amphora commited on
Commit
55d3247
·
verified ·
1 Parent(s): 803fe4b

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. 3b-mb_qwen/README.md +164 -0
  2. 3b-mb_qwen/added_tokens.json +24 -0
  3. 3b-mb_qwen/checkpoint-338/added_tokens.json +24 -0
  4. 3b-mb_qwen/checkpoint-338/config.json +28 -0
  5. 3b-mb_qwen/checkpoint-338/generation_config.json +14 -0
  6. 3b-mb_qwen/checkpoint-338/latest +1 -0
  7. 3b-mb_qwen/checkpoint-338/merges.txt +0 -0
  8. 3b-mb_qwen/checkpoint-338/model-00001-of-00002.safetensors +3 -0
  9. 3b-mb_qwen/checkpoint-338/model-00002-of-00002.safetensors +3 -0
  10. 3b-mb_qwen/checkpoint-338/model.safetensors.index.json +442 -0
  11. 3b-mb_qwen/checkpoint-338/rng_state_0.pth +3 -0
  12. 3b-mb_qwen/checkpoint-338/rng_state_1.pth +3 -0
  13. 3b-mb_qwen/checkpoint-338/scheduler.pt +3 -0
  14. 3b-mb_qwen/checkpoint-338/special_tokens_map.json +31 -0
  15. 3b-mb_qwen/checkpoint-338/tokenizer.json +3 -0
  16. 3b-mb_qwen/checkpoint-338/tokenizer_config.json +208 -0
  17. 3b-mb_qwen/checkpoint-338/trainer_state.json +2447 -0
  18. 3b-mb_qwen/checkpoint-338/training_args.bin +3 -0
  19. 3b-mb_qwen/checkpoint-338/vocab.json +0 -0
  20. 3b-mb_qwen/checkpoint-338/zero_to_fp32.py +760 -0
  21. 3b-mb_qwen/checkpoint-488/added_tokens.json +24 -0
  22. 3b-mb_qwen/checkpoint-488/config.json +28 -0
  23. 3b-mb_qwen/checkpoint-488/generation_config.json +14 -0
  24. 3b-mb_qwen/checkpoint-488/latest +1 -0
  25. 3b-mb_qwen/checkpoint-488/merges.txt +0 -0
  26. 3b-mb_qwen/checkpoint-488/model-00001-of-00002.safetensors +3 -0
  27. 3b-mb_qwen/checkpoint-488/model-00002-of-00002.safetensors +3 -0
  28. 3b-mb_qwen/checkpoint-488/model.safetensors.index.json +442 -0
  29. 3b-mb_qwen/checkpoint-488/rng_state_0.pth +3 -0
  30. 3b-mb_qwen/checkpoint-488/rng_state_1.pth +3 -0
  31. 3b-mb_qwen/checkpoint-488/scheduler.pt +3 -0
  32. 3b-mb_qwen/checkpoint-488/special_tokens_map.json +31 -0
  33. 3b-mb_qwen/checkpoint-488/tokenizer.json +3 -0
  34. 3b-mb_qwen/checkpoint-488/tokenizer_config.json +208 -0
  35. 3b-mb_qwen/checkpoint-488/trainer_state.json +3497 -0
  36. 3b-mb_qwen/checkpoint-488/training_args.bin +3 -0
  37. 3b-mb_qwen/checkpoint-488/vocab.json +0 -0
  38. 3b-mb_qwen/checkpoint-488/zero_to_fp32.py +760 -0
  39. 3b-mb_qwen/checkpoint-507/added_tokens.json +24 -0
  40. 3b-mb_qwen/checkpoint-507/config.json +28 -0
  41. 3b-mb_qwen/checkpoint-507/generation_config.json +14 -0
  42. 3b-mb_qwen/checkpoint-507/latest +1 -0
  43. 3b-mb_qwen/checkpoint-507/merges.txt +0 -0
  44. 3b-mb_qwen/checkpoint-507/model-00001-of-00002.safetensors +3 -0
  45. 3b-mb_qwen/checkpoint-507/model-00002-of-00002.safetensors +3 -0
  46. 3b-mb_qwen/checkpoint-507/model.safetensors.index.json +442 -0
  47. 3b-mb_qwen/checkpoint-507/rng_state_0.pth +3 -0
  48. 3b-mb_qwen/checkpoint-507/rng_state_1.pth +3 -0
  49. 3b-mb_qwen/checkpoint-507/scheduler.pt +3 -0
  50. 3b-mb_qwen/checkpoint-507/special_tokens_map.json +31 -0
3b-mb_qwen/README.md ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: Qwen/Qwen2.5-3B-Instruct
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - mb_qwen.jsonl
9
+ model-index:
10
+ - name: outputs/out
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
18
+ <details><summary>See axolotl config</summary>
19
+
20
+ axolotl version: `0.6.0`
21
+ ```yaml
22
+ base_model: Qwen/Qwen2.5-3B-Instruct
23
+ model_type: AutoModelForCausalLM
24
+ tokenizer_type: AutoTokenizer
25
+ trust_remote_code: false
26
+
27
+ load_in_8bit: false
28
+ load_in_4bit: false
29
+ strict: false
30
+
31
+ output_dir: ./outputs/out2
32
+ chat_template: qwen_25
33
+ datasets:
34
+ - path: mb_qwen.jsonl
35
+ type: chat_template
36
+ field_messages: messages
37
+ message_field_role: role
38
+ message_field_content: content
39
+ roles:
40
+ system:
41
+ - system
42
+ user:
43
+ - user
44
+ assistant:
45
+ - assistant
46
+
47
+ dataset_prepared_path: last_run_prepared
48
+ val_set_size: 0.005
49
+ output_dir: ./outputs/out
50
+ eval_sample_packing: False
51
+
52
+ sequence_len: 8192
53
+ sample_packing: False
54
+ pad_to_sequence_len: False
55
+
56
+ wandb_project: mergedbench
57
+ wandb_entity:
58
+ wandb_watch:
59
+ wandb_name:
60
+ wandb_log_model:
61
+
62
+ plugins:
63
+ - axolotl.integrations.liger.LigerPlugin
64
+ liger_rope: true
65
+ liger_rms_norm: true
66
+ liger_swiglu: true
67
+ liger_fused_linear_cross_entropy: true
68
+
69
+ gradient_accumulation_steps: 4
70
+ micro_batch_size: 8
71
+ eval_batch_size: 4
72
+ num_epochs: 3
73
+ optimizer: paged_adamw_8bit
74
+ lr_scheduler: cosine
75
+ learning_rate: 2e-5
76
+
77
+ train_on_inputs: false
78
+ group_by_length: false
79
+ bf16: auto
80
+ fp16:
81
+ tf32: false
82
+
83
+ gradient_checkpointing: true
84
+ gradient_checkpointing_kwargs:
85
+ use_reentrant: false
86
+ early_stopping_patience:
87
+ resume_from_checkpoint:
88
+ logging_steps: 1
89
+ xformers_attention:
90
+ flash_attention: true
91
+
92
+ warmup_steps: 30
93
+ evals_per_epoch: 3
94
+ eval_max_new_tokens: 128
95
+ eval_table_size:
96
+ saves_per_epoch: 1
97
+ debug:
98
+ deepspeed: deepspeed_configs/zero1.json
99
+ weight_decay: 0.01
100
+ fsdp:
101
+ fsdp_config:
102
+ special_tokens:
103
+ ```
104
+
105
+ </details><br>
106
+
107
+ # outputs/out
108
+
109
+ This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the mb_qwen.jsonl dataset.
110
+ It achieves the following results on the evaluation set:
111
+ - Loss: 0.2918
112
+
113
+ ## Model description
114
+
115
+ More information needed
116
+
117
+ ## Intended uses & limitations
118
+
119
+ More information needed
120
+
121
+ ## Training and evaluation data
122
+
123
+ More information needed
124
+
125
+ ## Training procedure
126
+
127
+ ### Training hyperparameters
128
+
129
+ The following hyperparameters were used during training:
130
+ - learning_rate: 2e-05
131
+ - train_batch_size: 8
132
+ - eval_batch_size: 4
133
+ - seed: 42
134
+ - distributed_type: multi-GPU
135
+ - num_devices: 2
136
+ - gradient_accumulation_steps: 4
137
+ - total_train_batch_size: 64
138
+ - total_eval_batch_size: 8
139
+ - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
140
+ - lr_scheduler_type: cosine
141
+ - lr_scheduler_warmup_steps: 30
142
+ - num_epochs: 3.0
143
+
144
+ ### Training results
145
+
146
+ | Training Loss | Epoch | Step | Validation Loss |
147
+ |:-------------:|:------:|:----:|:---------------:|
148
+ | 1.1276 | 0.0041 | 1 | 1.1255 |
149
+ | 0.3639 | 0.3350 | 82 | 0.3423 |
150
+ | 0.303 | 0.6701 | 164 | 0.3124 |
151
+ | 0.2298 | 1.0082 | 246 | 0.3009 |
152
+ | 0.2219 | 1.3432 | 328 | 0.3102 |
153
+ | 0.196 | 1.6782 | 410 | 0.3017 |
154
+ | 0.1716 | 2.0163 | 492 | 0.2929 |
155
+ | 0.1586 | 2.3514 | 574 | 0.2984 |
156
+ | 0.1578 | 2.6864 | 656 | 0.2918 |
157
+
158
+
159
+ ### Framework versions
160
+
161
+ - Transformers 4.48.1
162
+ - Pytorch 2.5.1+cu121
163
+ - Datasets 3.2.0
164
+ - Tokenizers 0.21.0
3b-mb_qwen/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
3b-mb_qwen/checkpoint-338/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
3b-mb_qwen/checkpoint-338/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-3B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "eos_token_id": 151645,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 2048,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_position_embeddings": 32768,
13
+ "max_window_layers": 70,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 16,
16
+ "num_hidden_layers": 36,
17
+ "num_key_value_heads": 2,
18
+ "rms_norm_eps": 1e-06,
19
+ "rope_scaling": null,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": true,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.48.1",
25
+ "use_cache": false,
26
+ "use_sliding_window": false,
27
+ "vocab_size": 151665
28
+ }
3b-mb_qwen/checkpoint-338/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.48.1"
14
+ }
3b-mb_qwen/checkpoint-338/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step337
3b-mb_qwen/checkpoint-338/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
3b-mb_qwen/checkpoint-338/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec1dcaf6f5430f06caba435ab343745ffde124cf70490a36f66d78187bf075e4
3
+ size 4956450288
3b-mb_qwen/checkpoint-338/model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3981a3a9d6b4e220344b35a25a971d7825c700fbd96ff52859b234be31da7df
3
+ size 1835586736
3b-mb_qwen/checkpoint-338/model.safetensors.index.json ADDED
@@ -0,0 +1,442 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 6791987200
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
368
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
369
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
370
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
371
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
372
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
373
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
374
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
376
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
377
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
378
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
379
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
380
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
382
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
384
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
385
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
386
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
387
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
388
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
389
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
390
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
391
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
394
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
395
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
396
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
397
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
398
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
399
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
400
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
401
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
402
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
403
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
404
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
405
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
406
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
407
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
408
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
409
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
410
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
411
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
412
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
413
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
414
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
415
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
416
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
417
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
418
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
419
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
420
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
421
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
422
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
423
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
424
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
425
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
426
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
427
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
428
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
429
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
430
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
431
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
432
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
433
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
434
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
435
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
436
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
437
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
438
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
439
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
440
+ "model.norm.weight": "model-00002-of-00002.safetensors"
441
+ }
442
+ }
3b-mb_qwen/checkpoint-338/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3dcb161b22b2558dbf7e3f8c871050cec383d11a40423fab11f18d5e630639bf
3
+ size 14512
3b-mb_qwen/checkpoint-338/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d50af6aef769414a6f28fa1b1bc51ce707dc8ecd15474e03f99a2f10fde086be
3
+ size 14512
3b-mb_qwen/checkpoint-338/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd0ff87d03adec7a7483b66c31fc3a08e9184f59f52667e0a62a335c052ee5c8
3
+ size 1064
3b-mb_qwen/checkpoint-338/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
3b-mb_qwen/checkpoint-338/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
3b-mb_qwen/checkpoint-338/tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
3b-mb_qwen/checkpoint-338/trainer_state.json ADDED
@@ -0,0 +1,2447 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.9926144756277697,
5
+ "eval_steps": 57,
6
+ "global_step": 338,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.005908419497784343,
13
