|
--- |
|
license: gemma |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
base_model: google/gemma-2b |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: gemma-finetuned-spam |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# gemma-finetuned-spam |
|
|
|
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co./google/gemma-2b) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0545 |
|
- Accuracy: 0.994 |
|
- F1: 0.994 |
|
- Precision: 0.994 |
|
- Recall: 0.994 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3.589634237431302e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 2 |
|
- seed: 3 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.0491 | 1.0 | 1125 | 0.0730 | 0.989 | 0.9890 | 0.9861 | 0.992 | |
|
| 0.0253 | 2.0 | 2250 | 0.0516 | 0.99 | 0.9900 | 0.9920 | 0.988 | |
|
| 0.006 | 3.0 | 3375 | 0.0546 | 0.993 | 0.9930 | 0.9920 | 0.994 | |
|
| 0.0 | 4.0 | 4500 | 0.0545 | 0.994 | 0.994 | 0.994 | 0.994 | |
|
| 0.0001 | 5.0 | 5625 | 0.0554 | 0.994 | 0.994 | 0.994 | 0.994 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.1 |
|
- Transformers 4.41.0 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |