|
import operator |
|
|
|
import numpy as np |
|
import numpy.core.umath_tests as ut |
|
|
|
from visualization.Quaternions import Quaternions |
|
|
|
|
|
class Animation: |
|
""" |
|
Animation is a numpy-like wrapper for animation data |
|
|
|
Animation data consists of several arrays consisting |
|
of F frames and J joints. |
|
|
|
The animation is specified by |
|
|
|
rotations : (F, J) Quaternions | Joint Rotations |
|
positions : (F, J, 3) ndarray | Joint Positions |
|
|
|
The base pose is specified by |
|
|
|
orients : (J) Quaternions | Joint Orientations |
|
offsets : (J, 3) ndarray | Joint Offsets |
|
|
|
And the skeletal structure is specified by |
|
|
|
parents : (J) ndarray | Joint Parents |
|
""" |
|
|
|
def __init__(self, rotations, positions, orients, offsets, parents, names, frametime): |
|
|
|
self.rotations = rotations |
|
self.positions = positions |
|
self.orients = orients |
|
self.offsets = offsets |
|
self.parents = parents |
|
self.names = names |
|
self.frametime = frametime |
|
|
|
def __op__(self, op, other): |
|
return Animation( |
|
op(self.rotations, other.rotations), |
|
op(self.positions, other.positions), |
|
op(self.orients, other.orients), |
|
op(self.offsets, other.offsets), |
|
op(self.parents, other.parents)) |
|
|
|
def __iop__(self, op, other): |
|
self.rotations = op(self.roations, other.rotations) |
|
self.positions = op(self.roations, other.positions) |
|
self.orients = op(self.orients, other.orients) |
|
self.offsets = op(self.offsets, other.offsets) |
|
self.parents = op(self.parents, other.parents) |
|
return self |
|
|
|
def __sop__(self, op): |
|
return Animation( |
|
op(self.rotations), |
|
op(self.positions), |
|
op(self.orients), |
|
op(self.offsets), |
|
op(self.parents)) |
|
|
|
def __add__(self, other): |
|
return self.__op__(operator.add, other) |
|
|
|
def __sub__(self, other): |
|
return self.__op__(operator.sub, other) |
|
|
|
def __mul__(self, other): |
|
return self.__op__(operator.mul, other) |
|
|
|
def __div__(self, other): |
|
return self.__op__(operator.div, other) |
|
|
|
def __abs__(self): |
|
return self.__sop__(operator.abs) |
|
|
|
def __neg__(self): |
|
return self.__sop__(operator.neg) |
|
|
|
def __iadd__(self, other): |
|
return self.__iop__(operator.iadd, other) |
|
|
|
def __isub__(self, other): |
|
return self.__iop__(operator.isub, other) |
|
|
|
def __imul__(self, other): |
|
return self.__iop__(operator.imul, other) |
|
|
|
def __idiv__(self, other): |
|
return self.__iop__(operator.idiv, other) |
|
|
|
def __len__(self): |
|
return len(self.rotations) |
|
|
|
def __getitem__(self, k): |
|
if isinstance(k, tuple): |
|
return Animation( |
|
self.rotations[k], |
|
self.positions[k], |
|
self.orients[k[1:]], |
|
self.offsets[k[1:]], |
|
self.parents[k[1:]], |
|
self.names[k[1:]], |
|
self.frametime[k[1:]]) |
|
else: |
|
return Animation( |
|
self.rotations[k], |
|
self.positions[k], |
|
self.orients, |
|
self.offsets, |
|
self.parents, |
|
self.names, |
|
self.frametime) |
|
|
|
def __setitem__(self, k, v): |
|
if isinstance(k, tuple): |
|
self.rotations.__setitem__(k, v.rotations) |
|
self.positions.__setitem__(k, v.positions) |
|
self.orients.__setitem__(k[1:], v.orients) |
|
self.offsets.__setitem__(k[1:], v.offsets) |
|
self.parents.__setitem__(k[1:], v.parents) |
|
else: |
|
self.rotations.__setitem__(k, v.rotations) |
|
self.positions.__setitem__(k, v.positions) |
|
self.orients.__setitem__(k, v.orients) |
|
self.offsets.__setitem__(k, v.offsets) |
|
self.parents.__setitem__(k, v.parents) |
|
|
|
@property |
|
def shape(self): |
|
return (self.rotations.shape[0], self.rotations.shape[1]) |
|
|
|
def copy(self): |
|
return Animation( |
|