+ "grad_norm": 4.501461029052734,
14
+ "learning_rate": 6.666666666666667e-07,
15
+ "loss": 1.062,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.005908419497784343,
20
+ "eval_loss": 1.0835397243499756,
21
+ "eval_runtime": 4.3539,
22
+ "eval_samples_per_second": 12.632,
23
+ "eval_steps_per_second": 1.608,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.011816838995568686,
28
+ "grad_norm": 4.469114303588867,
29
+ "learning_rate": 1.3333333333333334e-06,
30
+ "loss": 1.0268,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.01772525849335303,
35
+ "grad_norm": 4.554893970489502,
36
+ "learning_rate": 2.0000000000000003e-06,
37
+ "loss": 1.0401,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.023633677991137372,
42
+ "grad_norm": 4.374792575836182,
43
+ "learning_rate": 2.666666666666667e-06,
44
+ "loss": 1.0423,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.029542097488921712,
49
+ "grad_norm": 3.4377498626708984,
50
+ "learning_rate": 3.3333333333333333e-06,
51
+ "loss": 0.9965,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.03545051698670606,
56
+ "grad_norm": 3.1242499351501465,
57
+ "learning_rate": 4.000000000000001e-06,
58
+ "loss": 0.9479,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.0413589364844904,
63
+ "grad_norm": 1.8368685245513916,
64
+ "learning_rate": 4.666666666666667e-06,
65
+ "loss": 0.8296,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.047267355982274745,
70
+ "grad_norm": 1.7457680702209473,
71
+ "learning_rate": 5.333333333333334e-06,
72
+ "loss": 0.8159,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.053175775480059084,
77
+ "grad_norm": 1.2953853607177734,
78
+ "learning_rate": 6e-06,
79
+ "loss": 0.664,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.059084194977843424,
84
+ "grad_norm": 1.1054794788360596,
85
+ "learning_rate": 6.666666666666667e-06,
86
+ "loss": 0.6486,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.06499261447562776,
91
+ "grad_norm": 0.8712942004203796,
92
+ "learning_rate": 7.333333333333333e-06,
93
+ "loss": 0.6415,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.07090103397341212,
98
+ "grad_norm": 1.4441039562225342,
99
+ "learning_rate": 8.000000000000001e-06,
100
+ "loss": 0.6255,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.07680945347119646,
105
+ "grad_norm": 1.4984484910964966,
106
+ "learning_rate": 8.666666666666668e-06,
107
+ "loss": 0.5561,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.0827178729689808,
112
+ "grad_norm": 0.8376960754394531,
113
+ "learning_rate": 9.333333333333334e-06,
114
+ "loss": 0.5534,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.08862629246676514,
119
+ "grad_norm": 0.7184750437736511,
120
+ "learning_rate": 1e-05,
121
+ "loss": 0.5062,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.09453471196454949,
126
+ "grad_norm": 0.8381787538528442,
127
+ "learning_rate": 1.0666666666666667e-05,
128
+ "loss": 0.5531,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.10044313146233383,
133
+ "grad_norm": 0.7621350288391113,
134
+ "learning_rate": 1.1333333333333334e-05,
135
+ "loss": 0.4876,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.10635155096011817,
140
+ "grad_norm": 0.6955872178077698,
141
+ "learning_rate": 1.2e-05,
142
+ "loss": 0.5019,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.11225997045790251,
147
+ "grad_norm": 0.5844917297363281,
148
+ "learning_rate": 1.2666666666666667e-05,
149
+ "loss": 0.4368,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.11816838995568685,
154
+ "grad_norm": 0.5807573795318604,
155
+ "learning_rate": 1.3333333333333333e-05,
156
+ "loss": 0.4965,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.1240768094534712,
161
+ "grad_norm": 0.5376399755477905,
162
+ "learning_rate": 1.4e-05,
163
+ "loss": 0.4841,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.12998522895125553,
168
+ "grad_norm": 0.5053263902664185,
169
+ "learning_rate": 1.4666666666666666e-05,
170
+ "loss": 0.4573,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.1358936484490399,
175
+ "grad_norm": 0.5155225396156311,
176
+ "learning_rate": 1.5333333333333334e-05,
177
+ "loss": 0.451,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.14180206794682423,
182
+ "grad_norm": 0.52030348777771,
183
+ "learning_rate": 1.6000000000000003e-05,
184
+ "loss": 0.4199,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.14771048744460857,
189
+ "grad_norm": 0.5321907997131348,
190
+ "learning_rate": 1.6666666666666667e-05,
191
+ "loss": 0.4532,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.1536189069423929,
196
+ "grad_norm": 0.5318155288696289,
197
+ "learning_rate": 1.7333333333333336e-05,
198
+ "loss": 0.4813,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.15952732644017725,
203
+ "grad_norm": 0.5176340937614441,
204
+ "learning_rate": 1.8e-05,
205
+ "loss": 0.4288,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.1654357459379616,
210
+ "grad_norm": 0.43893975019454956,
211
+ "learning_rate": 1.866666666666667e-05,
212
+ "loss": 0.3766,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.17134416543574593,
217
+ "grad_norm": 0.43830162286758423,
218
+ "learning_rate": 1.9333333333333333e-05,
219
+ "loss": 0.4159,
220
+ "step": 29
221
+ },
222
+ {
223
+ "epoch": 0.17725258493353027,
224
+ "grad_norm": 0.45950719714164734,
225
+ "learning_rate": 2e-05,
226
+ "loss": 0.4505,
227
+ "step": 30
228
+ },
229
+ {
230
+ "epoch": 0.1831610044313146,
231
+ "grad_norm": 0.40500667691230774,
232
+ "learning_rate": 1.9999783114048658e-05,
233
+ "loss": 0.3726,
234
+ "step": 31
235
+ },
236
+ {
237
+ "epoch": 0.18906942392909898,
238
+ "grad_norm": 0.43435147404670715,
239
+ "learning_rate": 1.9999132465602526e-05,
240
+ "loss": 0.442,
241
+ "step": 32
242
+ },
243
+ {
244
+ "epoch": 0.19497784342688332,
245
+ "grad_norm": 0.44813328981399536,
246
+ "learning_rate": 1.999804808288491e-05,
247
+ "loss": 0.437,
248
+ "step": 33
249
+ },
250
+ {
251
+ "epoch": 0.20088626292466766,
252
+ "grad_norm": 0.48166996240615845,
253
+ "learning_rate": 1.9996530012933285e-05,
254
+ "loss": 0.4107,
255
+ "step": 34
256
+ },
257
+ {
258
+ "epoch": 0.206794682422452,
259
+ "grad_norm": 0.398764044046402,
260
+ "learning_rate": 1.9994578321597258e-05,
261
+ "loss": 0.3882,
262
+ "step": 35
263
+ },
264
+ {
265
+ "epoch": 0.21270310192023634,
266
+ "grad_norm": 0.44229164719581604,
267
+ "learning_rate": 1.999219309353572e-05,
268
+ "loss": 0.4154,
269
+ "step": 36
270
+ },
271
+ {
272
+ "epoch": 0.21861152141802068,
273
+ "grad_norm": 0.44369620084762573,
274
+ "learning_rate": 1.998937443221316e-05,
275
+ "loss": 0.3863,
276
+ "step": 37
277
+ },
278
+ {
279
+ "epoch": 0.22451994091580502,
280
+ "grad_norm": 0.44270017743110657,
281
+ "learning_rate": 1.9986122459895182e-05,
282
+ "loss": 0.3945,
283
+ "step": 38
284
+ },
285
+ {
286
+ "epoch": 0.23042836041358936,
287
+ "grad_norm": 0.42152372002601624,
288
+ "learning_rate": 1.9982437317643218e-05,
289
+ "loss": 0.4094,
290
+ "step": 39
291
+ },
292
+ {
293
+ "epoch": 0.2363367799113737,
294
+ "grad_norm": 0.4120837450027466,
295
+ "learning_rate": 1.9978319165308373e-05,
296
+ "loss": 0.4411,
297
+ "step": 40
298
+ },
299
+ {
300
+ "epoch": 0.24224519940915806,
301
+ "grad_norm": 0.4064903259277344,
302
+ "learning_rate": 1.997376818152453e-05,
303
+ "loss": 0.3818,
304
+ "step": 41
305
+ },
306
+ {
307
+ "epoch": 0.2481536189069424,
308
+ "grad_norm": 0.3692624270915985,
309
+ "learning_rate": 1.9968784563700586e-05,
310
+ "loss": 0.3874,
311
+ "step": 42
312
+ },
313
+ {
314
+ "epoch": 0.25406203840472674,
315
+ "grad_norm": 0.4399218261241913,
316
+ "learning_rate": 1.9963368528011867e-05,
317
+ "loss": 0.3749,
318
+ "step": 43
319
+ },
320
+ {
321
+ "epoch": 0.25997045790251105,
322
+ "grad_norm": 0.3779003620147705,
323
+ "learning_rate": 1.9957520309390786e-05,
324
+ "loss": 0.3656,
325
+ "step": 44
326
+ },
327
+ {
328
+ "epoch": 0.2658788774002954,
329
+ "grad_norm": 0.3946981132030487,
330
+ "learning_rate": 1.9951240161516643e-05,
331
+ "loss": 0.3612,
332
+ "step": 45
333
+ },
334
+ {
335
+ "epoch": 0.2717872968980798,
336
+ "grad_norm": 0.3969726264476776,
337
+ "learning_rate": 1.99445283568046e-05,
338
+ "loss": 0.3932,
339
+ "step": 46
340
+ },
341
+ {
342
+ "epoch": 0.2776957163958641,
343
+ "grad_norm": 0.4239075183868408,
344
+ "learning_rate": 1.9937385186393888e-05,
345
+ "loss": 0.387,
346
+ "step": 47
347
+ },
348
+ {
349
+ "epoch": 0.28360413589364847,
350
+ "grad_norm": 0.3688453733921051,
351
+ "learning_rate": 1.992981096013517e-05,
352
+ "loss": 0.3524,
353
+ "step": 48
354
+ },
355
+ {
356
+ "epoch": 0.2895125553914328,
357
+ "grad_norm": 0.4294806718826294,
358
+ "learning_rate": 1.9921806006577102e-05,
359
+ "loss": 0.3787,
360
+ "step": 49
361
+ },
362
+ {
363
+ "epoch": 0.29542097488921715,
364
+ "grad_norm": 0.3867166042327881,
365
+ "learning_rate": 1.9913370672952074e-05,
366
+ "loss": 0.3756,
367
+ "step": 50
368
+ },
369
+ {
370
+ "epoch": 0.30132939438700146,
371
+ "grad_norm": 0.43365901708602905,
372
+ "learning_rate": 1.990450532516116e-05,
373
+ "loss": 0.3896,
374
+ "step": 51
375
+ },
376
+ {
377
+ "epoch": 0.3072378138847858,
378
+ "grad_norm": 0.38658151030540466,
379
+ "learning_rate": 1.9895210347758233e-05,
380
+ "loss": 0.3703,
381
+ "step": 52
382
+ },
383
+ {
384
+ "epoch": 0.31314623338257014,
385
+ "grad_norm": 0.37093815207481384,
386
+ "learning_rate": 1.98854861439333e-05,
387
+ "loss": 0.3763,
388
+ "step": 53
389
+ },
390
+ {
391
+ "epoch": 0.3190546528803545,
392
+ "grad_norm": 0.40044137835502625,
393
+ "learning_rate": 1.9875333135495e-05,
394
+ "loss": 0.3752,
395
+ "step": 54
396
+ },
397
+ {
398
+ "epoch": 0.3249630723781389,
399
+ "grad_norm": 0.39133360981941223,
400
+ "learning_rate": 1.986475176285232e-05,
401
+ "loss": 0.3589,
402
+ "step": 55
403
+ },
404
+ {
405
+ "epoch": 0.3308714918759232,
406
+ "grad_norm": 0.38397374749183655,
407
+ "learning_rate": 1.985374248499546e-05,
408
+ "loss": 0.3701,
409
+ "step": 56
410
+ },
411
+ {
412
+ "epoch": 0.33677991137370755,
413
+ "grad_norm": 0.3795414865016937,
414
+ "learning_rate": 1.984230577947597e-05,
415
+ "loss": 0.3584,
416
+ "step": 57
417
+ },
418
+ {
419
+ "epoch": 0.33677991137370755,
420
+ "eval_loss": 0.3953791558742523,
421
+ "eval_runtime": 4.6385,
422
+ "eval_samples_per_second": 11.857,
423
+ "eval_steps_per_second": 1.509,
424
+ "step": 57
425
+ },
426
+ {
427
+ "epoch": 0.34268833087149186,
428
+ "grad_norm": 0.3709493577480316,
429
+ "learning_rate": 1.9830442142386e-05,
430
+ "loss": 0.3647,
431
+ "step": 58
432
+ },
433
+ {
434
+ "epoch": 0.34859675036927623,
435
+ "grad_norm": 0.35005033016204834,
436
+ "learning_rate": 1.9818152088336786e-05,
437
+ "loss": 0.3317,
438
+ "step": 59
439
+ },
440
+ {
441
+ "epoch": 0.35450516986706054,
442
+ "grad_norm": 0.3652004599571228,
443
+ "learning_rate": 1.9805436150436352e-05,
444
+ "loss": 0.3394,
445
+ "step": 60
446
+ },
447
+ {
448
+ "epoch": 0.3604135893648449,
449
+ "grad_norm": 0.3940984904766083,
450
+ "learning_rate": 1.9792294880266346e-05,
451
+ "loss": 0.3711,
452
+ "step": 61
453
+ },
454
+ {
455
+ "epoch": 0.3663220088626292,
456
+ "grad_norm": 0.35634928941726685,
457
+ "learning_rate": 1.977872884785815e-05,
458
+ "loss": 0.3455,
459
+ "step": 62
460
+ },
461
+ {
462
+ "epoch": 0.3722304283604136,
463
+ "grad_norm": 0.3972924053668976,
464
+ "learning_rate": 1.9764738641668137e-05,
465
+ "loss": 0.3652,
466
+ "step": 63
467
+ },
468
+ {
469
+ "epoch": 0.37813884785819796,
470
+ "grad_norm": 0.40372708439826965,
471
+ "learning_rate": 1.9750324868552133e-05,
472
+ "loss": 0.3662,
473
+ "step": 64
474
+ },
475
+ {
476
+ "epoch": 0.38404726735598227,
477
+ "grad_norm": 0.396133691072464,
478
+ "learning_rate": 1.9735488153739128e-05,
479
+ "loss": 0.3726,
480
+ "step": 65
481
+ },
482
+ {
483
+ "epoch": 0.38995568685376664,
484
+ "grad_norm": 0.398989737033844,
485
+ "learning_rate": 1.972022914080411e-05,
486
+ "loss": 0.3595,
487
+ "step": 66
488
+ },
489
+ {
490
+ "epoch": 0.39586410635155095,
491
+ "grad_norm": 0.4102807939052582,
492
+ "learning_rate": 1.9704548491640195e-05,
493
+ "loss": 0.3308,
494
+ "step": 67
495
+ },
496
+ {
497
+ "epoch": 0.4017725258493353,
498
+ "grad_norm": 0.344397634267807,
499
+ "learning_rate": 1.9688446886429885e-05,
500
+ "loss": 0.3653,
501
+ "step": 68
502
+ },
503
+ {
504
+ "epoch": 0.4076809453471196,
505
+ "grad_norm": 0.3550814390182495,
506
+ "learning_rate": 1.9671925023615572e-05,
507
+ "loss": 0.3412,
508
+ "step": 69
509
+ },
510
+ {
511
+ "epoch": 0.413589364844904,
512
+ "grad_norm": 0.4047009348869324,
513
+ "learning_rate": 1.9654983619869242e-05,
514
+ "loss": 0.3578,
515
+ "step": 70
516
+ },
517
+ {
518
+ "epoch": 0.4194977843426883,
519
+ "grad_norm": 0.41112563014030457,
520
+ "learning_rate": 1.9637623410061392e-05,
521
+ "loss": 0.3694,
522
+ "step": 71
523
+ },
524
+ {
525
+ "epoch": 0.4254062038404727,
526
+ "grad_norm": 0.3775319755077362,
527
+ "learning_rate": 1.961984514722914e-05,
528
+ "loss": 0.3571,
529
+ "step": 72
530
+ },
531
+ {
532
+ "epoch": 0.43131462333825704,
533
+ "grad_norm": 0.3610381782054901,
534
+ "learning_rate": 1.960164960254358e-05,
535
+ "loss": 0.3713,
536
+ "step": 73
537
+ },
538
+ {
539
+ "epoch": 0.43722304283604135,
540
+ "grad_norm": 0.38662371039390564,
541
+ "learning_rate": 1.9583037565276314e-05,
542
+ "loss": 0.311,
543
+ "step": 74
544
+ },
545
+ {
546
+ "epoch": 0.4431314623338257,
547
+ "grad_norm": 0.3574771285057068,
