File size: 11,608 Bytes
823807d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
import operator

import numpy as np
import numpy.core.umath_tests as ut

from visualization.Quaternions import Quaternions


class Animation:
    """
    Animation is a numpy-like wrapper for animation data

    Animation data consists of several arrays consisting
    of F frames and J joints.

    The animation is specified by

        rotations : (F, J) Quaternions | Joint Rotations
        positions : (F, J, 3) ndarray  | Joint Positions

    The base pose is specified by

        orients   : (J) Quaternions    | Joint Orientations
        offsets   : (J, 3) ndarray     | Joint Offsets

    And the skeletal structure is specified by

        parents   : (J) ndarray        | Joint Parents
    """

    def __init__(self, rotations, positions, orients, offsets, parents, names, frametime):

        self.rotations = rotations
        self.positions = positions
        self.orients = orients
        self.offsets = offsets
        self.parents = parents
        self.names = names
        self.frametime = frametime

    def __op__(self, op, other):
        return Animation(
            op(self.rotations, other.rotations),
            op(self.positions, other.positions),
            op(self.orients, other.orients),
            op(self.offsets, other.offsets),
            op(self.parents, other.parents))

    def __iop__(self, op, other):
        self.rotations = op(self.roations, other.rotations)
        self.positions = op(self.roations, other.positions)
        self.orients = op(self.orients, other.orients)
        self.offsets = op(self.offsets, other.offsets)
        self.parents = op(self.parents, other.parents)
        return self

    def __sop__(self, op):
        return Animation(
            op(self.rotations),
            op(self.positions),
            op(self.orients),
            op(self.offsets),
            op(self.parents))

    def __add__(self, other):
        return self.__op__(operator.add, other)

    def __sub__(self, other):
        return self.__op__(operator.sub, other)

    def __mul__(self, other):
        return self.__op__(operator.mul, other)

    def __div__(self, other):
        return self.__op__(operator.div, other)

    def __abs__(self):
        return self.__sop__(operator.abs)

    def __neg__(self):
        return self.__sop__(operator.neg)

    def __iadd__(self, other):
        return self.__iop__(operator.iadd, other)

    def __isub__(self, other):
        return self.__iop__(operator.isub, other)

    def __imul__(self, other):
        return self.__iop__(operator.imul, other)

    def __idiv__(self, other):
        return self.__iop__(operator.idiv, other)

    def __len__(self):
        return len(self.rotations)

    def __getitem__(self, k):
        if isinstance(k, tuple):
            return Animation(
                self.rotations[k],
                self.positions[k],
                self.orients[k[1:]],
                self.offsets[k[1:]],
                self.parents[k[1:]],
                self.names[k[1:]],
                self.frametime[k[1:]])
        else:
            return Animation(
                self.rotations[k],
                self.positions[k],
                self.orients,
                self.offsets,
                self.parents,
                self.names,
                self.frametime)

    def __setitem__(self, k, v):
        if isinstance(k, tuple):
            self.rotations.__setitem__(k, v.rotations)
            self.positions.__setitem__(k, v.positions)
            self.orients.__setitem__(k[1:], v.orients)
            self.offsets.__setitem__(k[1:], v.offsets)
            self.parents.__setitem__(k[1:], v.parents)
        else:
            self.rotations.__setitem__(k, v.rotations)
            self.positions.__setitem__(k, v.positions)
            self.orients.__setitem__(k, v.orients)
            self.offsets.__setitem__(k, v.offsets)
            self.parents.__setitem__(k, v.parents)

    @property
    def shape(self):
        return (self.rotations.shape[0], self.rotations.shape[1])

    def copy(self):
        return Animation(
            self.rotations.copy(), self.positions.copy(),
            self.orients.copy(), self.offsets.copy(),
            self.parents.copy(), self.names,
            self.frametime)

    def repeat(self, *args, **kw):
        return Animation(
            self.rotations.repeat(*args, **kw),
            self.positions.repeat(*args, **kw),
            self.orients, self.offsets, self.parents, self.frametime, self.names)

    def ravel(self):
        return np.hstack([
            self.rotations.log().ravel(),
            self.positions.ravel(),
            self.orients.log().ravel(),
            self.offsets.ravel()])

