 |
+
print(traceback.format_exc())
|
1463 |
+
|
1464 |
+
def main():
|
1465 |
+
global CONTEXT_LENGTH, PREFILL_BATCH_SIZE, MODEL_PATH
|
1466 |
+
|
1467 |
+
print("ANEMLL Chat. Pre-relase alpha version, 2025-01-31")
|
1468 |
+
print("Copyright (c) 2025, Anemll All rights reserved.")
|
1469 |
+
# Set default parameters
|
1470 |
+
model_type = "Q123" # Default model type
|
1471 |
+
lut_suffix = "lut4" # Default LUT suffix
|
1472 |
+
temperature = 0.0
|
1473 |
+
model_parts = {}
|
1474 |
+
model_path = "." # Default to current directory
|
1475 |
+
|
1476 |
+
if len(sys.argv) < 2:
|
1477 |
+
print("Usage: python chat.py [model_parts] [options]")
|
1478 |
+
print("Usage: python chat.py [model_parts] [options]")
|
1479 |
+
print("\nOptions:")
|
1480 |
+
print(" -d PATH # Model directory path (for both tokenizer and CoreML models)")
|
1481 |
+
print(" S123 # Combined split model (2D1S+2D2S)")
|
1482 |
+
print(" C123 # Combined part2 model with prefill/infer")
|
1483 |
+
print(" Q123 # Quad split model (2Q1-2Q4) [default]")
|
1484 |
+
print(" Q123S # Combined quad split model (2Q1S-2Q4S)")
|
1485 |
+
print(" 1 2D1 2D2 3 # Individual split parts")
|
1486 |
+
print(" pfN # Prefill batch size (e.g., pf128)")
|
1487 |
+
print(" ctx=N # Context length (e.g., ctx=2048) [default: 1024]")
|
1488 |
+
print(" temp=X # Temperature for sampling (e.g., temp=0.01)")
|
1489 |
+
print(" lut4 # LUT suffix [default]")
|
1490 |
+
print("\nDefault configuration: Q123 lut4 ctx=1024")
|
1491 |
+
print(" python chat.py Q123 -d ../anemll-DeepSeek-8B-ctx1024")
|
1492 |
+
# Use defaults instead of exiting
|
1493 |
+
print("\nUsing default configuration...")
|
1494 |
+
else:
|
1495 |
+
# Process command line arguments
|
1496 |
+
i = 1
|
1497 |
+
while i < len(sys.argv):
|
1498 |
+
if sys.argv[i] == '-d' and i + 1 < len(sys.argv):
|
1499 |
+
model_path = sys.argv[i + 1]
|
1500 |
+
i += 2
|
1501 |
+
# Extract context length from model path if present
|
1502 |
+
ctx_match = re.search(r'ctx(\d+)', model_path)
|
1503 |
+
if ctx_match:
|
1504 |
+
ctx_value = int(ctx_match.group(1))
|
1505 |
+
if 512 <= ctx_value <= 4096*2:
|
1506 |
+
CONTEXT_LENGTH = ctx_value
|
1507 |
+
print(f"Setting context length to {CONTEXT_LENGTH} from model path")
|
1508 |
+
continue
|
1509 |
+
elif sys.argv[i].startswith('lut'):
|
1510 |
+
lut_suffix = sys.argv[i]
|
1511 |
+
elif sys.argv[i] in ['S123', 'Q123', 'Q123S', 'C123', '123D']:
|
1512 |
+
model_type = sys.argv[i]
|
1513 |
+
i += 1
|
1514 |
+
|
1515 |
+
# Initialize tokenizer using the same path
|
1516 |
+
tokenizer = initialize_tokenizer(model_path)
|
1517 |
+
if tokenizer is None:
|
1518 |
+
print("[ERROR] Failed to initialize tokenizer. Exiting.")