548
+ "learning_rate": 1.9564009842765225e-05,
549
+ "loss": 0.3353,
550
+ "step": 75
551
+ },
552
+ {
553
+ "epoch": 0.44903988183161003,
554
+ "grad_norm": 0.3932562470436096,
555
+ "learning_rate": 1.9544567260379455e-05,
556
+ "loss": 0.3536,
557
+ "step": 76
558
+ },
559
+ {
560
+ "epoch": 0.4549483013293944,
561
+ "grad_norm": 0.3974682092666626,
562
+ "learning_rate": 1.9524710661483594e-05,
563
+ "loss": 0.3556,
564
+ "step": 77
565
+ },
566
+ {
567
+ "epoch": 0.4608567208271787,
568
+ "grad_norm": 0.37172290682792664,
569
+ "learning_rate": 1.9504440907401113e-05,
570
+ "loss": 0.3568,
571
+ "step": 78
572
+ },
573
+ {
574
+ "epoch": 0.4667651403249631,
575
+ "grad_norm": 0.37170422077178955,
576
+ "learning_rate": 1.948375887737699e-05,
577
+ "loss": 0.3556,
578
+ "step": 79
579
+ },
580
+ {
581
+ "epoch": 0.4726735598227474,
582
+ "grad_norm": 0.3596966862678528,
583
+ "learning_rate": 1.9462665468539582e-05,
584
+ "loss": 0.332,
585
+ "step": 80
586
+ },
587
+ {
588
+ "epoch": 0.47858197932053176,
589
+ "grad_norm": 0.35934680700302124,
590
+ "learning_rate": 1.944116159586169e-05,
591
+ "loss": 0.3276,
592
+ "step": 81
593
+ },
594
+ {
595
+ "epoch": 0.4844903988183161,
596
+ "grad_norm": 0.40984946489334106,
597
+ "learning_rate": 1.94192481921209e-05,
598
+ "loss": 0.3685,
599
+ "step": 82
600
+ },
601
+ {
602
+ "epoch": 0.49039881831610044,
603
+ "grad_norm": 0.3622114658355713,
604
+ "learning_rate": 1.9396926207859085e-05,
605
+ "loss": 0.3336,
606
+ "step": 83
607
+ },
608
+ {
609
+ "epoch": 0.4963072378138848,
610
+ "grad_norm": 0.34888842701911926,
611
+ "learning_rate": 1.9374196611341212e-05,
612
+ "loss": 0.3625,
613
+ "step": 84
614
+ },
615
+ {
616
+ "epoch": 0.5022156573116692,
617
+ "grad_norm": 0.37125518918037415,
618
+ "learning_rate": 1.9351060388513304e-05,
619
+ "loss": 0.3304,
620
+ "step": 85
621
+ },
622
+ {
623
+ "epoch": 0.5081240768094535,
624
+ "grad_norm": 0.4107120931148529,
625
+ "learning_rate": 1.9327518542959717e-05,
626
+ "loss": 0.3755,
627
+ "step": 86
628
+ },
629
+ {
630
+ "epoch": 0.5140324963072378,
631
+ "grad_norm": 0.3420109748840332,
632
+ "learning_rate": 1.9303572095859545e-05,
633
+ "loss": 0.3457,
634
+ "step": 87
635
+ },
636
+ {
637
+ "epoch": 0.5199409158050221,
638
+ "grad_norm": 0.35079535841941833,
639
+ "learning_rate": 1.9279222085942396e-05,
640
+ "loss": 0.3454,
641
+ "step": 88
642
+ },
643
+ {
644
+ "epoch": 0.5258493353028065,
645
+ "grad_norm": 0.3775666058063507,
646
+ "learning_rate": 1.9254469569443274e-05,
647
+ "loss": 0.3501,
648
+ "step": 89
649
+ },
650
+ {
651
+ "epoch": 0.5317577548005908,
652
+ "grad_norm": 0.3327409625053406,
653
+ "learning_rate": 1.9229315620056805e-05,
654
+ "loss": 0.3507,
655
+ "step": 90
656
+ },
657
+ {
658
+ "epoch": 0.5376661742983752,
659
+ "grad_norm": 0.37142789363861084,
660
+ "learning_rate": 1.9203761328890626e-05,
661
+ "loss": 0.3453,
662
+ "step": 91
663
+ },
664
+ {
665
+ "epoch": 0.5435745937961596,
666
+ "grad_norm": 0.36256077885627747,
667
+ "learning_rate": 1.91778078044181e-05,
668
+ "loss": 0.3588,
669
+ "step": 92
670
+ },
671
+ {
672
+ "epoch": 0.5494830132939439,
673
+ "grad_norm": 0.3861102759838104,
674
+ "learning_rate": 1.9151456172430186e-05,
675
+ "loss": 0.3479,
676
+ "step": 93
677
+ },
678
+ {
679
+ "epoch": 0.5553914327917282,
680
+ "grad_norm": 0.3359353542327881,
681
+ "learning_rate": 1.9124707575986642e-05,
682
+ "loss": 0.318,
683
+ "step": 94
684
+ },
685
+ {
686
+ "epoch": 0.5612998522895125,
687
+ "grad_norm": 0.33662593364715576,
688
+ "learning_rate": 1.909756317536643e-05,
689
+ "loss": 0.3421,
690
+ "step": 95
691
+ },
692
+ {
693
+ "epoch": 0.5672082717872969,
694
+ "grad_norm": 0.35831600427627563,
695
+ "learning_rate": 1.9070024148017375e-05,
696
+ "loss": 0.3409,
697
+ "step": 96
698
+ },
699
+ {
700
+ "epoch": 0.5731166912850812,
701
+ "grad_norm": 0.39858701825141907,
702
+ "learning_rate": 1.9042091688505104e-05,
703
+ "loss": 0.3319,
704
+ "step": 97
705
+ },
706
+ {
707
+ "epoch": 0.5790251107828656,
708
+ "grad_norm": 0.3343643546104431,
709
+ "learning_rate": 1.9013767008461236e-05,
710
+ "loss": 0.3352,
711
+ "step": 98
712
+ },
713
+ {
714
+ "epoch": 0.5849335302806499,
715
+ "grad_norm": 0.3519919216632843,
716
+ "learning_rate": 1.89850513365308e-05,
717
+ "loss": 0.3634,
718
+ "step": 99
719
+ },
720
+ {
721
+ "epoch": 0.5908419497784343,
722
+ "grad_norm": 0.32900717854499817,
723
+ "learning_rate": 1.895594591831896e-05,
724
+ "loss": 0.3415,
725
+ "step": 100
726
+ },
727
+ {
728
+ "epoch": 0.5967503692762186,
729
+ "grad_norm": 0.34432175755500793,
730
+ "learning_rate": 1.8926452016336987e-05,
731
+ "loss": 0.3169,
732
+ "step": 101
733
+ },
734
+ {
735
+ "epoch": 0.6026587887740029,
736
+ "grad_norm": 0.33144107460975647,
737
+ "learning_rate": 1.8896570909947477e-05,
738
+ "loss": 0.3431,
739
+ "step": 102
740
+ },
741
+ {
742
+ "epoch": 0.6085672082717873,
743
+ "grad_norm": 0.3299802839756012,
744
+ "learning_rate": 1.8866303895308856e-05,
745
+ "loss": 0.3411,
746
+ "step": 103
747
+ },
748
+ {
749
+ "epoch": 0.6144756277695717,
750
+ "grad_norm": 0.30740225315093994,
751
+ "learning_rate": 1.883565228531919e-05,
752
+ "loss": 0.3355,
753
+ "step": 104
754
+ },
755
+ {
756
+ "epoch": 0.620384047267356,
757
+ "grad_norm": 0.34325993061065674,
758
+ "learning_rate": 1.88046174095592e-05,
759
+ "loss": 0.3188,
760
+ "step": 105
761
+ },
762
+ {
763
+ "epoch": 0.6262924667651403,
764
+ "grad_norm": 0.3394065797328949,
765
+ "learning_rate": 1.8773200614234587e-05,
766
+ "loss": 0.3153,
767
+ "step": 106
768
+ },
769
+ {
770
+ "epoch": 0.6322008862629247,
771
+ "grad_norm": 0.35468512773513794,
772
+ "learning_rate": 1.874140326211766e-05,
773
+ "loss": 0.3387,
774
+ "step": 107
775
+ },
776
+ {
777
+ "epoch": 0.638109305760709,
778
+ "grad_norm": 0.36726799607276917,
779
+ "learning_rate": 1.8709226732488216e-05,
780
+ "loss": 0.3457,
781
+ "step": 108
782
+ },
783
+ {
784
+ "epoch": 0.6440177252584933,
785
+ "grad_norm": 0.3223711848258972,
786
+ "learning_rate": 1.86766724210737e-05,
787
+ "loss": 0.3588,
788
+ "step": 109
789
+ },
790
+ {
791
+ "epoch": 0.6499261447562777,
792
+ "grad_norm": 0.3537541925907135,
793
+ "learning_rate": 1.8643741739988672e-05,
794
+ "loss": 0.3506,
795
+ "step": 110
796
+ },
797
+ {
798
+ "epoch": 0.6558345642540621,
799
+ "grad_norm": 0.3755073845386505,
800
+ "learning_rate": 1.8610436117673557e-05,
801
+ "loss": 0.3221,
802
+ "step": 111
803
+ },
804
+ {
805
+ "epoch": 0.6617429837518464,
806
+ "grad_norm": 0.31778833270072937,
807
+ "learning_rate": 1.8576756998832667e-05,
808
+ "loss": 0.3161,
809
+ "step": 112
810
+ },
811
+ {
812
+ "epoch": 0.6676514032496307,
813
+ "grad_norm": 0.3517738878726959,
814
+ "learning_rate": 1.8542705844371544e-05,
815
+ "loss": 0.3442,
816
+ "step": 113
817
+ },
818
+ {
819
+ "epoch": 0.6735598227474151,
820
+ "grad_norm": 0.3254755139350891,
821
+ "learning_rate": 1.8508284131333604e-05,
822
+ "loss": 0.3372,
823
+ "step": 114
824
+ },
825
+ {
826
+ "epoch": 0.6735598227474151,
827
+ "eval_loss": 0.363791823387146,
828
+ "eval_runtime": 4.0908,
829
+ "eval_samples_per_second": 13.445,
830
+ "eval_steps_per_second": 1.711,
831
+ "step": 114
832
+ },
833
+ {
834
+ "epoch": 0.6794682422451994,
835
+ "grad_norm": 0.3458060622215271,
836
+ "learning_rate": 1.8473493352836032e-05,
837
+ "loss": 0.3329,
838
+ "step": 115
839
+ },
840
+ {
841
+ "epoch": 0.6853766617429837,
842
+ "grad_norm": 0.33962881565093994,
843
+ "learning_rate": 1.8438335018005052e-05,
844
+ "loss": 0.3478,
845
+ "step": 116
846
+ },
847
+ {
848
+ "epoch": 0.691285081240768,
849
+ "grad_norm": 0.33980926871299744,
850
+ "learning_rate": 1.8402810651910444e-05,
851
+ "loss": 0.3484,
852
+ "step": 117
853
+ },
854
+ {
855
+ "epoch": 0.6971935007385525,
856
+ "grad_norm": 0.355694979429245,
857
+ "learning_rate": 1.8366921795499394e-05,
858
+ "loss": 0.3686,
859
+ "step": 118
860
+ },
861
+ {
862
+ "epoch": 0.7031019202363368,
863
+ "grad_norm": 0.3415476083755493,
864
+ "learning_rate": 1.8330670005529657e-05,
865
+ "loss": 0.3204,
866
+ "step": 119
867
+ },
868
+ {
869
+ "epoch": 0.7090103397341211,
870
+ "grad_norm": 0.3336890935897827,
871
+ "learning_rate": 1.829405685450202e-05,
872
+ "loss": 0.3323,
873
+ "step": 120
874
+ },
875
+ {
876
+ "epoch": 0.7149187592319055,
877
+ "grad_norm": 0.34337785840034485,
878
+ "learning_rate": 1.8257083930592102e-05,
879
+ "loss": 0.3283,
880
+ "step": 121
881
+ },
882
+ {
883
+ "epoch": 0.7208271787296898,
884
+ "grad_norm": 0.3578524887561798,
885
+ "learning_rate": 1.8219752837581466e-05,
886
+ "loss": 0.3326,
887
+ "step": 122
888
+ },
889
+ {
890
+ "epoch": 0.7267355982274741,
891
+ "grad_norm": 0.32392922043800354,
892
+ "learning_rate": 1.8182065194788024e-05,
893
+ "loss": 0.3141,
894
+ "step": 123
895
+ },
896
+ {
897
+ "epoch": 0.7326440177252584,
898
+ "grad_norm": 0.36127492785453796,
899
+ "learning_rate": 1.814402263699584e-05,
900
+ "loss": 0.3461,
901
+ "step": 124
902
+ },
903
+ {
904
+ "epoch": 0.7385524372230429,
905
+ "grad_norm": 0.33812931180000305,
906
+ "learning_rate": 1.8105626814384173e-05,
907
+ "loss": 0.3404,
908
+ "step": 125
909
+ },
910
+ {
911
+ "epoch": 0.7444608567208272,
912
+ "grad_norm": 0.3138431906700134,
913
+ "learning_rate": 1.8066879392455932e-05,
914
+ "loss": 0.3237,
915
+ "step": 126
916
+ },
917
+ {
918
+ "epoch": 0.7503692762186115,
919
+ "grad_norm": 0.33033978939056396,
920
+ "learning_rate": 1.8027782051965408e-05,
921
+ "loss": 0.3416,
922
+ "step": 127
923
+ },
924
+ {
925
+ "epoch": 0.7562776957163959,
926
+ "grad_norm": 0.3907163143157959,
927
+ "learning_rate": 1.7988336488845374e-05,
928
+ "loss": 0.3352,
929
+ "step": 128
930
+ },
931
+ {
932
+ "epoch": 0.7621861152141802,
933
+ "grad_norm": 0.315248042345047,
934
+ "learning_rate": 1.7948544414133534e-05,
935
+ "loss": 0.3225,
936
+ "step": 129
937
+ },
938
+ {
939
+ "epoch": 0.7680945347119645,
940
+ "grad_norm": 0.3284492790699005,
941
+ "learning_rate": 1.7908407553898282e-05,
942
+ "loss": 0.3217,
943
+ "step": 130
944
+ },
945
+ {
946
+ "epoch": 0.7740029542097489,
947
+ "grad_norm": 0.3439176082611084,
948
+ "learning_rate": 1.7867927649163838e-05,
949
+ "loss": 0.3367,
950
+ "step": 131
951
+ },
952
+ {
953
+ "epoch": 0.7799113737075333,
954
+ "grad_norm": 0.31954073905944824,
955
+ "learning_rate": 1.782710645583473e-05,
956
+ "loss": 0.3133,
957
+ "step": 132
958
+ },
959
+ {
960
+ "epoch": 0.7858197932053176,
961
+ "grad_norm": 0.38416293263435364,
962
+ "learning_rate": 1.7785945744619642e-05,
963
+ "loss": 0.3484,
964
+ "step": 133
965
+ },
966
+ {
967
+ "epoch": 0.7917282127031019,
968
+ "grad_norm": 0.34139737486839294,
969
+ "learning_rate": 1.774444730095456e-05,
970
+ "loss": 0.3042,
971
+ "step": 134
972
+ },
973
+ {
974
+ "epoch": 0.7976366322008862,
975
+ "grad_norm": 0.3623535931110382,
976
+ "learning_rate": 1.7702612924925377e-05,
977
+ "loss": 0.3318,
978
+ "step": 135
979
+ },
980
+ {
981
+ "epoch": 0.8035450516986706,
982
+ "grad_norm": 0.32973209023475647,
983
+ "learning_rate": 1.766044443118978e-05,
984
+ "loss": 0.3092,
985
+ "step": 136
986
+ },
987
+ {
988
+ "epoch": 0.8094534711964549,
989
+ "grad_norm": 0.30704402923583984,
990
+ "learning_rate": 1.761794364889855e-05,
991
+ "loss": 0.321,
992
+ "step": 137
993
+ },
994
+ {
995
+ "epoch": 0.8153618906942393,
996
+ "grad_norm": 0.34877485036849976,
997
+ "learning_rate": 1.7575112421616203e-05,
998
+ "loss": 0.3266,
999
+ "step": 138
1000
+ },
1001
+ {
1002
+ "epoch": 0.8212703101920237,
1003
+ "grad_norm": 0.3538282811641693,
1004
+ "learning_rate": 1.7531952607241033e-05,
1005
+ "loss": 0.3703,
1006
+ "step": 139
1007
+ },
1008
+ {
1009
+ "epoch": 0.827178729689808,
1010
+ "grad_norm": 0.35590365529060364,
1011
+ "learning_rate": 1.7488466077924525e-05,
1012
+ "loss": 0.3506,
1013
+ "step": 140
1014
+ },
1015
+ {
1016
+ "epoch": 0.8330871491875923,
1017
+ "grad_norm": 0.33215418457984924,
1018
+ "learning_rate": 1.7444654719990128e-05,
1019
+ "loss": 0.3207,
1020
+ "step": 141
1021
+ },
1022
+ {
1023
+ "epoch": 0.8389955686853766,
1024
+ "grad_norm": 0.3381923735141754,
1025
+ "learning_rate": 1.7400520433851457e-05,
1026
+ "loss": 0.3237,
1027
+ "step": 142
1028
+ },
1029
+ {
1030
+ "epoch": 0.844903988183161,
1031
+ "grad_norm": 0.3371356129646301,
1032
+ "learning_rate": 1.735606513392984e-05,
1033
+ "loss": 0.3394,
1034
+ "step": 143
1035
+ },
1036
+ {
1037
+ "epoch": 0.8508124076809453,
1038
+ "grad_norm": 0.344291627407074,
1039
+ "learning_rate": 1.7311290748571273e-05,
1040
+ "loss": 0.3604,
1041
+ "step": 144
1042
+ },
1043
+ {
1044
+ "epoch": 0.8567208271787297,
1045
+ "grad_norm": 0.3567575216293335,
1046
+ "learning_rate": 1.72661992199628e-05,
1047
+ "loss": 0.3518,
1048
+ "step": 145
1049
+ },
1050
+ {
1051
+ "epoch": 0.8626292466765141,
1052
+ "grad_norm": 0.33762165904045105,
1053
+ "learning_rate": 1.7220792504048227e-05,
1054
+ "loss": 0.3146,
1055
+ "step": 146
1056
+ },
1057
+ {
1058
+ "epoch": 0.8685376661742984,
1059
+ "grad_norm": 0.3404117822647095,
1060
+ "learning_rate": 1.717507257044331e-05,
1061
+ "loss": 0.3192,
1062
+ "step": 147
1063
+ },
1064
+ {
1065
+ "epoch": 0.8744460856720827,
1066
+ "grad_norm": 0.3535095751285553,
1067
+ "learning_rate": 1.7129041402350317e-05,
1068
+ "loss": 0.3364,
1069
+ "step": 148
1070
+ },
1071
+ {
1072
+ "epoch": 0.880354505169867,
1073
+ "grad_norm": 0.3418992757797241,
1074
+ "learning_rate": 1.708270099647198e-05,