self.rotations.copy(), self.positions.copy(), |
|
self.orients.copy(), self.offsets.copy(), |
|
self.parents.copy(), self.names, |
|
self.frametime) |
|
|
|
def repeat(self, *args, **kw): |
|
return Animation( |
|
self.rotations.repeat(*args, **kw), |
|
self.positions.repeat(*args, **kw), |
|
self.orients, self.offsets, self.parents, self.frametime, self.names) |
|
|
|
def ravel(self): |
|
return np.hstack([ |
|
self.rotations.log().ravel(), |
|
self.positions.ravel(), |
|
self.orients.log().ravel(), |
|
self.offsets.ravel()]) |
|
|
|
@classmethod |
|
def unravel(cls, anim, shape, parents): |
|
nf, nj = shape |
|
rotations = anim[nf * nj * 0:nf * nj * 3] |
|
positions = anim[nf * nj * 3:nf * nj * 6] |
|
orients = anim[nf * nj * 6 + nj * 0:nf * nj * 6 + nj * 3] |
|
offsets = anim[nf * nj * 6 + nj * 3:nf * nj * 6 + nj * 6] |
|
return cls( |
|
Quaternions.exp(rotations), positions, |
|
Quaternions.exp(orients), offsets, |
|
parents.copy()) |
|
|
|
|
|
|
|
def transforms_local(anim): |
|
""" |
|
Computes Animation Local Transforms |
|
|
|
As well as a number of other uses this can |
|
be used to compute global joint transforms, |
|
which in turn can be used to compete global |
|
joint positions |
|
|
|
Parameters |
|
---------- |
|
|
|
anim : Animation |
|
Input animation |
|
|
|
Returns |
|
------- |
|
|
|
transforms : (F, J, 4, 4) ndarray |
|
|
|
For each frame F, joint local |
|
transforms for each joint J |
|
""" |
|
|
|
transforms = anim.rotations.transforms() |
|
transforms = np.concatenate([transforms, np.zeros(transforms.shape[:2] + (3, 1))], axis=-1) |
|
transforms = np.concatenate([transforms, np.zeros(transforms.shape[:2] + (1, 4))], axis=-2) |
|
|
|
transforms[:, :, 0:3, 3] = anim.positions |
|
transforms[:, :, 3:4, 3] = 1.0 |
|
return transforms |
|
|
|
|
|
def transforms_multiply(t0s, t1s): |
|
""" |
|
Transforms Multiply |
|
|
|
Multiplies two arrays of animation transforms |
|
|
|
Parameters |
|
---------- |
|
|
|
t0s, t1s : (F, J, 4, 4) ndarray |
|
Two arrays of transforms |
|
for each frame F and each |
|
joint J |
|
|
|
Returns |
|
------- |
|
|
|
transforms : (F, J, 4, 4) ndarray |
|
Array of transforms for each |
|
frame F and joint J multiplied |
|
together |
|
""" |
|
|
|
return ut.matrix_multiply(t0s, t1s) |
|
|
|
|
|
def transforms_inv(ts): |
|
fts = ts.reshape(-1, 4, 4) |
|
fts = np.array(list(map(lambda x: np.linalg.inv(x), fts))) |
|
return fts.reshape(ts.shape) |
|
|
|
|
|
def transforms_blank(anim): |
|
""" |
|
Blank Transforms |
|
|
|
Parameters |
|
---------- |
|
|
|
anim : Animation |
|
Input animation |
|
|
|
Returns |
|
------- |
|
|
|
transforms : (F, J, 4, 4) ndarray |
|
Array of identity transforms for |
|
each frame F and joint J |
|
""" |
|
|
|
ts = np.zeros(anim.shape + (4, 4)) |
|
ts[:, :, 0, 0] = 1.0; |
|
ts[:, :, 1, 1] = 1.0; |
|
ts[:, :, 2, 2] = 1.0; |
|
ts[:, :, 3, 3] = 1.0; |
|
return ts |
|
|
|
|
|
|
|
def transforms_global(anim): |
|
""" |
|
Global Animation Transforms |
|
|
|
This relies on joint ordering |
|
being incremental. That means a joint |
|
J1 must not be a ancestor of J0 if |
|
J0 appears before J1 in the joint |
|
ordering. |
|
|
|
Parameters |
|
---------- |
|
|
|
anim : Animation |
|
Input animation |
|
|
|
Returns |
|
------ |
|
|
|
transforms : (F, J, 4, 4) ndarray |
|
Array of global transforms for |
|
each frame F and joint J |
|
""" |
|
locals = transforms_local(anim) |
|
globals = transforms_blank(anim) |
|
|
|
globals[:, 0] = locals[:, 0] |
|
|
|
for i in range(1, anim.shape[1]): |
|
globals[:, i] = transforms_multiply(globals[:, anim.parents[i]], locals[:, i]) |
|
|
|
return globals |
|
|
|
|
|
|
|
def positions_global(anim): |
|
""" |
|
Global Joint Positions |
|
|
|
Given an animation compute the global joint |
