File size: 2,676 Bytes
9a2f153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
license: apache-2.0
base_model: facebook/convnext-tiny-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: convnext-tiny-224-convnext
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9950980392156863
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# convnext-tiny-224-convnext

This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co./facebook/convnext-tiny-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0225
- Accuracy: 0.9951

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.2175        | 1.0   | 327  | 0.1708          | 0.9436   |
| 0.1476        | 2.0   | 654  | 0.0908          | 0.9672   |
| 0.0961        | 3.0   | 981  | 0.0428          | 0.9862   |
| 0.0677        | 4.0   | 1309 | 0.0654          | 0.9777   |
| 0.049         | 5.0   | 1636 | 0.0498          | 0.9857   |
| 0.0347        | 6.0   | 1963 | 0.0352          | 0.9886   |
| 0.0282        | 7.0   | 2290 | 0.0278          | 0.9913   |
| 0.0694        | 8.0   | 2618 | 0.0299          | 0.9918   |
| 0.0733        | 9.0   | 2945 | 0.0246          | 0.9938   |
| 0.0399        | 10.0  | 3272 | 0.0285          | 0.9918   |
| 0.0276        | 11.0  | 3599 | 0.0249          | 0.9933   |
| 0.0259        | 12.0  | 3927 | 0.0241          | 0.9942   |
| 0.0551        | 13.0  | 4254 | 0.0298          | 0.9920   |
| 0.0658        | 14.0  | 4581 | 0.0288          | 0.9924   |
| 0.0208        | 14.99 | 4905 | 0.0225          | 0.9951   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0