1075
+ "loss": 0.3327,
1076
+ "step": 149
1077
+ },
1078
+ {
1079
+ "epoch": 0.8862629246676514,
1080
+ "grad_norm": 0.3172495663166046,
1081
+ "learning_rate": 1.7036053362924896e-05,
1082
+ "loss": 0.3404,
1083
+ "step": 150
1084
+ },
1085
+ {
1086
+ "epoch": 0.8921713441654358,
1087
+ "grad_norm": 0.3307952284812927,
1088
+ "learning_rate": 1.6989100525152346e-05,
1089
+ "loss": 0.3279,
1090
+ "step": 151
1091
+ },
1092
+ {
1093
+ "epoch": 0.8980797636632201,
1094
+ "grad_norm": 0.29014381766319275,
1095
+ "learning_rate": 1.694184451983651e-05,
1096
+ "loss": 0.3027,
1097
+ "step": 152
1098
+ },
1099
+ {
1100
+ "epoch": 0.9039881831610044,
1101
+ "grad_norm": 0.3290538191795349,
1102
+ "learning_rate": 1.689428739681012e-05,
1103
+ "loss": 0.3297,
1104
+ "step": 153
1105
+ },
1106
+ {
1107
+ "epoch": 0.9098966026587888,
1108
+ "grad_norm": 0.3165034353733063,
1109
+ "learning_rate": 1.684643121896755e-05,
1110
+ "loss": 0.3225,
1111
+ "step": 154
1112
+ },
1113
+ {
1114
+ "epoch": 0.9158050221565731,
1115
+ "grad_norm": 0.3677435517311096,
1116
+ "learning_rate": 1.679827806217533e-05,
1117
+ "loss": 0.328,
1118
+ "step": 155
1119
+ },
1120
+ {
1121
+ "epoch": 0.9217134416543574,
1122
+ "grad_norm": 0.3617594242095947,
1123
+ "learning_rate": 1.6749830015182106e-05,
1124
+ "loss": 0.3299,
1125
+ "step": 156
1126
+ },
1127
+ {
1128
+ "epoch": 0.9276218611521418,
1129
+ "grad_norm": 0.31069889664649963,
1130
+ "learning_rate": 1.6701089179528032e-05,
1131
+ "loss": 0.3146,
1132
+ "step": 157
1133
+ },
1134
+ {
1135
+ "epoch": 0.9335302806499262,
1136
+ "grad_norm": 0.3610530197620392,
1137
+ "learning_rate": 1.6652057669453606e-05,
1138
+ "loss": 0.3223,
1139
+ "step": 158
1140
+ },
1141
+ {
1142
+ "epoch": 0.9394387001477105,
1143
+ "grad_norm": 0.3169001638889313,
1144
+ "learning_rate": 1.6602737611807975e-05,
1145
+ "loss": 0.3194,
1146
+ "step": 159
1147
+ },
1148
+ {
1149
+ "epoch": 0.9453471196454948,
1150
+ "grad_norm": 0.33033737540245056,
1151
+ "learning_rate": 1.655313114595666e-05,
1152
+ "loss": 0.3317,
1153
+ "step": 160
1154
+ },
1155
+ {
1156
+ "epoch": 0.9512555391432792,
1157
+ "grad_norm": 0.35510334372520447,
1158
+ "learning_rate": 1.6503240423688768e-05,
1159
+ "loss": 0.3249,
1160
+ "step": 161
1161
+ },
1162
+ {
1163
+ "epoch": 0.9571639586410635,
1164
+ "grad_norm": 0.356079638004303,
1165
+ "learning_rate": 1.6453067609123656e-05,
1166
+ "loss": 0.3274,
1167
+ "step": 162
1168
+ },
1169
+ {
1170
+ "epoch": 0.9630723781388478,
1171
+ "grad_norm": 0.36350899934768677,
1172
+ "learning_rate": 1.6402614878617037e-05,
1173
+ "loss": 0.3553,
1174
+ "step": 163
1175
+ },
1176
+ {
1177
+ "epoch": 0.9689807976366323,
1178
+ "grad_norm": 0.3371831476688385,
1179
+ "learning_rate": 1.6351884420666616e-05,
1180
+ "loss": 0.3245,
1181
+ "step": 164
1182
+ },
1183
+ {
1184
+ "epoch": 0.9748892171344166,
1185
+ "grad_norm": 0.3398657739162445,
1186
+ "learning_rate": 1.6300878435817115e-05,
1187
+ "loss": 0.3043,
1188
+ "step": 165
1189
+ },
1190
+ {
1191
+ "epoch": 0.9807976366322009,
1192
+ "grad_norm": 0.34537115693092346,
1193
+ "learning_rate": 1.6249599136564837e-05,
1194
+ "loss": 0.349,
1195
+ "step": 166
1196
+ },
1197
+ {
1198
+ "epoch": 0.9867060561299852,
1199
+ "grad_norm": 0.31506776809692383,
1200
+ "learning_rate": 1.619804874726171e-05,
1201
+ "loss": 0.315,
1202
+ "step": 167
1203
+ },
1204
+ {
1205
+ "epoch": 0.9926144756277696,
1206
+ "grad_norm": 0.32844215631484985,
1207
+ "learning_rate": 1.6146229504018777e-05,
1208
+ "loss": 0.3247,
1209
+ "step": 168
1210
+ },
1211
+ {
1212
+ "epoch": 0.9985228951255539,
1213
+ "grad_norm": 0.3447742760181427,
1214
+ "learning_rate": 1.609414365460921e-05,
1215
+ "loss": 0.3193,
1216
+ "step": 169
1217
+ },
1218
+ {
1219
+ "epoch": 1.0,
1220
+ "grad_norm": 0.3447742760181427,
1221
+ "learning_rate": 1.6041793458370812e-05,
1222
+ "loss": 0.3359,
1223
+ "step": 170
1224
+ },
1225
+ {
1226
+ "epoch": 1.0059084194977843,
1227
+ "grad_norm": 0.27635836601257324,
1228
+ "learning_rate": 1.5989181186108003e-05,
1229
+ "loss": 0.2579,
1230
+ "step": 171
1231
+ },
1232
+ {
1233
+ "epoch": 1.0059084194977843,
1234
+ "eval_loss": 0.3496532440185547,
1235
+ "eval_runtime": 4.0258,
1236
+ "eval_samples_per_second": 13.662,
1237
+ "eval_steps_per_second": 1.739,
1238
+ "step": 171
1239
+ },
1240
+ {
1241
+ "epoch": 1.0118168389955686,
1242
+ "grad_norm": 0.27547529339790344,
1243
+ "learning_rate": 1.5936309119993333e-05,
1244
+ "loss": 0.2532,
1245
+ "step": 172
1246
+ },
1247
+ {
1248
+ "epoch": 1.017725258493353,
1249
+ "grad_norm": 0.2674752473831177,
1250
+ "learning_rate": 1.5883179553468465e-05,
1251
+ "loss": 0.2413,
1252
+ "step": 173
1253
+ },
1254
+ {
1255
+ "epoch": 1.0236336779911375,
1256
+ "grad_norm": 0.3056715428829193,
1257
+ "learning_rate": 1.5829794791144723e-05,
1258
+ "loss": 0.2418,
1259
+ "step": 174
1260
+ },
1261
+ {
1262
+ "epoch": 1.0295420974889218,
1263
+ "grad_norm": 0.27895164489746094,
1264
+ "learning_rate": 1.5776157148703094e-05,
1265
+ "loss": 0.2516,
1266
+ "step": 175
1267
+ },
1268
+ {
1269
+ "epoch": 1.035450516986706,
1270
+ "grad_norm": 0.2935872972011566,
1271
+ "learning_rate": 1.5722268952793806e-05,
1272
+ "loss": 0.254,
1273
+ "step": 176
1274
+ },
1275
+ {
1276
+ "epoch": 1.0413589364844904,
1277
+ "grad_norm": 0.28329288959503174,
1278
+ "learning_rate": 1.566813254093538e-05,
1279
+ "loss": 0.2356,
1280
+ "step": 177
1281
+ },
1282
+ {
1283
+ "epoch": 1.0472673559822747,
1284
+ "grad_norm": 0.29026728868484497,
1285
+ "learning_rate": 1.5613750261413256e-05,
1286
+ "loss": 0.2404,
1287
+ "step": 178
1288
+ },
1289
+ {
1290
+ "epoch": 1.053175775480059,
1291
+ "grad_norm": 0.3126751780509949,
1292
+ "learning_rate": 1.555912447317792e-05,
1293
+ "loss": 0.2303,
1294
+ "step": 179
1295
+ },
1296
+ {
1297
+ "epoch": 1.0590841949778433,
1298
+ "grad_norm": 0.26517724990844727,
1299
+ "learning_rate": 1.5504257545742585e-05,
1300
+ "loss": 0.2175,
1301
+ "step": 180
1302
+ },
1303
+ {
1304
+ "epoch": 1.0649926144756279,
1305
+ "grad_norm": 0.26433265209198,
1306
+ "learning_rate": 1.5449151859080395e-05,
1307
+ "loss": 0.2169,
1308
+ "step": 181
1309
+ },
1310
+ {
1311
+ "epoch": 1.0709010339734122,
1312
+ "grad_norm": 0.2908313274383545,
1313
+ "learning_rate": 1.5393809803521213e-05,
1314
+ "loss": 0.2236,
1315
+ "step": 182
1316
+ },
1317
+ {
1318
+ "epoch": 1.0768094534711965,
1319
+ "grad_norm": 0.2951337397098541,
1320
+ "learning_rate": 1.533823377964791e-05,
1321
+ "loss": 0.2305,
1322
+ "step": 183
1323
+ },
1324
+ {
1325
+ "epoch": 1.0827178729689808,
1326
+ "grad_norm": 0.29755067825317383,
1327
+ "learning_rate": 1.528242619819224e-05,
1328
+ "loss": 0.2385,
1329
+ "step": 184
1330
+ },
1331
+ {
1332
+ "epoch": 1.0886262924667651,
1333
+ "grad_norm": 0.2879098355770111,
1334
+ "learning_rate": 1.5226389479930296e-05,
1335
+ "loss": 0.2377,
1336
+ "step": 185
1337
+ },
1338
+ {
1339
+ "epoch": 1.0945347119645494,
1340
+ "grad_norm": 0.2590835392475128,
1341
+ "learning_rate": 1.517012605557746e-05,
1342
+ "loss": 0.2312,
1343
+ "step": 186
1344
+ },
1345
+ {
1346
+ "epoch": 1.1004431314623337,
1347
+ "grad_norm": 0.2694130837917328,
1348
+ "learning_rate": 1.5113638365682996e-05,
1349
+ "loss": 0.2347,
1350
+ "step": 187
1351
+ },
1352
+ {
1353
+ "epoch": 1.106351550960118,
1354
+ "grad_norm": 0.29442402720451355,
1355
+ "learning_rate": 1.5056928860524181e-05,
1356
+ "loss": 0.2428,
1357
+ "step": 188
1358
+ },
1359
+ {
1360
+ "epoch": 1.1122599704579026,
1361
+ "grad_norm": 0.29042768478393555,
1362
+ "learning_rate": 1.5000000000000002e-05,
1363
+ "loss": 0.2501,
1364
+ "step": 189
1365
+ },
1366
+ {
1367
+ "epoch": 1.118168389955687,
1368
+ "grad_norm": 0.2620311975479126,
1369
+ "learning_rate": 1.4942854253524479e-05,
1370
+ "loss": 0.2395,
1371
+ "step": 190
1372
+ },
1373
+ {
1374
+ "epoch": 1.1240768094534712,
1375
+ "grad_norm": 0.26113441586494446,
1376
+ "learning_rate": 1.488549409991953e-05,
1377
+ "loss": 0.2532,
1378
+ "step": 191
1379
+ },
1380
+ {
1381
+ "epoch": 1.1299852289512555,
1382
+ "grad_norm": 0.2995262145996094,
1383
+ "learning_rate": 1.482792202730745e-05,
1384
+ "loss": 0.2319,
1385
+ "step": 192
1386
+ },
1387
+ {
1388
+ "epoch": 1.1358936484490398,
1389
+ "grad_norm": 0.27327674627304077,
1390
+ "learning_rate": 1.477014053300299e-05,
1391
+ "loss": 0.2348,
1392
+ "step": 193
1393
+ },
1394
+ {
1395
+ "epoch": 1.1418020679468242,
1396
+ "grad_norm": 0.26245003938674927,
1397
+ "learning_rate": 1.4712152123405018e-05,
1398
+ "loss": 0.228,
1399
+ "step": 194
1400
+ },
1401
+ {
1402
+ "epoch": 1.1477104874446087,
1403
+ "grad_norm": 0.28888335824012756,
1404
+ "learning_rate": 1.4653959313887813e-05,
1405
+ "loss": 0.2436,
1406
+ "step": 195
1407
+ },
1408
+ {
1409
+ "epoch": 1.153618906942393,
1410
+ "grad_norm": 0.2724781632423401,
1411
+ "learning_rate": 1.4595564628691944e-05,
1412
+ "loss": 0.2442,
1413
+ "step": 196
1414
+ },
1415
+ {
1416
+ "epoch": 1.1595273264401773,
1417
+ "grad_norm": 0.2921780049800873,
1418
+ "learning_rate": 1.4536970600814789e-05,
1419
+ "loss": 0.2412,
1420
+ "step": 197
1421
+ },
1422
+ {
1423
+ "epoch": 1.1654357459379616,
1424
+ "grad_norm": 0.27938568592071533,
1425
+ "learning_rate": 1.4478179771900634e-05,
1426
+ "loss": 0.2465,
1427
+ "step": 198
1428
+ },
1429
+ {
1430
+ "epoch": 1.171344165435746,
1431
+ "grad_norm": 0.29516273736953735,
1432
+ "learning_rate": 1.4419194692130453e-05,
1433
+ "loss": 0.2415,
1434
+ "step": 199
1435
+ },
1436
+ {
1437
+ "epoch": 1.1772525849335302,
1438
+ "grad_norm": 0.27947136759757996,
1439
+ "learning_rate": 1.436001792011128e-05,
1440
+ "loss": 0.2295,
1441
+ "step": 200
1442
+ },
1443
+ {
1444
+ "epoch": 1.1831610044313146,
1445
+ "grad_norm": 0.26482367515563965,
1446
+ "learning_rate": 1.4300652022765207e-05,
1447
+ "loss": 0.2273,
1448
+ "step": 201
1449
+ },
1450
+ {
1451
+ "epoch": 1.1890694239290989,
1452
+ "grad_norm": 0.2728091776371002,
1453
+ "learning_rate": 1.424109957521806e-05,
1454
+ "loss": 0.2227,
1455
+ "step": 202
1456
+ },
1457
+ {
1458
+ "epoch": 1.1949778434268834,
1459
+ "grad_norm": 0.28748828172683716,
1460
+ "learning_rate": 1.4181363160687693e-05,
1461
+ "loss": 0.2402,
1462
+ "step": 203
1463
+ },
1464
+ {
1465
+ "epoch": 1.2008862629246677,
1466
+ "grad_norm": 0.2891993820667267,
1467
+ "learning_rate": 1.4121445370371922e-05,
1468
+ "loss": 0.224,
1469
+ "step": 204
1470
+ },
1471
+ {
1472
+ "epoch": 1.206794682422452,
1473
+ "grad_norm": 0.24767152965068817,
1474
+ "learning_rate": 1.4061348803336135e-05,
1475
+ "loss": 0.221,
1476
+ "step": 205
1477
+ },
1478
+ {
1479
+ "epoch": 1.2127031019202363,
1480
+ "grad_norm": 0.2819165885448456,
1481
+ "learning_rate": 1.400107606640056e-05,
1482
+ "loss": 0.2231,
1483
+ "step": 206
1484
+ },
1485
+ {
1486
+ "epoch": 1.2186115214180206,
1487
+ "grad_norm": 0.27328819036483765,
1488
+ "learning_rate": 1.394062977402717e-05,
1489
+ "loss": 0.229,
1490
+ "step": 207
1491
+ },
1492
+ {
1493
+ "epoch": 1.224519940915805,
1494
+ "grad_norm": 0.2674582302570343,
1495
+ "learning_rate": 1.3880012548206292e-05,
1496
+ "loss": 0.2155,
1497
+ "step": 208
1498
+ },
1499
+ {
1500
+ "epoch": 1.2304283604135893,
1501
+ "grad_norm": 0.2989075481891632,
1502
+ "learning_rate": 1.3819227018342865e-05,
1503
+ "loss": 0.2184,
1504
+ "step": 209
1505
+ },
1506
+ {
1507
+ "epoch": 1.2363367799113738,
1508
+ "grad_norm": 0.30796098709106445,
1509
+ "learning_rate": 1.3758275821142382e-05,
1510
+ "loss": 0.2288,
1511
+ "step": 210
1512
+ },
1513
+ {
1514
+ "epoch": 1.2422451994091581,
1515
+ "grad_norm": 0.29833805561065674,
1516
+ "learning_rate": 1.3697161600496525e-05,
1517
+ "loss": 0.2368,
1518
+ "step": 211
1519
+ },
1520
+ {
1521
+ "epoch": 1.2481536189069424,
1522
+ "grad_norm": 0.26458829641342163,
1523
+ "learning_rate": 1.3635887007368467e-05,
1524
+ "loss": 0.2376,
1525
+ "step": 212
1526
+ },
1527
+ {
1528
+ "epoch": 1.2540620384047267,
1529
+ "grad_norm": 0.2781698703765869,
1530
+ "learning_rate": 1.3574454699677893e-05,
1531
+ "loss": 0.2167,
1532
+ "step": 213
1533
+ },
1534
+ {
1535
+ "epoch": 1.259970457902511,
1536
+ "grad_norm": 0.268433153629303,
1537
+ "learning_rate": 1.3512867342185705e-05,
1538
+ "loss": 0.2229,
1539
+ "step": 214
1540
+ },
1541
+ {
1542
+ "epoch": 1.2658788774002954,
1543
+ "grad_norm": 0.2726047933101654,
1544
+ "learning_rate": 1.3451127606378425e-05,
1545
+ "loss": 0.223,
1546
+ "step": 215
1547
+ },
1548
+ {
1549
+ "epoch": 1.2717872968980797,
1550
+ "grad_norm": 0.29567429423332214,
1551
+ "learning_rate": 1.3389238170352318e-05,
1552
+ "loss": 0.2105,
1553
+ "step": 216
1554
+ },
1555
+ {
1556
+ "epoch": 1.277695716395864,
1557
+ "grad_norm": 0.30303359031677246,
1558
+ "learning_rate": 1.3327201718697232e-05,
1559
+ "loss": 0.2602,
1560
+ "step": 217
1561
+ },
1562
+ {
1563
+ "epoch": 1.2836041358936485,
1564
+ "grad_norm": 0.27332380414009094,
1565
+ "learning_rate": 1.326502094238013e-05,
1566
+ "loss": 0.2288,
1567
+ "step": 218
1568
+ },
1569
+ {
1570
+ "epoch": 1.2895125553914328,
1571
+ "grad_norm": 0.2703614830970764,
1572
+ "learning_rate": 1.3202698538628376e-05,
1573
+ "loss": 0.2308,
1574
+ "step": 219
1575
+ },
1576
+ {
1577
+ "epoch": 1.2954209748892171,
1578
+ "grad_norm": 0.2788908779621124,
1579
+ "learning_rate": 1.3140237210812741e-05,
1580
+ "loss": 0.2254,
1581
+ "step": 220
1582
+ },
1583
+ {
1584
+ "epoch": 1.3013293943870015,
1585
+ "grad_norm": 0.27442580461502075,
