andgonzalez's picture
End of training
6fcf011
---
license: apache-2.0
base_model: google/flan-t5-large
tags:
- generated_from_trainer
datasets:
- samsum
metrics:
- rouge
model-index:
- name: flan-t5-large-samsum
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: samsum
type: samsum
config: samsum
split: test
args: samsum
metrics:
- name: Rouge1
type: rouge
value: 49.1053
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flan-t5-large-samsum
This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co./google/flan-t5-large) on the samsum dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2066
- Rouge1: 49.1053
- Rouge2: 25.4565
- Rougel: 41.9146
- Rougelsum: 45.3592
- Gen Len: 17.1380
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 1.1847 | 1.0 | 1844 | 1.2066 | 49.1053 | 25.4565 | 41.9146 | 45.3592 | 17.1380 |
| 1.0533 | 2.0 | 3688 | 1.2126 | 49.5421 | 26.1526 | 42.1131 | 45.5735 | 17.2564 |
| 0.9521 | 3.0 | 5532 | 1.2315 | 49.7252 | 26.1855 | 42.2726 | 45.747 | 17.3358 |
| 0.8746 | 4.0 | 7376 | 1.2510 | 49.4306 | 25.9048 | 41.9821 | 45.4322 | 17.4750 |
| 0.8334 | 5.0 | 9220 | 1.2631 | 49.4852 | 25.9416 | 42.0469 | 45.5014 | 17.3944 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1