andrecastro commited on
Commit
9a2f153
·
1 Parent(s): e1a83ca

Model save

Browse files
Files changed (1) hide show
  1. README.md +92 -0
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: facebook/convnext-tiny-224
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: convnext-tiny-224-convnext
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
+ config: default
20
+ split: train
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.9950980392156863
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # convnext-tiny-224-convnext
32
+
33
+ This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the imagefolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.0225
36
+ - Accuracy: 0.9951
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 8
57
+ - eval_batch_size: 8
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 4
60
+ - total_train_batch_size: 32
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_ratio: 0.1
64
+ - num_epochs: 15
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 0.2175 | 1.0 | 327 | 0.1708 | 0.9436 |
71
+ | 0.1476 | 2.0 | 654 | 0.0908 | 0.9672 |
72
+ | 0.0961 | 3.0 | 981 | 0.0428 | 0.9862 |
73
+ | 0.0677 | 4.0 | 1309 | 0.0654 | 0.9777 |
74
+ | 0.049 | 5.0 | 1636 | 0.0498 | 0.9857 |
75
+ | 0.0347 | 6.0 | 1963 | 0.0352 | 0.9886 |
76
+ | 0.0282 | 7.0 | 2290 | 0.0278 | 0.9913 |
77
+ | 0.0694 | 8.0 | 2618 | 0.0299 | 0.9918 |
78
+ | 0.0733 | 9.0 | 2945 | 0.0246 | 0.9938 |
79
+ | 0.0399 | 10.0 | 3272 | 0.0285 | 0.9918 |
80
+ | 0.0276 | 11.0 | 3599 | 0.0249 | 0.9933 |
81
+ | 0.0259 | 12.0 | 3927 | 0.0241 | 0.9942 |
82
+ | 0.0551 | 13.0 | 4254 | 0.0298 | 0.9920 |
83
+ | 0.0658 | 14.0 | 4581 | 0.0288 | 0.9924 |
84
+ | 0.0208 | 14.99 | 4905 | 0.0225 | 0.9951 |
85
+
86
+
87
+ ### Framework versions
88
+
89
+ - Transformers 4.35.2
90
+ - Pytorch 2.1.0+cu121
91
+ - Datasets 2.15.0
92
+ - Tokenizers 0.15.0