1586
+ "learning_rate": 1.3077639668330124e-05,
1587
+ "loss": 0.2158,
1588
+ "step": 221
1589
+ },
1590
+ {
1591
+ "epoch": 1.3072378138847858,
1592
+ "grad_norm": 0.28895896673202515,
1593
+ "learning_rate": 1.3014908626486032e-05,
1594
+ "loss": 0.2404,
1595
+ "step": 222
1596
+ },
1597
+ {
1598
+ "epoch": 1.31314623338257,
1599
+ "grad_norm": 0.24982582032680511,
1600
+ "learning_rate": 1.2952046806376806e-05,
1601
+ "loss": 0.2201,
1602
+ "step": 223
1603
+ },
1604
+ {
1605
+ "epoch": 1.3190546528803546,
1606
+ "grad_norm": 0.28909650444984436,
1607
+ "learning_rate": 1.2889056934771577e-05,
1608
+ "loss": 0.2384,
1609
+ "step": 224
1610
+ },
1611
+ {
1612
+ "epoch": 1.324963072378139,
1613
+ "grad_norm": 0.28018954396247864,
1614
+ "learning_rate": 1.282594174399399e-05,
1615
+ "loss": 0.2324,
1616
+ "step": 225
1617
+ },
1618
+ {
1619
+ "epoch": 1.3308714918759232,
1620
+ "grad_norm": 0.29922735691070557,
1621
+ "learning_rate": 1.2762703971803684e-05,
1622
+ "loss": 0.2457,
1623
+ "step": 226
1624
+ },
1625
+ {
1626
+ "epoch": 1.3367799113737076,
1627
+ "grad_norm": 0.289288729429245,
1628
+ "learning_rate": 1.2699346361277538e-05,
1629
+ "loss": 0.2366,
1630
+ "step": 227
1631
+ },
1632
+ {
1633
+ "epoch": 1.3426883308714919,
1634
+ "grad_norm": 0.2790012061595917,
1635
+ "learning_rate": 1.2635871660690677e-05,
1636
+ "loss": 0.2359,
1637
+ "step": 228
1638
+ },
1639
+ {
1640
+ "epoch": 1.3426883308714919,
1641
+ "eval_loss": 0.35204342007637024,
1642
+ "eval_runtime": 4.4578,
1643
+ "eval_samples_per_second": 12.338,
1644
+ "eval_steps_per_second": 1.57,
1645
+ "step": 228
1646
+ },
1647
+ {
1648
+ "epoch": 1.3485967503692762,
1649
+ "grad_norm": 0.36030444502830505,
1650
+ "learning_rate": 1.2572282623397268e-05,
1651
+ "loss": 0.2405,
1652
+ "step": 229
1653
+ },
1654
+ {
1655
+ "epoch": 1.3545051698670605,
1656
+ "grad_norm": 0.24079382419586182,
1657
+ "learning_rate": 1.2508582007711074e-05,
1658
+ "loss": 0.2148,
1659
+ "step": 230
1660
+ },
1661
+ {
1662
+ "epoch": 1.3604135893648448,
1663
+ "grad_norm": 0.26674559712409973,
1664
+ "learning_rate": 1.2444772576785828e-05,
1665
+ "loss": 0.2457,
1666
+ "step": 231
1667
+ },
1668
+ {
1669
+ "epoch": 1.3663220088626291,
1670
+ "grad_norm": 0.25345727801322937,
1671
+ "learning_rate": 1.2380857098495355e-05,
1672
+ "loss": 0.2229,
1673
+ "step": 232
1674
+ },
1675
+ {
1676
+ "epoch": 1.3722304283604136,
1677
+ "grad_norm": 0.2623337507247925,
1678
+ "learning_rate": 1.2316838345313517e-05,
1679
+ "loss": 0.231,
1680
+ "step": 233
1681
+ },
1682
+ {
1683
+ "epoch": 1.378138847858198,
1684
+ "grad_norm": 0.27783095836639404,
1685
+ "learning_rate": 1.225271909419395e-05,
1686
+ "loss": 0.2251,
1687
+ "step": 234
1688
+ },
1689
+ {
1690
+ "epoch": 1.3840472673559823,
1691
+ "grad_norm": 0.25021976232528687,
1692
+ "learning_rate": 1.2188502126449616e-05,
1693
+ "loss": 0.226,
1694
+ "step": 235
1695
+ },
1696
+ {
1697
+ "epoch": 1.3899556868537666,
1698
+ "grad_norm": 0.2695038318634033,
1699
+ "learning_rate": 1.2124190227632138e-05,
1700
+ "loss": 0.2438,
1701
+ "step": 236
1702
+ },
1703
+ {
1704
+ "epoch": 1.395864106351551,
1705
+ "grad_norm": 0.24312005937099457,
1706
+ "learning_rate": 1.2059786187410984e-05,
1707
+ "loss": 0.2138,
1708
+ "step": 237
1709
+ },
1710
+ {
1711
+ "epoch": 1.4017725258493354,
1712
+ "grad_norm": 0.2761548161506653,
1713
+ "learning_rate": 1.1995292799452472e-05,
1714
+ "loss": 0.244,
1715
+ "step": 238
1716
+ },
1717
+ {
1718
+ "epoch": 1.4076809453471197,
1719
+ "grad_norm": 0.2740529477596283,
1720
+ "learning_rate": 1.1930712861298553e-05,
1721
+ "loss": 0.2416,
1722
+ "step": 239
1723
+ },
1724
+ {
1725
+ "epoch": 1.413589364844904,
1726
+ "grad_norm": 0.2605426013469696,
1727
+ "learning_rate": 1.186604917424549e-05,
1728
+ "loss": 0.2515,
1729
+ "step": 240
1730
+ },
1731
+ {
1732
+ "epoch": 1.4194977843426884,
1733
+ "grad_norm": 0.27557292580604553,
1734
+ "learning_rate": 1.1801304543222349e-05,
1735
+ "loss": 0.232,
1736
+ "step": 241
1737
+ },
1738
+ {
1739
+ "epoch": 1.4254062038404727,
1740
+ "grad_norm": 0.2512328624725342,
1741
+ "learning_rate": 1.1736481776669307e-05,
1742
+ "loss": 0.2311,
1743
+ "step": 242
1744
+ },
1745
+ {
1746
+ "epoch": 1.431314623338257,
1747
+ "grad_norm": 0.2634104788303375,
1748
+ "learning_rate": 1.1671583686415833e-05,
1749
+ "loss": 0.2207,
1750
+ "step": 243
1751
+ },
1752
+ {
1753
+ "epoch": 1.4372230428360413,
1754
+ "grad_norm": 0.2541881203651428,
1755
+ "learning_rate": 1.1606613087558748e-05,
1756
+ "loss": 0.2207,
1757
+ "step": 244
1758
+ },
1759
+ {
1760
+ "epoch": 1.4431314623338256,
1761
+ "grad_norm": 0.24408863484859467,
1762
+ "learning_rate": 1.1541572798340076e-05,
1763
+ "loss": 0.2155,
1764
+ "step": 245
1765
+ },
1766
+ {
1767
+ "epoch": 1.44903988183161,
1768
+ "grad_norm": 0.25305289030075073,
1769
+ "learning_rate": 1.1476465640024814e-05,
1770
+ "loss": 0.2245,
1771
+ "step": 246
1772
+ },
1773
+ {
1774
+ "epoch": 1.4549483013293945,
1775
+ "grad_norm": 0.26579606533050537,
1776
+ "learning_rate": 1.1411294436778562e-05,
1777
+ "loss": 0.2295,
1778
+ "step": 247
1779
+ },
1780
+ {
1781
+ "epoch": 1.4608567208271788,
1782
+ "grad_norm": 0.26332345604896545,
1783
+ "learning_rate": 1.1346062015544997e-05,
1784
+ "loss": 0.2363,
1785
+ "step": 248
1786
+ },
1787
+ {
1788
+ "epoch": 1.466765140324963,
1789
+ "grad_norm": 0.2519514262676239,
1790
+ "learning_rate": 1.1280771205923269e-05,
1791
+ "loss": 0.2215,
1792
+ "step": 249
1793
+ },
1794
+ {
1795
+ "epoch": 1.4726735598227474,
1796
+ "grad_norm": 0.2569345533847809,
1797
+ "learning_rate": 1.1215424840045254e-05,
1798
+ "loss": 0.223,
1799
+ "step": 250
1800
+ },
1801
+ {
1802
+ "epoch": 1.4785819793205317,
1803
+ "grad_norm": 0.25557035207748413,
1804
+ "learning_rate": 1.1150025752452693e-05,
1805
+ "loss": 0.2511,
1806
+ "step": 251
1807
+ },
1808
+ {
1809
+ "epoch": 1.4844903988183162,
1810
+ "grad_norm": 0.26646342873573303,
1811
+ "learning_rate": 1.1084576779974257e-05,
1812
+ "loss": 0.2476,
1813
+ "step": 252
1814
+ },
1815
+ {
1816
+ "epoch": 1.4903988183161005,
1817
+ "grad_norm": 0.27917614579200745,
1818
+ "learning_rate": 1.1019080761602473e-05,
1819
+ "loss": 0.2284,
1820
+ "step": 253
1821
+ },
1822
+ {
1823
+ "epoch": 1.4963072378138849,
1824
+ "grad_norm": 0.2594425082206726,
1825
+ "learning_rate": 1.0953540538370591e-05,
1826
+ "loss": 0.2319,
1827
+ "step": 254
1828
+ },
1829
+ {
1830
+ "epoch": 1.5022156573116692,
1831
+ "grad_norm": 0.23648317158222198,
1832
+ "learning_rate": 1.0887958953229349e-05,
1833
+ "loss": 0.225,
1834
+ "step": 255
1835
+ },
1836
+ {
1837
+ "epoch": 1.5081240768094535,
1838
+ "grad_norm": 0.24810343980789185,
1839
+ "learning_rate": 1.0822338850923644e-05,
1840
+ "loss": 0.2222,
1841
+ "step": 256
1842
+ },
1843
+ {
1844
+ "epoch": 1.5140324963072378,
1845
+ "grad_norm": 0.25305667519569397,
1846
+ "learning_rate": 1.0756683077869133e-05,
1847
+ "loss": 0.2178,
1848
+ "step": 257
1849
+ },
1850
+ {
1851
+ "epoch": 1.519940915805022,
1852
+ "grad_norm": 0.23994190990924835,
1853
+ "learning_rate": 1.069099448202878e-05,
1854
+ "loss": 0.2274,
1855
+ "step": 258
1856
+ },
1857
+ {
1858
+ "epoch": 1.5258493353028064,
1859
+ "grad_norm": 0.28112536668777466,
1860
+ "learning_rate": 1.0625275912789307e-05,
1861
+ "loss": 0.2157,
1862
+ "step": 259
1863
+ },
1864
+ {
1865
+ "epoch": 1.5317577548005907,
1866
+ "grad_norm": 0.2910768687725067,
1867
+ "learning_rate": 1.0559530220837593e-05,
1868
+ "loss": 0.2337,
1869
+ "step": 260
1870
+ },
1871
+ {
1872
+ "epoch": 1.537666174298375,
1873
+ "grad_norm": 0.26320862770080566,
1874
+ "learning_rate": 1.049376025803703e-05,
1875
+ "loss": 0.2156,
1876
+ "step": 261
1877
+ },
1878
+ {
1879
+ "epoch": 1.5435745937961596,
1880
+ "grad_norm": 0.2653874456882477,
1881
+ "learning_rate": 1.0427968877303809e-05,
1882
+ "loss": 0.2269,
1883
+ "step": 262
1884
+ },
1885
+ {
1886
+ "epoch": 1.549483013293944,
1887
+ "grad_norm": 0.24998469650745392,
1888
+ "learning_rate": 1.0362158932483165e-05,
1889
+ "loss": 0.2252,
1890
+ "step": 263
1891
+ },
1892
+ {
1893
+ "epoch": 1.5553914327917282,
1894
+ "grad_norm": 0.25920990109443665,
1895
+ "learning_rate": 1.0296333278225599e-05,
1896
+ "loss": 0.2274,
1897
+ "step": 264
1898
+ },
1899
+ {
1900
+ "epoch": 1.5612998522895125,
1901
+ "grad_norm": 0.2827723026275635,
1902
+ "learning_rate": 1.023049476986304e-05,
1903
+ "loss": 0.248,
1904
+ "step": 265
1905
+ },
1906
+ {
1907
+ "epoch": 1.567208271787297,
1908
+ "grad_norm": 0.27848076820373535,
1909
+ "learning_rate": 1.0164646263284993e-05,
1910
+ "loss": 0.2372,
1911
+ "step": 266
1912
+ },
1913
+ {
1914
+ "epoch": 1.5731166912850814,
1915
+ "grad_norm": 0.2601296305656433,
1916
+ "learning_rate": 1.0098790614814658e-05,
1917
+ "loss": 0.212,
1918
+ "step": 267
1919
+ },
1920
+ {
1921
+ "epoch": 1.5790251107828657,
1922
+ "grad_norm": 0.24360589683055878,
1923
+ "learning_rate": 1.0032930681085028e-05,
1924
+ "loss": 0.2152,
1925
+ "step": 268
1926
+ },
1927
+ {
1928
+ "epoch": 1.58493353028065,
1929
+ "grad_norm": 0.3080978989601135,
1930
+ "learning_rate": 9.967069318914977e-06,
1931
+ "loss": 0.2218,
1932
+ "step": 269
1933
+ },
1934
+ {
1935
+ "epoch": 1.5908419497784343,
1936
+ "grad_norm": 0.26208099722862244,
1937
+ "learning_rate": 9.901209385185345e-06,
1938
+ "loss": 0.2184,
1939
+ "step": 270
1940
+ },
1941
+ {
1942
+ "epoch": 1.5967503692762186,
1943
+ "grad_norm": 0.2984671890735626,
1944
+ "learning_rate": 9.835353736715007e-06,
1945
+ "loss": 0.2432,
1946
+ "step": 271
1947
+ },
1948
+ {
1949
+ "epoch": 1.602658788774003,
1950
+ "grad_norm": 0.26782581210136414,
1951
+ "learning_rate": 9.769505230136962e-06,
1952
+ "loss": 0.2126,
1953
+ "step": 272
1954
+ },
1955
+ {
1956
+ "epoch": 1.6085672082717872,
1957
+ "grad_norm": 0.28440967202186584,
1958
+ "learning_rate": 9.703666721774403e-06,
1959
+ "loss": 0.2214,
1960
+ "step": 273
1961
+ },
1962
+ {
1963
+ "epoch": 1.6144756277695715,
1964
+ "grad_norm": 0.2926226854324341,
1965
+ "learning_rate": 9.637841067516837e-06,
1966
+ "loss": 0.2256,
1967
+ "step": 274
1968
+ },
1969
+ {
1970
+ "epoch": 1.6203840472673559,
1971
+ "grad_norm": 0.25548121333122253,
1972
+ "learning_rate": 9.572031122696196e-06,
1973
+ "loss": 0.2304,
1974
+ "step": 275
1975
+ },
1976
+ {
1977
+ "epoch": 1.6262924667651402,
1978
+ "grad_norm": 0.28455373644828796,
1979
+ "learning_rate": 9.506239741962971e-06,
1980
+ "loss": 0.2299,
1981
+ "step": 276
1982
+ },
1983
+ {
1984
+ "epoch": 1.6322008862629247,
1985
+ "grad_norm": 0.262614369392395,
1986
+ "learning_rate": 9.440469779162407e-06,
1987
+ "loss": 0.2251,
1988
+ "step": 277
1989
+ },
1990
+ {
1991
+ "epoch": 1.638109305760709,
1992
+ "grad_norm": 0.27394819259643555,
1993
+ "learning_rate": 9.374724087210698e-06,
1994
+ "loss": 0.2117,
1995
+ "step": 278
1996
+ },
1997
+ {
1998
+ "epoch": 1.6440177252584933,
1999
+ "grad_norm": 0.2843812108039856,
2000
+ "learning_rate": 9.309005517971222e-06,
2001
+ "loss": 0.2268,
2002
+ "step": 279
2003
+ },
2004
+ {
2005
+ "epoch": 1.6499261447562779,
2006
+ "grad_norm": 0.25647154450416565,
2007
+ "learning_rate": 9.24331692213087e-06,
2008
+ "loss": 0.2187,
2009
+ "step": 280
2010
+ },
2011
+ {
2012
+ "epoch": 1.6558345642540622,
2013
+ "grad_norm": 0.27861371636390686,
2014
+ "learning_rate": 9.17766114907636e-06,
2015
+ "loss": 0.2311,
2016
+ "step": 281
2017
+ },
2018
+ {
2019
+ "epoch": 1.6617429837518465,
2020
+ "grad_norm": 0.270049512386322,
2021
+ "learning_rate": 9.112041046770653e-06,
2022
+ "loss": 0.2265,
2023
+ "step": 282
2024
+ },
2025
+ {
2026
+ "epoch": 1.6676514032496308,
2027
+ "grad_norm": 0.2750328779220581,
2028
+ "learning_rate": 9.04645946162941e-06,
2029
+ "loss": 0.2253,
2030
+ "step": 283
2031
+ },
2032
+ {
2033
+ "epoch": 1.673559822747415,
2034
+ "grad_norm": 0.2412230521440506,
2035
+ "learning_rate": 8.980919238397532e-06,
2036
+ "loss": 0.2394,
2037
+ "step": 284
2038
+ },
2039
+ {
2040
+ "epoch": 1.6794682422451994,
2041
+ "grad_norm": 0.2524693012237549,
2042
+ "learning_rate": 8.915423220025747e-06,
2043
+ "loss": 0.2258,
2044
+ "step": 285
2045
+ },
2046
+ {
2047
+ "epoch": 1.6794682422451994,
2048
+ "eval_loss": 0.3460842967033386,
2049
+ "eval_runtime": 4.0784,
2050
+ "eval_samples_per_second": 13.486,
2051
+ "eval_steps_per_second": 1.716,
2052
+ "step": 285
2053
+ },
2054
+ {
2055
+ "epoch": 1.6853766617429837,
2056
+ "grad_norm": 0.25439098477363586,
2057
+ "learning_rate": 8.849974247547307e-06,
2058
+ "loss": 0.2266,
2059
+ "step": 286
2060
+ },
2061
+ {
2062
+ "epoch": 1.691285081240768,
2063
+ "grad_norm": 0.257929265499115,
2064
+ "learning_rate": 8.784575159954748e-06,
2065
+ "loss": 0.2133,
2066
+ "step": 287
2067
+ },
2068
+ {
2069
+ "epoch": 1.6971935007385524,
2070
+ "grad_norm": 0.24912972748279572,
2071
+ "learning_rate": 8.719228794076733e-06,
2072
+ "loss": 0.2129,
2073
+ "step": 288
2074
+ },
2075
+ {
2076
+ "epoch": 1.7031019202363367,
2077
+ "grad_norm": 0.27103564143180847,
2078
+ "learning_rate": 8.653937984455007e-06,
2079
+ "loss": 0.2276,
2080
+ "step": 289
2081
+ },
2082
+ {
2083
+ "epoch": 1.709010339734121,
2084
+ "grad_norm": 0.2718878984451294,
2085
+ "learning_rate": 8.588705563221444e-06,
2086
+ "loss": 0.2276,
2087
+ "step": 290
2088
+ },
2089
+ {
2090
+ "epoch": 1.7149187592319055,
2091
+ "grad_norm": 0.26431816816329956,
2092
+ "learning_rate": 8.52353435997519e-06,
2093
+ "loss": 0.2328,
2094
+ "step": 291
2095
+ },