    @classmethod
    def unravel(cls, anim, shape, parents):
        nf, nj = shape
        rotations = anim[nf * nj * 0:nf * nj * 3]
        positions = anim[nf * nj * 3:nf * nj * 6]
        orients = anim[nf * nj * 6 + nj * 0:nf * nj * 6 + nj * 3]
        offsets = anim[nf * nj * 6 + nj * 3:nf * nj * 6 + nj * 6]
        return cls(
            Quaternions.exp(rotations), positions,
            Quaternions.exp(orients), offsets,
            parents.copy())


# local transformation matrices
def transforms_local(anim):
    """
    Computes Animation Local Transforms

    As well as a number of other uses this can
    be used to compute global joint transforms,
    which in turn can be used to compete global
    joint positions

    Parameters
    ----------

    anim : Animation
        Input animation

    Returns
    -------

    transforms : (F, J, 4, 4) ndarray

        For each frame F, joint local
        transforms for each joint J
    """

    transforms = anim.rotations.transforms()
    transforms = np.concatenate([transforms, np.zeros(transforms.shape[:2] + (3, 1))], axis=-1)
    transforms = np.concatenate([transforms, np.zeros(transforms.shape[:2] + (1, 4))], axis=-2)
    # the last column is filled with the joint positions!
    transforms[:, :, 0:3, 3] = anim.positions
    transforms[:, :, 3:4, 3] = 1.0
    return transforms


def transforms_multiply(t0s, t1s):
    """
    Transforms Multiply

    Multiplies two arrays of animation transforms

    Parameters
    ----------

    t0s, t1s : (F, J, 4, 4) ndarray
        Two arrays of transforms
        for each frame F and each
        joint J

    Returns
    -------

    transforms : (F, J, 4, 4) ndarray
        Array of transforms for each
        frame F and joint J multiplied
        together
    """

    return ut.matrix_multiply(t0s, t1s)


def transforms_inv(ts):
    fts = ts.reshape(-1, 4, 4)
    fts = np.array(list(map(lambda x: np.linalg.inv(x), fts)))
    return fts.reshape(ts.shape)


def transforms_blank(anim):
    """
    Blank Transforms

    Parameters
    ----------

    anim : Animation
        Input animation

    Returns
    -------

    transforms : (F, J, 4, 4) ndarray
        Array of identity transforms for
        each frame F and joint J
    """

    ts = np.zeros(anim.shape + (4, 4))
    ts[:, :, 0, 0] = 1.0;
    ts[:, :, 1, 1] = 1.0;
    ts[:, :, 2, 2] = 1.0;
    ts[:, :, 3, 3] = 1.0;
    return ts


# global transformation matrices
def transforms_global(anim):
    """
    Global Animation Transforms

    This relies on joint ordering
    being incremental. That means a joint
    J1 must not be a ancestor of J0 if
    J0 appears before J1 in the joint
    ordering.

    Parameters
    ----------

    anim : Animation
        Input animation

    Returns
    ------

    transforms : (F, J, 4, 4) ndarray
        Array of global transforms for
        each frame F and joint J
    """
    locals = transforms_local(anim)
    globals = transforms_blank(anim)

    globals[:, 0] = locals[:, 0]

    for i in range(1, anim.shape[1]):
        globals[:, i] = transforms_multiply(globals[:, anim.parents[i]], locals[:, i])

    return globals


# !!! useful!
def positions_global(anim):
    """
    Global Joint Positions

    Given an animation compute the global joint
    positions at at every frame

    Parameters
    ----------

    anim : Animation
        Input animation

    Returns
    -------

    positions : (F, J, 3) ndarray
        Positions for every frame F
        and joint position J
    """

    # get the last column -- corresponding to the coordinates
    positions = transforms_global(anim)[:, :, :, 3]
    return positions[:, :, :3] / positions[:, :, 3, np.newaxis]


""" Rotations """


def rotations_global(anim):
    """
    Global Animation Rotations

    This relies on joint ordering
    being incremental. That means a joint
    J1 must not be a ancestor of J0 if
    J0 appears before J1 in the joint
    ordering.

    Parameters
    ----------

    anim : Animation
        Input animation

    Returns
    -------

    points : (F, J) Quaternions
        global rotations for every frame F
        and joint J
    """

    joints = np.arange(anim.shape[1])
    parents = np.arange(anim.shape[1])
    locals = anim.rotations
    globals = Quaternions.id(anim.shape)

    globals[:, 0] = locals[:, 0]

    for i in range(1, anim.shape[1]):
        globals[:, i] = globals[:, anim.parents[i]] * locals[:, i]

    return globals


def rotations_parents_global(anim):
    rotations = rotations_global(anim)
    rotations = rotations[:, anim.parents]
    rotations[:, 0] = Quaternions.id(len(anim))
    return rotations

""" Offsets & Orients """


def orients_global(anim):
    joints = np.arange(anim.shape[1])
    parents = np.arange(anim.shape[1])
    locals = anim.orients
    globals = Quaternions.id(anim.shape[1])

    globals[:, 0] = locals[:, 0]

    for i in range(1, anim.shape[1]):
        globals[:, i] = globals[:, anim.parents[i]] * locals[:, i]

    return globals


def offsets_transforms_local(anim):
    transforms = anim.orients[np.newaxis].transforms()
    transforms = np.concatenate([transforms, np.zeros(transforms.shape[:2] + (3, 1))], axis=-1)
    transforms = np.concatenate([transforms, np.zeros(transforms.shape[:2] + (1, 4))], axis=-2)
    transforms[:, :, 0:3, 3] = anim.offsets[np.newaxis]
    transforms[:, :, 3:4, 3] = 1.0
    return transforms


def offsets_transforms_global(anim):
    joints = np.arange(anim.shape[1])
    parents = np.arange(anim.shape[1])
    locals = offsets_transforms_local(anim)
    globals = transforms_blank(anim)

    globals[:, 0] = locals[:, 0]

    for i in range(1, anim.shape[1]):
        globals[:, i] = transforms_multiply(globals[:, anim.parents[i]], locals[:, i])

    return globals


def offsets_global(anim):
    offsets = offsets_transforms_global(anim)[:, :, :, 3]
    return offsets[0, :, :3] / offsets[0, :, 3, np.newaxis]


""" Lengths """


def offset_lengths(anim):
    return np.sum(anim.offsets[1:] ** 2.0, axis=1) ** 0.5


def position_lengths(anim):
    return np.sum(anim.positions[:, 1:] ** 2.0, axis=2) ** 0.5


""" Skinning """


def skin(anim, rest, weights, mesh, maxjoints=4):
    full_transforms = transforms_multiply(
        transforms_global(anim),
        transforms_inv(transforms_global(rest[0:1])))

    weightids = np.argsort(-weights, axis=1)[:, :maxjoints]
    weightvls = np.array(list(map(lambda w, i: w[i], weights, weightids)))
    weightvls = weightvls / weightvls.sum(axis=1)[..., np.newaxis]

    verts = np.hstack([mesh, np.ones((len(mesh), 1))])
    verts = verts[np.newaxis, :, np.newaxis, :, np.newaxis]
    verts = transforms_multiply(full_transforms[:, weightids], verts)
    verts = (verts[:, :, :, :3] / verts[:, :, :, 3:4])[:, :, :, :, 0]

    return np.sum(weightvls[np.newaxis, :, :, np.newaxis] * verts, axis=2)