|
positions at at every frame |
|
|
|
Parameters |
|
---------- |
|
|
|
anim : Animation |
|
Input animation |
|
|
|
Returns |
|
------- |
|
|
|
positions : (F, J, 3) ndarray |
|
Positions for every frame F |
|
and joint position J |
|
""" |
|
|
|
|
|
positions = transforms_global(anim)[:, :, :, 3] |
|
return positions[:, :, :3] / positions[:, :, 3, np.newaxis] |
|
|
|
|
|
""" Rotations """ |
|
|
|
|
|
def rotations_global(anim): |
|
""" |
|
Global Animation Rotations |
|
|
|
This relies on joint ordering |
|
being incremental. That means a joint |
|
J1 must not be a ancestor of J0 if |
|
J0 appears before J1 in the joint |
|
ordering. |
|
|
|
Parameters |
|
---------- |
|
|
|
anim : Animation |
|
Input animation |
|
|
|
Returns |
|
------- |
|
|
|
points : (F, J) Quaternions |
|
global rotations for every frame F |
|
and joint J |
|
""" |
|
|
|
joints = np.arange(anim.shape[1]) |
|
parents = np.arange(anim.shape[1]) |
|
locals = anim.rotations |
|
globals = Quaternions.id(anim.shape) |
|
|
|
globals[:, 0] = locals[:, 0] |
|
|
|
for i in range(1, anim.shape[1]): |
|
globals[:, i] = globals[:, anim.parents[i]] * locals[:, i] |
|
|
|
return globals |
|
|
|
|
|
def rotations_parents_global(anim): |
|
rotations = rotations_global(anim) |
|
rotations = rotations[:, anim.parents] |
|
rotations[:, 0] = Quaternions.id(len(anim)) |
|
return rotations |
|
|
|
""" Offsets & Orients """ |
|
|
|
|
|
def orients_global(anim): |
|
joints = np.arange(anim.shape[1]) |
|
parents = np.arange(anim.shape[1]) |
|
locals = anim.orients |
|
globals = Quaternions.id(anim.shape[1]) |
|
|
|
globals[:, 0] = locals[:, 0] |
|
|
|
for i in range(1, anim.shape[1]): |
|
globals[:, i] = globals[:, anim.parents[i]] * locals[:, i] |
|
|
|
return globals |
|
|
|
|
|
def offsets_transforms_local(anim): |
|
transforms = anim.orients[np.newaxis].transforms() |
|
transforms = np.concatenate([transforms, np.zeros(transforms.shape[:2] + (3, 1))], axis=-1) |
|
transforms = np.concatenate([transforms, np.zeros(transforms.shape[:2] + (1, 4))], axis=-2) |
|
transforms[:, :, 0:3, 3] = anim.offsets[np.newaxis] |
|
transforms[:, :, 3:4, 3] = 1.0 |
|
return transforms |
|
|
|
|
|
def offsets_transforms_global(anim): |
|
joints = np.arange(anim.shape[1]) |
|
parents = np.arange(anim.shape[1]) |
|
locals = offsets_transforms_local(anim) |
|
globals = transforms_blank(anim) |
|
|
|
globals[:, 0] = locals[:, 0] |
|
|
|
for i in range(1, anim.shape[1]): |
|
globals[:, i] = transforms_multiply(globals[:, anim.parents[i]], locals[:, i]) |
|
|
|
return globals |
|
|
|
|
|
def offsets_global(anim): |
|
offsets = offsets_transforms_global(anim)[:, :, :, 3] |
|
return offsets[0, :, :3] / offsets[0, :, 3, np.newaxis] |
|
|
|
|
|
""" Lengths """ |
|
|
|
|
|
def offset_lengths(anim): |
|
return np.sum(anim.offsets[1:] ** 2.0, axis=1) ** 0.5 |
|
|
|
|
|
def position_lengths(anim): |
|
return np.sum(anim.positions[:, 1:] ** 2.0, axis=2) ** 0.5 |
|
|
|
|
|
""" Skinning """ |
|
|
|
|
|
def skin(anim, rest, weights, mesh, maxjoints=4): |
|
full_transforms = transforms_multiply( |
|
transforms_global(anim), |
|
transforms_inv(transforms_global(rest[0:1]))) |
|
|
|
weightids = np.argsort(-weights, axis=1)[:, :maxjoints] |
|
weightvls = np.array(list(map(lambda w, i: w[i], weights, weightids))) |
|
weightvls = weightvls / weightvls.sum(axis=1)[..., np.newaxis] |
|
|
|
verts = np.hstack([mesh, np.ones((len(mesh), 1))]) |
|
verts = verts[np.newaxis, :, np.newaxis, :, np.newaxis] |
|
verts = transforms_multiply(full_transforms[:, weightids], verts) |
|
verts = (verts[:, :, :, :3] / verts[:, :, :, 3:4])[:, :, :, :, 0] |
|
|
|
return np.sum(weightvls[np.newaxis, :, :, np.newaxis] * verts, axis=2) |