2096
+ {
2097
+ "epoch": 1.7208271787296898,
2098
+ "grad_norm": 0.2725984752178192,
2099
+ "learning_rate": 8.458427201659926e-06,
2100
+ "loss": 0.2292,
2101
+ "step": 292
2102
+ },
2103
+ {
2104
+ "epoch": 1.7267355982274741,
2105
+ "grad_norm": 0.2515108585357666,
2106
+ "learning_rate": 8.393386912441257e-06,
2107
+ "loss": 0.226,
2108
+ "step": 293
2109
+ },
2110
+ {
2111
+ "epoch": 1.7326440177252584,
2112
+ "grad_norm": 0.2476361244916916,
2113
+ "learning_rate": 8.328416313584169e-06,
2114
+ "loss": 0.2277,
2115
+ "step": 294
2116
+ },
2117
+ {
2118
+ "epoch": 1.738552437223043,
2119
+ "grad_norm": 0.25414201617240906,
2120
+ "learning_rate": 8.263518223330698e-06,
2121
+ "loss": 0.2268,
2122
+ "step": 295
2123
+ },
2124
+ {
2125
+ "epoch": 1.7444608567208273,
2126
+ "grad_norm": 0.26264503598213196,
2127
+ "learning_rate": 8.198695456777653e-06,
2128
+ "loss": 0.2193,
2129
+ "step": 296
2130
+ },
2131
+ {
2132
+ "epoch": 1.7503692762186116,
2133
+ "grad_norm": 0.26917147636413574,
2134
+ "learning_rate": 8.133950825754511e-06,
2135
+ "loss": 0.2251,
2136
+ "step": 297
2137
+ },
2138
+ {
2139
+ "epoch": 1.756277695716396,
2140
+ "grad_norm": 0.2692192792892456,
2141
+ "learning_rate": 8.069287138701452e-06,
2142
+ "loss": 0.232,
2143
+ "step": 298
2144
+ },
2145
+ {
2146
+ "epoch": 1.7621861152141802,
2147
+ "grad_norm": 0.27494263648986816,
2148
+ "learning_rate": 8.004707200547534e-06,
2149
+ "loss": 0.2461,
2150
+ "step": 299
2151
+ },
2152
+ {
2153
+ "epoch": 1.7680945347119645,
2154
+ "grad_norm": 0.28247448801994324,
2155
+ "learning_rate": 7.940213812589018e-06,
2156
+ "loss": 0.2226,
2157
+ "step": 300
2158
+ },
2159
+ {
2160
+ "epoch": 1.7740029542097489,
2161
+ "grad_norm": 0.2632560133934021,
2162
+ "learning_rate": 7.875809772367867e-06,
2163
+ "loss": 0.216,
2164
+ "step": 301
2165
+ },
2166
+ {
2167
+ "epoch": 1.7799113737075332,
2168
+ "grad_norm": 0.26561063528060913,
2169
+ "learning_rate": 7.81149787355039e-06,
2170
+ "loss": 0.2286,
2171
+ "step": 302
2172
+ },
2173
+ {
2174
+ "epoch": 1.7858197932053175,
2175
+ "grad_norm": 0.24065916240215302,
2176
+ "learning_rate": 7.747280905806051e-06,
2177
+ "loss": 0.2201,
2178
+ "step": 303
2179
+ },
2180
+ {
2181
+ "epoch": 1.7917282127031018,
2182
+ "grad_norm": 0.288473904132843,
2183
+ "learning_rate": 7.683161654686486e-06,
2184
+ "loss": 0.2179,
2185
+ "step": 304
2186
+ },
2187
+ {
2188
+ "epoch": 1.797636632200886,
2189
+ "grad_norm": 0.27798035740852356,
2190
+ "learning_rate": 7.619142901504649e-06,
2191
+ "loss": 0.2341,
2192
+ "step": 305
2193
+ },
2194
+ {
2195
+ "epoch": 1.8035450516986706,
2196
+ "grad_norm": 0.28387168049812317,
2197
+ "learning_rate": 7.555227423214174e-06,
2198
+ "loss": 0.226,
2199
+ "step": 306
2200
+ },
2201
+ {
2202
+ "epoch": 1.809453471196455,
2203
+ "grad_norm": 0.28974682092666626,
2204
+ "learning_rate": 7.491417992288927e-06,
2205
+ "loss": 0.2296,
2206
+ "step": 307
2207
+ },
2208
+ {
2209
+ "epoch": 1.8153618906942393,
2210
+ "grad_norm": 0.26052042841911316,
2211
+ "learning_rate": 7.427717376602739e-06,
2212
+ "loss": 0.2002,
2213
+ "step": 308
2214
+ },
2215
+ {
2216
+ "epoch": 1.8212703101920238,
2217
+ "grad_norm": 0.29558730125427246,
2218
+ "learning_rate": 7.364128339309326e-06,
2219
+ "loss": 0.263,
2220
+ "step": 309
2221
+ },
2222
+ {
2223
+ "epoch": 1.827178729689808,
2224
+ "grad_norm": 0.24457122385501862,
2225
+ "learning_rate": 7.300653638722463e-06,
2226
+ "loss": 0.224,
2227
+ "step": 310
2228
+ },
2229
+ {
2230
+ "epoch": 1.8330871491875924,
2231
+ "grad_norm": 0.2517196834087372,
2232
+ "learning_rate": 7.2372960281963165e-06,
2233
+ "loss": 0.2134,
2234
+ "step": 311
2235
+ },
2236
+ {
2237
+ "epoch": 1.8389955686853767,
2238
+ "grad_norm": 0.27632561326026917,
2239
+ "learning_rate": 7.174058256006012e-06,
2240
+ "loss": 0.2229,
2241
+ "step": 312
2242
+ },
2243
+ {
2244
+ "epoch": 1.844903988183161,
2245
+ "grad_norm": 0.2603515684604645,
2246
+ "learning_rate": 7.110943065228425e-06,
2247
+ "loss": 0.2299,
2248
+ "step": 313
2249
+ },
2250
+ {
2251
+ "epoch": 1.8508124076809453,
2252
+ "grad_norm": 0.24517123401165009,
2253
+ "learning_rate": 7.047953193623195e-06,
2254
+ "loss": 0.2096,
2255
+ "step": 314
2256
+ },
2257
+ {
2258
+ "epoch": 1.8567208271787297,
2259
+ "grad_norm": 0.24135427176952362,
2260
+ "learning_rate": 6.985091373513972e-06,
2261
+ "loss": 0.2072,
2262
+ "step": 315
2263
+ },
2264
+ {
2265
+ "epoch": 1.862629246676514,
2266
+ "grad_norm": 0.2676647901535034,
2267
+ "learning_rate": 6.92236033166988e-06,
2268
+ "loss": 0.2173,
2269
+ "step": 316
2270
+ },
2271
+ {
2272
+ "epoch": 1.8685376661742983,
2273
+ "grad_norm": 0.2504200041294098,
2274
+ "learning_rate": 6.859762789187259e-06,
2275
+ "loss": 0.2192,
2276
+ "step": 317
2277
+ },
2278
+ {
2279
+ "epoch": 1.8744460856720826,
2280
+ "grad_norm": 0.26364269852638245,
2281
+ "learning_rate": 6.797301461371626e-06,
2282
+ "loss": 0.2193,
2283
+ "step": 318
2284
+ },
2285
+ {
2286
+ "epoch": 1.880354505169867,
2287
+ "grad_norm": 0.24448218941688538,
2288
+ "learning_rate": 6.734979057619873e-06,
2289
+ "loss": 0.2208,
2290
+ "step": 319
2291
+ },
2292
+ {
2293
+ "epoch": 1.8862629246676514,
2294
+ "grad_norm": 0.24706940352916718,
2295
+ "learning_rate": 6.67279828130277e-06,
2296
+ "loss": 0.2211,
2297
+ "step": 320
2298
+ },
2299
+ {
2300
+ "epoch": 1.8921713441654358,
2301
+ "grad_norm": 0.24761930108070374,
2302
+ "learning_rate": 6.610761829647685e-06,
2303
+ "loss": 0.2222,
2304
+ "step": 321
2305
+ },
2306
+ {
2307
+ "epoch": 1.89807976366322,
2308
+ "grad_norm": 0.2566414475440979,
2309
+ "learning_rate": 6.548872393621578e-06,
2310
+ "loss": 0.2136,
2311
+ "step": 322
2312
+ },
2313
+ {
2314
+ "epoch": 1.9039881831610044,
2315
+ "grad_norm": 0.2611066401004791,
2316
+ "learning_rate": 6.487132657814297e-06,
2317
+ "loss": 0.2146,
2318
+ "step": 323
2319
+ },
2320
+ {
2321
+ "epoch": 1.909896602658789,
2322
+ "grad_norm": 0.27130842208862305,
2323
+ "learning_rate": 6.4255453003221115e-06,
2324
+ "loss": 0.2184,
2325
+ "step": 324
2326
+ },
2327
+ {
2328
+ "epoch": 1.9158050221565732,
2329
+ "grad_norm": 0.2548243999481201,
2330
+ "learning_rate": 6.364112992631537e-06,
2331
+ "loss": 0.2299,
2332
+ "step": 325
2333
+ },
2334
+ {
2335
+ "epoch": 1.9217134416543575,
2336
+ "grad_norm": 0.2533697187900543,
2337
+ "learning_rate": 6.302838399503477e-06,
2338
+ "loss": 0.2043,
2339
+ "step": 326
2340
+ },
2341
+ {
2342
+ "epoch": 1.9276218611521418,
2343
+ "grad_norm": 0.2540424168109894,
2344
+ "learning_rate": 6.241724178857621e-06,
2345
+ "loss": 0.2039,
2346
+ "step": 327
2347
+ },
2348
+ {
2349
+ "epoch": 1.9335302806499262,
2350
+ "grad_norm": 0.2535569965839386,
2351
+ "learning_rate": 6.180772981657139e-06,
2352
+ "loss": 0.2019,
2353
+ "step": 328
2354
+ },
2355
+ {
2356
+ "epoch": 1.9394387001477105,
2357
+ "grad_norm": 0.29982754588127136,
2358
+ "learning_rate": 6.119987451793711e-06,
2359
+ "loss": 0.2228,
2360
+ "step": 329
2361
+ },
2362
+ {
2363
+ "epoch": 1.9453471196454948,
2364
+ "grad_norm": 0.23110415041446686,
2365
+ "learning_rate": 6.059370225972834e-06,
2366
+ "loss": 0.2188,
2367
+ "step": 330
2368
+ },
2369
+ {
2370
+ "epoch": 1.951255539143279,
2371
+ "grad_norm": 0.2608148753643036,
2372
+ "learning_rate": 5.998923933599443e-06,
2373
+ "loss": 0.2236,
2374
+ "step": 331
2375
+ },
2376
+ {
2377
+ "epoch": 1.9571639586410634,
2378
+ "grad_norm": 0.26010897755622864,
2379
+ "learning_rate": 5.938651196663865e-06,
2380
+ "loss": 0.2032,
2381
+ "step": 332
2382
+ },
2383
+ {
2384
+ "epoch": 1.9630723781388477,
2385
+ "grad_norm": 0.26297712326049805,
2386
+ "learning_rate": 5.878554629628081e-06,
2387
+ "loss": 0.2224,
2388
+ "step": 333
2389
+ },
2390
+ {
2391
+ "epoch": 1.9689807976366323,
2392
+ "grad_norm": 0.2658803164958954,
2393
+ "learning_rate": 5.818636839312309e-06,
2394
+ "loss": 0.2153,
2395
+ "step": 334
2396
+ },
2397
+ {
2398
+ "epoch": 1.9748892171344166,
2399
+ "grad_norm": 0.23885361850261688,
2400
+ "learning_rate": 5.758900424781939e-06,
2401
+ "loss": 0.2029,
2402
+ "step": 335
2403
+ },
2404
+ {
2405
+ "epoch": 1.9807976366322009,
2406
+ "grad_norm": 0.2604767978191376,
2407
+ "learning_rate": 5.699347977234799e-06,
2408
+ "loss": 0.2059,
2409
+ "step": 336
2410
+ },
2411
+ {
2412
+ "epoch": 1.9867060561299852,
2413
+ "grad_norm": 0.2535778284072876,
2414
+ "learning_rate": 5.6399820798887266e-06,
2415
+ "loss": 0.2204,
2416
+ "step": 337
2417
+ },
2418
+ {
2419
+ "epoch": 1.9926144756277697,
2420
+ "grad_norm": 0.2699243128299713,
2421
+ "learning_rate": 5.580805307869549e-06,
2422
+ "loss": 0.2158,
2423
+ "step": 338
2424
+ }
2425
+ ],
2426
+ "logging_steps": 1,
2427
+ "max_steps": 507,
2428
+ "num_input_tokens_seen": 0,
2429
+ "num_train_epochs": 3,
2430
+ "save_steps": 169,
2431
+ "stateful_callbacks": {
2432
+ "TrainerControl": {
2433
+ "args": {
2434
+ "should_epoch_stop": false,
2435
+ "should_evaluate": false,
2436
+ "should_log": false,
2437
+ "should_save": true,
2438
+ "should_training_stop": false
2439
+ },
2440
+ "attributes": {}
2441
+ }
2442
+ },
2443
+ "total_flos": 5.797158580880671e+17,
2444
+ "train_batch_size": 8,
2445
+ "trial_name": null,
2446
+ "trial_params": null
2447
+ }
3b-mb_qwen/checkpoint-338/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d657c9786dc6c8c08c64e914a96a01397e0a80c1d965337767408bc8f80e5cf
3
+ size 10744
3b-mb_qwen/checkpoint-338/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
3b-mb_qwen/checkpoint-338/zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
3b-mb_qwen/checkpoint-488/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
3b-mb_qwen/checkpoint-488/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-3B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "eos_token_id": 151645,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 2048,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_position_embeddings": 32768,
13
+ "max_window_layers": 70,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 16,
16
+ "num_hidden_layers": 36,
17
+ "num_key_value_heads": 2,
18
+ "rms_norm_eps": 1e-06,
19
+ "rope_scaling": null,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": true,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.48.1",
25
+ "use_cache": false,
26
+ "use_sliding_window": false,
27
+ "vocab_size": 151665
28
+ }
3b-mb_qwen/checkpoint-488/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.48.1"
14
+ }
3b-mb_qwen/checkpoint-488/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step488
3b-mb_qwen/checkpoint-488/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
3b-mb_qwen/checkpoint-488/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b83e248771da77240f443146ced8bcec08670e1b062eafb60d717aad9c60d9d8
3
+ size 4956450288
3b-mb_qwen/checkpoint-488/model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cff6cf812ec94cd8ce4d0f6391ebeb2b6ba5f3610b37009cb666fa27b6651784
3
+ size 1835586736
3b-mb_qwen/checkpoint-488/model.safetensors.index.json ADDED
@@ -0,0 +1,442 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 6791987200
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
368
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
369
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
370
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
371
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
372
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
373
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
374
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
376
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
377
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
378
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
379
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
380
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
382
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
384
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
385
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
386
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
387
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
388
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
389
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
390
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
391
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
394
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
395
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
396
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
397
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
398
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
399
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
400
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
401
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
402
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
403
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
404
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
405
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
406
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
407
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
408
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
409
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
410
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
411
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
412
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
413