|
1519 |
+
return
|
1520 |
+
|
1521 |
+
# Process model parts
|
1522 |
+
parts = [model_type]
|
1523 |
+
if lut_suffix:
|
1524 |
+
parts.append(lut_suffix)
|
1525 |
+
|
1526 |
+
try:
|
1527 |
+
split_model = SplitModelInference(parts, model_dir=model_path)
|
1528 |
+
model_parts.update(split_model.models)
|
1529 |
+
model_parts['states'] = {'transformer': split_model.states['transformer']}
|
1530 |
+
except Exception as e:
|
1531 |
+
print(f"Error loading model parts: {str(e)}")
|
1532 |
+
return
|
1533 |
+
|
1534 |
+
# Process remaining arguments
|
1535 |
+
i = 1
|
1536 |
+
while i < len(sys.argv):
|
1537 |
+
arg = sys.argv[i]
|
1538 |
+
if arg.startswith('pf') and arg[2:].isdigit():
|
1539 |
+
PREFILL_BATCH_SIZE = int(arg[2:])
|
1540 |
+
elif arg.startswith('ctx='):
|
1541 |
+
try:
|
1542 |
+
CONTEXT_LENGTH = int(arg.split('=')[1])
|
1543 |
+
except (IndexError, ValueError):
|
1544 |
+
print(f"[WARNING] Invalid context length format. Using default: {CONTEXT_LENGTH}")
|
1545 |
+
elif arg.startswith('temp='):
|
1546 |
+
try:
|
1547 |
+
temperature = float(arg.split('=')[1])
|
1548 |
+
if temperature < 0:
|
1549 |
+
print(f"[WARNING] Temperature must be non-negative. Using default: 0.0")
|
1550 |
+
temperature = 0.0
|
1551 |
+
except (IndexError, ValueError):
|
1552 |
+
print(f"[WARNING] Invalid temperature format. Using default: 0.0")
|
1553 |
+
i += 1
|
1554 |
+
|
1555 |
+
try:
|
1556 |
+
# Start interactive chat loop
|
1557 |
+
chat_loop(model_parts, tokenizer, context_size=CONTEXT_LENGTH, temperature=temperature)
|
1558 |
+
except Exception as e:
|
1559 |
+
print("An error occurred:")
|
1560 |
+
print(traceback.format_exc())
|
1561 |
+
|
1562 |
+
if __name__ == "__main__":
|
1563 |
+
main()
|
llama32_part1_lut4.mlmodelc.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5ae73d6d7f21fcca5d507000053fdd02b51981e68f6b657248b8a67fac112ce
|
3 |
+
size 809296883
|
llama32_part2Q1S_lut4.mlmodelc.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1baa5e12e398e635358b11c7c6159a51b76e6b83b9b5f7b6967cfaf1c3fda143
|
3 |
+
size 840797896
|
llama32_part2Q2S_lut4.mlmodelc.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:281f082ed2df5b0b2a042a2e017261f1859efe823d841b95b1f6a65bb3a977c0
|
3 |
+
size 841305827
|
llama32_part2Q3S_lut4.mlmodelc.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69fee129d23ee04acfb263ba75ec5d81e68073311ac8d4fcd8f6f2f64b1f7540
|
3 |
+
size 844542698
|
llama32_part2Q4S_lut4.mlmodelc.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e25faaf152d83647d5d7e05b020f6353d20ebab153a3eb4fc465dbbae0a547c
|
3 |
+
size 842983465
|
llama32_part3_lut4.mlmodelc.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9dc1d2823d7d54fd8cf2d56e1803330e3c4b7c150d62c4749d911d02b6c7cb9c
|
3 |
+
size 239469149
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"bos_token": {
|
5 |
+
"__type": "AddedToken",
|
6 |
+
"content": "<|begin▁of▁sentence|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": true,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"clean_up_tokenization_spaces": false,
|
13 |
+
"eos_token": {
|
14 |
+
"__type": "AddedToken",
|
15 |
+
"content": "<|end▁of▁sentence|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": true,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"legacy": true,
|
22 |
+
"model_max_length": 16384,
|
23 |
+
"pad_token": {
|
24 |
+
"__type": "AddedToken",
|
25 |
+
"content": "<|end▁of▁sentence|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": true,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
},
|
31 |
+
"sp_model_kwargs": {},
|
32 |
+
"unk_token": null,
|
33 |
+
"tokenizer_class": "LlamaTokenizerFast",
|
34 |
+
"chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}{%- for message in messages %}{%- if message['role'] == 'system' %}{% set ns.system_prompt = message['content'] %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<|User|>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{'<|Assistant|><|tool▁calls▁begin|><|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{%- set ns.is_first = true -%}{%- else %}{{'\\n' + '<|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{{'<|tool▁calls▁end|><|end▁of▁sentence|>'}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{'<|tool▁outputs▁end|>' + message['content'] + '<|end▁of▁sentence|>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{'<|Assistant|>' + content + '<|end▁of▁sentence|>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<|tool▁outputs▁begin|><|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\\n<|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<|Assistant|>'}}{% endif %}"
|
35 |
+
}
|