electra-italian-xxl-cased-squad-it
Electra model for (Extractive) Question Answering on Italian texts
Model description
This model has been fine-tuned on squad_it dataset, starting from the pre-trained model dbmdz/electra-base-italian-xxl-cased-discriminator.
It can be used for Extractive Q&A on Italian texts.
Evaluation
Metric | Value |
---|---|
EM | 0.660 |
F1 | 0.775 |
Usage in Transformers 🤗
Model checkpoints are available for usage in PyTorch. They can be used directly with pipelines as:
from transformers import pipelines
qa = pipeline('question-answering', model='anakin87/electra-italian-xxl-cased-squad-it')
qa(question="Qual è il soprannome di Vasco Rossi?", context="Vasco Rossi, noto anche semplicemente come Vasco e in passato con l'appellativo Blasco (Zocca, 7 febbraio 1952), è un cantautore italiano")
>>> {'score': 0.93, 'start': 80, 'end': 86, 'answer': 'Blasco'}
Usage in Haystack 🚀🚀🚀
With the Haystack NLP framework, you can use this model and create a scalable Question Answering system that works across millions of documents.
For a complete walkthrough, see this notebook.
...
print_answers(prediction, details="medium")
>>> Query: Con chi ha parlato di vaccini il premier Mario Draghi?
Answers:
[ { 'answer': 'Von der Leyen',
'context': " vaccino dell'azienda britannica. Durante la telefonata "
'tra Draghi e Von der Leyen, la presidente della '
'Commissione Ue ha annunciato al presidente del',
'score': 0.9663902521133423},
{ 'answer': 'Ursula Von der Leyen',
'context': 'colloquio telefonico con la presidente della Commissione '
'europea Ursula Von der Leyen. Secondo fonti di Palazzo '
'Chigi, dalla conversazione è emerso ch',
'score': 0.9063920974731445},
{ 'answer': 'Mario Draghi, ha tenuto un lungo discorso alla 76esima '
'Assemblea Generale delle Nazioni Unite',
'context': 'Il presidente del Consiglio, Mario Draghi, ha tenuto un '
'lungo discorso alla 76esima Assemblea Generale delle '
'Nazioni Unite, nella notte italiana. Tant',
'score': 0.5243796706199646}]
Comparison ⚖️
Model | EM | F1 | Model size (PyTorch) | Architecture |
---|---|---|---|---|
it5/it5-large-question-answering | 69.10 | 78.00 | 3.13 GB | encoder-decoder |
anakin87/electra-italian-xxl-cased-squad-it (this one) | 66.03 | 77.47 | 437 MB | encoder |
it5/it5-base-question-answering | 66.30 | 76.10 | 990 MB | encoder-decoder |
it5/mt5-base-question-answering | 66.30 | 75.70 | 2.33 GB | encoder-decoder |
antoniocappiello/bert-base-italian-uncased-squad-it | 63.80 | 75.30 | 440 MB | encoder |
luigisaetta/squad_it_xxl_cased_hub1 | 63.95 | 75.27 | 440 MB | encoder |
it5/it5-efficient-small-el32-question-answering | 64.50 | 74.70 | 569 MB | encoder-decoder |
mrm8488/bert-italian-finedtuned-squadv1-it-alfa | 62.51 | 74.16 | 440 MB | encoder |
mrm8488/umberto-wikipedia-uncased-v1-finetuned-squadv1-it | 60.50 | 72.41 | 443 MB | encoder |
it5/it5-small-question-answering | 61.90 | 71.60 | 308 MB | encoder-decoder |
it5/mt5-small-question-answering | 56.00 | 66.00 | 1.2 GB | encoder-decoder |
DrQA-it trained on SQuAD-it | 56.10 | 65.90 | ? | ? |
Training details 🏋️
Hyperparameters
- learning_rate: 2e-05
- batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
Created by Stefano Fiorucci/anakin87
Made with ♥ in Italy
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train anakin87/electra-italian-xxl-cased-squad-it
Space using anakin87/electra-italian-xxl-cased-squad-it 1
Evaluation results
- Test Exact Match on SQuAD-ITself-reported0.660
- Test F1 on SQuAD-ITself-reported0.775