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
414
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
415
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
416
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
417
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
418
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
419
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
420
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
421
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
422
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
423
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
424
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
425
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
426
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
427
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
428
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
429
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
430
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
431
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
432
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
433
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
434
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
435
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
436
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
437
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
438
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
439
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
440
+ "model.norm.weight": "model-00002-of-00002.safetensors"
441
+ }
442
+ }
3b-mb_qwen/checkpoint-488/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3dcb161b22b2558dbf7e3f8c871050cec383d11a40423fab11f18d5e630639bf
3
+ size 14512
3b-mb_qwen/checkpoint-488/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d50af6aef769414a6f28fa1b1bc51ce707dc8ecd15474e03f99a2f10fde086be
3
+ size 14512
3b-mb_qwen/checkpoint-488/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d8b2a59c30f5e09b1d7ce944fea889fdfc7000e147a68a8ad08ea9263213eb2
3
+ size 1064
3b-mb_qwen/checkpoint-488/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
3b-mb_qwen/checkpoint-488/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
3b-mb_qwen/checkpoint-488/tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
3b-mb_qwen/checkpoint-488/trainer_state.json ADDED
@@ -0,0 +1,3497 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.996935648621042,
5
+ "eval_steps": 82,
6
+ "global_step": 488,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0040858018386108275,
13
+ "grad_norm": 4.078765869140625,
14
+ "learning_rate": 6.666666666666667e-07,
15
+ "loss": 1.1276,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0040858018386108275,
20
+ "eval_loss": 1.1255302429199219,
21
+ "eval_runtime": 5.3213,
22
+ "eval_samples_per_second": 14.846,
23
+ "eval_steps_per_second": 1.879,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.008171603677221655,
28
+ "grad_norm": 4.422896385192871,
29
+ "learning_rate": 1.3333333333333334e-06,
30
+ "loss": 1.1678,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.012257405515832482,
35
+ "grad_norm": 4.083443641662598,
36
+ "learning_rate": 2.0000000000000003e-06,
37
+ "loss": 1.0831,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.01634320735444331,
42
+ "grad_norm": 4.063514709472656,
43
+ "learning_rate": 2.666666666666667e-06,
44
+ "loss": 1.0868,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.020429009193054137,
49
+ "grad_norm": 3.104428291320801,
50
+ "learning_rate": 3.3333333333333333e-06,
51
+ "loss": 1.0167,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.024514811031664963,
56
+ "grad_norm": 3.144237756729126,
57
+ "learning_rate": 4.000000000000001e-06,
58
+ "loss": 1.1182,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.028600612870275793,
63
+ "grad_norm": 1.837905764579773,
64
+ "learning_rate": 4.666666666666667e-06,
65
+ "loss": 0.8753,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.03268641470888662,
70
+ "grad_norm": 1.8454015254974365,
71
+ "learning_rate": 5.333333333333334e-06,
72
+ "loss": 0.9588,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.03677221654749745,
77
+ "grad_norm": 1.3577122688293457,
78
+ "learning_rate": 6e-06,
79
+ "loss": 0.7677,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.04085801838610827,
84
+ "grad_norm": 1.20220947265625,
85
+ "learning_rate": 6.666666666666667e-06,
86
+ "loss": 0.7597,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.0449438202247191,
91
+ "grad_norm": 0.9984002709388733,
92
+ "learning_rate": 7.333333333333333e-06,
93
+ "loss": 0.7527,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.049029622063329927,
98
+ "grad_norm": 1.228557825088501,
99
+ "learning_rate": 8.000000000000001e-06,
100
+ "loss": 0.7182,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.05311542390194075,
105
+ "grad_norm": 1.1346293687820435,
106
+ "learning_rate": 8.666666666666668e-06,
107
+ "loss": 0.7141,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.05720122574055159,
112
+ "grad_norm": 0.9792781472206116,
113
+ "learning_rate": 9.333333333333334e-06,
114
+ "loss": 0.596,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.06128702757916241,
119
+ "grad_norm": 0.6987927556037903,
120
+ "learning_rate": 1e-05,
121
+ "loss": 0.6034,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.06537282941777324,
126
+ "grad_norm": 0.8394439220428467,
127
+ "learning_rate": 1.0666666666666667e-05,
128
+ "loss": 0.5871,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.06945863125638406,
133
+ "grad_norm": 0.7268638014793396,
134
+ "learning_rate": 1.1333333333333334e-05,
135
+ "loss": 0.5364,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.0735444330949949,
140
+ "grad_norm": 0.6233928203582764,
141
+ "learning_rate": 1.2e-05,
142
+ "loss": 0.5608,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.07763023493360573,
147
+ "grad_norm": 0.5607686042785645,
148
+ "learning_rate": 1.2666666666666667e-05,
149
+ "loss": 0.5334,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.08171603677221655,
154
+ "grad_norm": 0.599319338798523,
155
+ "learning_rate": 1.3333333333333333e-05,
156
+ "loss": 0.512,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.08580183861082738,
161
+ "grad_norm": 0.5736873149871826,
162
+ "learning_rate": 1.4e-05,
163
+ "loss": 0.5177,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.0898876404494382,
168
+ "grad_norm": 0.5210515260696411,
169
+ "learning_rate": 1.4666666666666666e-05,
170
+ "loss": 0.4653,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.09397344228804903,
175
+ "grad_norm": 0.47595059871673584,
176
+ "learning_rate": 1.5333333333333334e-05,
177
+ "loss": 0.4719,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.09805924412665985,
182
+ "grad_norm": 0.5215305685997009,
183
+ "learning_rate": 1.6000000000000003e-05,
184
+ "loss": 0.4388,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.10214504596527069,
189
+ "grad_norm": 0.48963531851768494,
190
+ "learning_rate": 1.6666666666666667e-05,
191
+ "loss": 0.4377,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.1062308478038815,
196
+ "grad_norm": 0.48373010754585266,
197
+ "learning_rate": 1.7333333333333336e-05,
198
+ "loss": 0.4269,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.11031664964249234,
203
+ "grad_norm": 0.47493812441825867,
204
+ "learning_rate": 1.8e-05,
205
+ "loss": 0.4871,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.11440245148110317,
210
+ "grad_norm": 0.47279101610183716,
211
+ "learning_rate": 1.866666666666667e-05,
212
+ "loss": 0.4321,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.118488253319714,
217
+ "grad_norm": 0.45037031173706055,
218
+ "learning_rate": 1.9333333333333333e-05,
219
+ "loss": 0.4572,
220
+ "step": 29
221
+ },
222
+ {
223
+ "epoch": 0.12257405515832483,
224
+ "grad_norm": 0.3955671787261963,
225
+ "learning_rate": 2e-05,
226
+ "loss": 0.4001,
227
+ "step": 30
228
+ },
229
+ {
230
+ "epoch": 0.12665985699693566,
231
+ "grad_norm": 0.4108459949493408,
232
+ "learning_rate": 1.999989986294826e-05,
233
+ "loss": 0.4116,
234
+ "step": 31
235
+ },
236
+ {
237
+ "epoch": 0.13074565883554648,
238
+ "grad_norm": 0.4507107436656952,
239
+ "learning_rate": 1.9999599453798523e-05,
240
+ "loss": 0.4379,
241
+ "step": 32
242
+ },
243
+ {
244
+ "epoch": 0.1348314606741573,
245
+ "grad_norm": 0.4269455671310425,
246
+ "learning_rate": 1.999909877856721e-05,
247
+ "loss": 0.3826,
248
+ "step": 33
249
+ },
250
+ {
251
+ "epoch": 0.13891726251276812,
252
+ "grad_norm": 0.4127860963344574,
253
+ "learning_rate": 1.9998397847281548e-05,
254
+ "loss": 0.4081,
255
+ "step": 34
256
+ },
257
+ {
258
+ "epoch": 0.14300306435137897,
259
+ "grad_norm": 0.4478752613067627,
260
+ "learning_rate": 1.9997496673979375e-05,
261
+ "loss": 0.4071,
262
+ "step": 35
263
+ },
264
+ {
265
+ "epoch": 0.1470888661899898,
266
+ "grad_norm": 0.39848199486732483,
267
+ "learning_rate": 1.9996395276708856e-05,
268
+ "loss": 0.3752,
269
+ "step": 36
270
+ },
271
+ {
272
+ "epoch": 0.1511746680286006,
273
+ "grad_norm": 0.3737429678440094,
274
+ "learning_rate": 1.999509367752813e-05,
275
+ "loss": 0.389,
276
+ "step": 37
277
+ },
278
+ {
279
+ "epoch": 0.15526046986721145,
280
+ "grad_norm": 0.43358317017555237,
281
+ "learning_rate": 1.9993591902504854e-05,
282
+ "loss": 0.3933,
283
+ "step": 38
284
+ },
285
+ {
286
+ "epoch": 0.15934627170582227,
287
+ "grad_norm": 0.4123345613479614,
288
+ "learning_rate": 1.9991889981715696e-05,
289
+ "loss": 0.3905,
290
+ "step": 39
291
+ },
292
+ {
293
+ "epoch": 0.1634320735444331,
294
+ "grad_norm": 0.4238924980163574,
295
+ "learning_rate": 1.9989987949245725e-05,
296
+ "loss": 0.408,
297
+ "step": 40
298
+ },
299
+ {
300
+ "epoch": 0.1675178753830439,
301
+ "grad_norm": 0.4302418828010559,
302
+ "learning_rate": 1.9987885843187717e-05,
303
+ "loss": 0.4099,
304
+ "step": 41
305
+ },
306
+ {
307
+ "epoch": 0.17160367722165476,
308
+ "grad_norm": 0.40162044763565063,
309
+ "learning_rate": 1.9985583705641418e-05,
310
+ "loss": 0.3784,
311
+ "step": 42
312
+ },
313
+ {
314
+ "epoch": 0.17568947906026558,
315
+ "grad_norm": 0.3754842281341553,
316
+ "learning_rate": 1.9983081582712684e-05,
317
+ "loss": 0.3389,
318
+ "step": 43
319
+ },
320
+ {
321
+ "epoch": 0.1797752808988764,
322
+ "grad_norm": 0.37256139516830444,
323
+ "learning_rate": 1.998037952451255e-05,
324
+ "loss": 0.3869,
325
+ "step": 44
326
+ },
327
+ {
328
+ "epoch": 0.18386108273748722,
329
+ "grad_norm": 0.4196374714374542,
330
+ "learning_rate": 1.9977477585156252e-05,
331
+ "loss": 0.3892,
332
+ "step": 45
333
+ },
334
+ {
335
+ "epoch": 0.18794688457609807,
336
+ "grad_norm": 0.4057196378707886,
337
+ "learning_rate": 1.9974375822762117e-05,
338
+ "loss": 0.3932,
339
+ "step": 46
340
+ },
341
+ {
342
+ "epoch": 0.1920326864147089,
343
+ "grad_norm": 0.3770217001438141,
344
+ "learning_rate": 1.9971074299450414e-05,
345
+ "loss": 0.3953,
346
+ "step": 47
347
+ },
348
+ {
349
+ "epoch": 0.1961184882533197,
350
+ "grad_norm": 0.3990303575992584,
351
+ "learning_rate": 1.9967573081342103e-05,
352
+ "loss": 0.389,
353
+ "step": 48
354
+ },
355
+ {
356
+ "epoch": 0.20020429009193055,
357
+ "grad_norm": 0.39290961623191833,
358
+ "learning_rate": 1.9963872238557516e-05,
359
+ "loss": 0.3719,
360
+ "step": 49
361
+ },
362
+ {
363
+ "epoch": 0.20429009193054137,
364
+ "grad_norm": 0.3699814975261688,
365
+ "learning_rate": 1.9959971845214953e-05,
366
+ "loss": 0.3672,
367
+ "step": 50
368
+ },
369
+ {
370
+ "epoch": 0.2083758937691522,
371
+ "grad_norm": 0.3796740472316742,
372
+ "learning_rate": 1.9955871979429188e-05,
373
+ "loss": 0.3748,
374
+ "step": 51
375
+ },
376
+ {
377
+ "epoch": 0.212461695607763,
378
+ "grad_norm": 0.38025254011154175,
379
+ "learning_rate": 1.9951572723309918e-05,
380
+ "loss": 0.3726,
381
+ "step": 52
382
+ },
383
+ {
384
+ "epoch": 0.21654749744637386,
385
+ "grad_norm": 0.3801882863044739,
386
+ "learning_rate": 1.9947074162960113e-05,
387
+ "loss": 0.3937,
388
+ "step": 53
389
+ },
390
+ {
391
+ "epoch": 0.22063329928498468,
392
+ "grad_norm": 0.4046827554702759,
393
+ "learning_rate": 1.9942376388474282e-05,
394
+ "loss": 0.3692,
395
+ "step": 54
396
+ },
397
+ {
398
+ "epoch": 0.2247191011235955,
399
+ "grad_norm": 0.4178898334503174,
400
+ "learning_rate": 1.993747949393668e-05,
401
+ "loss": 0.3929,
402
+ "step": 55
403
+ },
404
+ {
405
+ "epoch": 0.22880490296220635,
406
+ "grad_norm": 0.4095941483974457,
407
+ "learning_rate": 1.9932383577419432e-05,
408
+ "loss": 0.3754,
409
+ "step": 56
410
+ },
411
+ {
412
+ "epoch": 0.23289070480081717,
413
+ "grad_norm": 0.42728450894355774,
414
+ "learning_rate": 1.992708874098054e-05,
415
+ "loss": 0.3653,
416
+ "step": 57
417
+ },
418
+ {
419
+ "epoch": 0.236976506639428,
420
+ "grad_norm": 0.4169493019580841,
421
+ "learning_rate": 1.9921595090661872e-05,
422
+ "loss": 0.3544,
423
+ "step": 58
424
+ },
425
+ {
426
+ "epoch": 0.2410623084780388,
427
+ "grad_norm": 0.4049960970878601,
428
+ "learning_rate": 1.991590273648702e-05,
429
+ "loss": 0.3574,
430
+ "step": 59
431
+ },
432
+ {
433
+ "epoch": 0.24514811031664965,
434
+ "grad_norm": 0.4269113540649414,
435
+ "learning_rate": 1.9910011792459086e-05,
436
+ "loss": 0.3675,
437
+ "step": 60
438
+ },
439
+ {
440
+ "epoch": 0.24923391215526047,
441
+ "grad_norm": 0.3787218928337097,
442
+ "learning_rate": 1.9903922376558432e-05,
443
+ "loss": 0.3559,
444
+ "step": 61
445
+ },
446
+ {
447
+ "epoch": 0.2533197139938713,
448
+ "grad_norm": 0.3840825855731964,
449
+ "learning_rate": 1.989763461074029e-05,
450
+ "loss": 0.3706,
451
+ "step": 62
452
+ },
453
+ {
454
+ "epoch": 0.2574055158324821,
455
+ "grad_norm": 0.44640985131263733,
456
+ "learning_rate": 1.989114862093232e-05,
457
+ "loss": 0.372,
458
+ "step": 63
459
+ },
460
+ {
461
+ "epoch": 0.26149131767109296,
462
+ "grad_norm": 0.3927050530910492,
463
+ "learning_rate": 1.9884464537032103e-05,
464
+ "loss": 0.3542,
465
+ "step": 64
466
+ },
467
+ {
468
+ "epoch": 0.26557711950970375,
469
+ "grad_norm": 0.40718400478363037,
470
+ "learning_rate": 1.9877582492904533e-05,
471
+ "loss": 0.3588,
472
+ "step": 65
473
+ },
474
+ {
475
+ "epoch": 0.2696629213483146,
476
+ "grad_norm": 0.3699505031108856,
477
+ "learning_rate": 1.9870502626379127e-05,
478
+ "loss": 0.3455,
479
+ "step": 66
480
+ },
481
+ {
482
+ "epoch": 0.27374872318692545,
483
+ "grad_norm": 0.3665759265422821,
484
+ "learning_rate": 1.9863225079247286e-05,
485
+ "loss": 0.3229,
486
+ "step": 67
487
+ },
488
+ {
489
+ "epoch": 0.27783452502553624,
490
+ "grad_norm": 0.43499717116355896,
491
+ "learning_rate": 1.985574999725943e-05,
492
+ "loss": 0.3687,
493
+ "step": 68
494
+ },
495
+ {
496
+ "epoch": 0.2819203268641471,
497
+ "grad_norm": 0.3771592080593109,
498
+ "learning_rate": 1.9848077530122083e-05,
499
+ "loss": 0.3586,
500
+ "step": 69
501
+ },
502
+ {
503
+ "epoch": 0.28600612870275793,
504
+ "grad_norm": 0.3490198850631714,
505
+ "learning_rate": 1.9840207831494903e-05,
506
+ "loss": 0.3124,
507
+ "step": 70
508
+ },
509
+ {
510
+ "epoch": 0.2900919305413687,
511
+ "grad_norm": 0.4739793837070465,
512
+ "learning_rate": 1.983214105898757e-05,
513
+ "loss": 0.3464,
514
+ "step": 71
515
+ },
516
+ {
517
+ "epoch": 0.2941777323799796,
518
+ "grad_norm": 0.4140881896018982,
519
+ "learning_rate": 1.9823877374156647e-05,
520
+ "loss": 0.3341,
521
+ "step": 72
522
+ },
523
+ {
524
+ "epoch": 0.2982635342185904,
525
+ "grad_norm": 0.40869495272636414,
526
+ "learning_rate": 1.9815416942502346e-05,
527
+ "loss": 0.3294,
528
+ "step": 73
529
+ },
530
+ {
531
+ "epoch": 0.3023493360572012,
532
+ "grad_norm": 0.44560012221336365,
533
+ "learning_rate": 1.98067599334652e-05,
534
+ "loss": 0.4026,
535
+ "step": 74
536
+ },
537
+ {
538
+ "epoch": 0.30643513789581206,
539
+ "grad_norm": 0.4086117744445801,
540
+ "learning_rate": 1.979790652042268e-05,
541
+ "loss": 0.3767,
542
+ "step": 75
543
+ },
544
+ {
545
+ "epoch": 0.3105209397344229,
546
+ "grad_norm": 0.4267195761203766,
547
+ "learning_rate": 1.978885688068572e-05,
548
+ "loss": 0.339,
549
+ "step": 76
550
+ },
551
+ {
552
+ "epoch": 0.3146067415730337,
553
+ "grad_norm": 0.3377031087875366,
554
+ "learning_rate": 1.9779611195495177e-05,
555
+ "loss": 0.3315,
556
+ "step": 77
557
+ },
558
+ {
559
+ "epoch": 0.31869254341164455,
560
+ "grad_norm": 0.4165203273296356,
561
+ "learning_rate": 1.977016965001817e-05,
562
+ "loss": 0.3607,
563
+ "step": 78
564
+ },
565
+ {
566
+ "epoch": 0.32277834525025534,
567
+ "grad_norm": 0.4003439247608185,
568
+ "learning_rate": 1.976053243334442e-05,
569
+ "loss": 0.3519,
570
+ "step": 79
571
+ },
572
+ {
573
+ "epoch": 0.3268641470888662,
574
+ "grad_norm": 0.39171072840690613,
575
+ "learning_rate": 1.9750699738482403e-05,
576
+ "loss": 0.3471,
577
+ "step": 80
578
+ },
579
+ {
580
+ "epoch": 0.33094994892747703,
581
+ "grad_norm": 0.3989802598953247,
582
+ "learning_rate": 1.9740671762355548e-05,
583
+ "loss": 0.3671,
584
+ "step": 81
585
+ },
586
+ {
587
+ "epoch": 0.3350357507660878,
588
+ "grad_norm": 0.4387929141521454,
589
+ "learning_rate": 1.973044870579824e-05,
590
+ "loss": 0.3639,
591
+ "step": 82
592
+ },
593
+ {
594
+ "epoch": 0.3350357507660878,
595
+ "eval_loss": 0.34231218695640564,
596
+ "eval_runtime": 5.7708,
597
+ "eval_samples_per_second": 13.69,
598
+ "eval_steps_per_second": 1.733,
599
+ "step": 82
600
+ },
601
+ {
602
+ "epoch": 0.3391215526046987,
603
+ "grad_norm": 0.40271735191345215,
604
+ "learning_rate": 1.972003077355183e-05,
605
+ "loss": 0.3691,
606
+ "step": 83
607
+ },
608
+ {
609
+ "epoch": 0.3432073544433095,
610
+ "grad_norm": 0.3957328200340271,
611
+ "learning_rate": 1.9709418174260523e-05,
612
+ "loss": 0.3601,
613
+ "step": 84
614
+ },
615
+ {
616
+ "epoch": 0.3472931562819203,
617
+ "grad_norm": 0.36126795411109924,
618
+ "learning_rate": 1.9698611120467196e-05,
619
+ "loss": 0.3355,
620
+ "step": 85
621
+ },
622
+ {
623
+ "epoch": 0.35137895812053116,
624
+ "grad_norm": 0.4093964695930481,
625
+ "learning_rate": 1.9687609828609156e-05,
626
+ "loss": 0.3341,
627
+ "step": 86
628
+ },
629
+ {
630
+ "epoch": 0.355464759959142,
631
+ "grad_norm": 0.38025736808776855,
632
+ "learning_rate": 1.9676414519013782e-05,
633
+ "loss": 0.3636,
634
+ "step": 87
635
+ },
636
+ {
637
+ "epoch": 0.3595505617977528,
638
+ "grad_norm": 0.44078460335731506,
639
+ "learning_rate": 1.966502541589414e-05,
640
+ "loss": 0.317,
641
+ "step": 88
642
+ },
643
+ {
644
+ "epoch": 0.36363636363636365,
645
+ "grad_norm": 0.352769136428833,
646
+ "learning_rate": 1.965344274734447e-05,
647
+ "loss": 0.3545,
648
+ "step": 89
649
+ },
650
+ {
651
+ "epoch": 0.36772216547497444,
652
+ "grad_norm": 0.3688812255859375,
653
+ "learning_rate": 1.9641666745335626e-05,
654
+ "loss": 0.3249,
655
+ "step": 90
656
+ },
657
+ {
658
+ "epoch": 0.3718079673135853,
659
+ "grad_norm": 0.40612637996673584,
660
+ "learning_rate": 1.9629697645710432e-05,
661
+ "loss": 0.3352,
662
+ "step": 91
663
+ },
664
+ {
665
+ "epoch": 0.37589376915219613,
666
+ "grad_norm": 0.35389018058776855,
667
+ "learning_rate": 1.961753568817896e-05,
668
+ "loss": 0.3203,
669
+ "step": 92
670
+ },
671
+ {
672
+ "epoch": 0.3799795709908069,
673
+ "grad_norm": 0.38835206627845764,
674
+ "learning_rate": 1.9605181116313725e-05,
675
+ "loss": 0.3248,
676
+ "step": 93
677
+ },
678
+ {
679
+ "epoch": 0.3840653728294178,
680
+ "grad_norm": 0.38264191150665283,
681
+ "learning_rate": 1.9592634177544803e-05,
682
+ "loss": 0.3468,
683
+ "step": 94
684
+ },
685
+ {
686
+ "epoch": 0.3881511746680286,
687
+ "grad_norm": 0.37082910537719727,
688
+ "learning_rate": 1.957989512315489e-05,
689
+ "loss": 0.3602,
690
+ "step": 95
691
+ },
692
+ {
693
+ "epoch": 0.3922369765066394,
694
+ "grad_norm": 0.35148903727531433,
695
+ "learning_rate": 1.9566964208274254e-05,
696
+ "loss": 0.3505,
697
+ "step": 96
698
+ },
699
+ {
700
+ "epoch": 0.39632277834525026,
701
+ "grad_norm": 0.350971519947052,
702
+ "learning_rate": 1.9553841691875632e-05,
703
+ "loss": 0.3208,
704
+ "step": 97
705
+ },
706
+ {
707
+ "epoch": 0.4004085801838611,
708
+ "grad_norm": 0.36287498474121094,
709
+ "learning_rate": 1.9540527836769047e-05,
710
+ "loss": 0.3451,
711
+ "step": 98
712
+ },
713
+ {
714
+ "epoch": 0.4044943820224719,
715
+ "grad_norm": 0.4268699288368225,
716
+ "learning_rate": 1.9527022909596537e-05,
717
+ "loss": 0.3623,
718
+ "step": 99
719
+ },
720
+ {
721
+ "epoch": 0.40858018386108275,
722
+ "grad_norm": 0.3622118830680847,
723
+ "learning_rate": 1.951332718082682e-05,
724
+ "loss": 0.3219,
725
+ "step": 100
726
+ },
727
+ {
728
+ "epoch": 0.41266598569969354,
729
+ "grad_norm": 0.3629276752471924,
730
+ "learning_rate": 1.9499440924749878e-05,
731
+ "loss": 0.3565,
732
+ "step": 101
733
+ },
734
+ {
735
+ "epoch": 0.4167517875383044,
736
+ "grad_norm": 0.3923068940639496,
737
+ "learning_rate": 1.9485364419471454e-05,
738
+ "loss": 0.358,
739
+ "step": 102
740
+ },
741
+ {
742
+ "epoch": 0.42083758937691523,
743
+ "grad_norm": 0.378465861082077,
744
+ "learning_rate": 1.9471097946907506e-05,
745
+ "loss": 0.3443,
746
+ "step": 103
747
+ },
748
+ {
749
+ "epoch": 0.424923391215526,
750
+ "grad_norm": 0.41037172079086304,
751
+ "learning_rate": 1.9456641792778527e-05,
752
+ "loss": 0.3531,
753
+ "step": 104
754
+ },
755
+ {
756
+ "epoch": 0.4290091930541369,
757
+ "grad_norm": 0.38496220111846924,
758
+ "learning_rate": 1.9441996246603848e-05,
759
+ "loss": 0.3305,
760
+ "step": 105
761
+ },
762
+ {
763
+ "epoch": 0.4330949948927477,
764
+ "grad_norm": 0.37626922130584717,
765
+ "learning_rate": 1.9427161601695833e-05,
766
+ "loss": 0.3556,
767
+ "step": 106
768
+ },
769
+ {
770
+ "epoch": 0.4371807967313585,
771
+ "grad_norm": 0.3895152509212494,
772
+ "learning_rate": 1.9412138155154e-05,
773
+ "loss": 0.3363,
774
+ "step": 107
775
+ },
776
+ {
777
+ "epoch": 0.44126659856996936,
778
+ "grad_norm": 0.3873409032821655,
779
+ "learning_rate": 1.9396926207859085e-05,
780
+ "loss": 0.3322,
781
+ "step": 108
782
+ },
783
+ {
784
+ "epoch": 0.4453524004085802,
785
+ "grad_norm": 0.3699762225151062,
786
+ "learning_rate": 1.9381526064466995e-05,
787
+ "loss": 0.3482,
788
+ "step": 109
789
+ },
790
+ {
791
+ "epoch": 0.449438202247191,
792
+ "grad_norm": 0.3172101080417633,
793
+ "learning_rate": 1.9365938033402715e-05,
794
+ "loss": 0.3266,
795
+ "step": 110
796
+ },
797
+ {
798
+ "epoch": 0.45352400408580185,
799
+ "grad_norm": 0.414472371339798,
800
+ "learning_rate": 1.9350162426854152e-05,
801
+ "loss": 0.3372,
802
+ "step": 111
803
+ },
804
+ {
805
+ "epoch": 0.4576098059244127,
806
+ "grad_norm": 0.3786821663379669,
807
+ "learning_rate": 1.933419956076584e-05,
808
+ "loss": 0.3311,
809
+ "step": 112
810
+ },
811
+ {
812
+ "epoch": 0.4616956077630235,
813
+ "grad_norm": 0.3550058603286743,
814
+ "learning_rate": 1.9318049754832656e-05,
815
+ "loss": 0.3263,
816
+ "step": 113
817
+ },
818
+ {
819
+ "epoch": 0.46578140960163433,
820
+ "grad_norm": 0.3771400451660156,
821
+ "learning_rate": 1.9301713332493386e-05,
822
+ "loss": 0.3468,
823
+ "step": 114
824
+ },
825
+ {
826
+ "epoch": 0.4698672114402451,
827
+ "grad_norm": 0.3498581349849701,
828
+ "learning_rate": 1.9285190620924267e-05,
829
+ "loss": 0.3035,
830
+ "step": 115
831
+ },
832
+ {
833
+ "epoch": 0.473953013278856,
834
+ "grad_norm": 0.37467050552368164,
835
+ "learning_rate": 1.926848195103242e-05,
836
+ "loss": 0.3208,
837
+ "step": 116
838
+ },
839
+ {
840
+ "epoch": 0.4780388151174668,
841
+ "grad_norm": 0.37225377559661865,
842
+ "learning_rate": 1.925158765744924e-05,
843
+ "loss": 0.3073,
844
+ "step": 117
845
+ },
846
+ {
847
+ "epoch": 0.4821246169560776,
848
+ "grad_norm": 0.3326958119869232,
849
+ "learning_rate": 1.923450807852367e-05,
850
+ "loss": 0.3148,
851
+ "step": 118
852
+ },
853
+ {
854
+ "epoch": 0.48621041879468846,
855
+ "grad_norm": 0.3672332465648651,
856
+ "learning_rate": 1.9217243556315445e-05,
857
+ "loss": 0.3391,
858
+ "step": 119
859
+ },
860
+ {
861
+ "epoch": 0.4902962206332993,
862
+ "grad_norm": 0.3444240093231201,
863
+ "learning_rate": 1.9199794436588244e-05,
864
+ "loss": 0.3113,
865
+ "step": 120
866
+ },
867
+ {
868
+ "epoch": 0.4943820224719101,
869
+ "grad_norm": 0.3641497790813446,
870
+ "learning_rate": 1.9182161068802742e-05,
871
+ "loss": 0.3358,
872
+ "step": 121
873
+ },
874
+ {
875
+ "epoch": 0.49846782431052095,
876
+ "grad_norm": 0.40089380741119385,
877
+ "learning_rate": 1.916434380610963e-05,
878
+ "loss": 0.3312,
879
+ "step": 122
880
+ },
881
+ {
882
+ "epoch": 0.5025536261491318,
883
+ "grad_norm": 0.38641074299812317,
884
+ "learning_rate": 1.9146343005342546e-05,
885
+ "loss": 0.3322,
886
+ "step": 123
887
+ },
888
+ {
889
+ "epoch": 0.5066394279877426,
890
+ "grad_norm": 0.34743842482566833,
891
+ "learning_rate": 1.912815902701091e-05,
892
+ "loss": 0.3061,
893
+ "step": 124
894
+ },
895
+ {
896
+ "epoch": 0.5107252298263534,
897
+ "grad_norm": 0.3766823410987854,
898
+ "learning_rate": 1.9109792235292715e-05,
899
+ "loss": 0.3364,
900
+ "step": 125
901
+ },
902
+ {
903
+ "epoch": 0.5148110316649642,
904
+ "grad_norm": 0.33645695447921753,
905
+ "learning_rate": 1.909124299802724e-05,
906
+ "loss": 0.3307,
907
+ "step": 126
908
+ },
909
+ {
910
+ "epoch": 0.5188968335035751,
911
+ "grad_norm": 0.3658338189125061,
912
+ "learning_rate": 1.9072511686707663e-05,
913
+ "loss": 0.3223,
914
+ "step": 127
915
+ },
916
+ {
917
+ "epoch": 0.5229826353421859,
918
+ "grad_norm": 0.3340202867984772,
919
+ "learning_rate": 1.9053598676473656e-05,
920
+ "loss": 0.3317,
921
+ "step": 128
922
+ },
923
+ {
924
+ "epoch": 0.5270684371807968,
925
+ "grad_norm": 0.3270389437675476,
926
+ "learning_rate": 1.9034504346103825e-05,
927
+ "loss": 0.3353,
928
+ "step": 129
929
+ },
930
+ {
931
+ "epoch": 0.5311542390194075,
932
+ "grad_norm": 0.30215510725975037,
933
+ "learning_rate": 1.9015229078008163e-05,
934
+ "loss": 0.3023,
935
+ "step": 130
936
+ },
937
+ {
938
+ "epoch": 0.5352400408580184,
939
+ "grad_norm": 0.3734086751937866,
940
+ "learning_rate": 1.8995773258220374e-05,
941
+ "loss": 0.3189,
942
+ "step": 131
943
+ },
944
+ {
945
+ "epoch": 0.5393258426966292,
946
+ "grad_norm": 0.3713105320930481,
947
+ "learning_rate": 1.8976137276390145e-05,
948
+ "loss": 0.2995,
949
+ "step": 132
950
+ },
951
+ {
952
+ "epoch": 0.54341164453524,
953
+ "grad_norm": 0.3478635847568512,
954
+ "learning_rate": 1.8956321525775337e-05,
955
+ "loss": 0.3249,
956
+ "step": 133
957
+ },
958
+ {
959
+ "epoch": 0.5474974463738509,
960
+ "grad_norm": 0.3437729775905609,
961
+ "learning_rate": 1.8936326403234125e-05,
962
+ "loss": 0.3306,
963
+ "step": 134
964
+ },
965
+ {
966
+ "epoch": 0.5515832482124617,
967
+ "grad_norm": 0.3874213397502899,
968
+ "learning_rate": 1.891615230921703e-05,
969
+ "loss": 0.3558,
970
+ "step": 135
971
+ },
972
+ {
973
+ "epoch": 0.5556690500510725,
974
+ "grad_norm": 0.7216417193412781,
975
+ "learning_rate": 1.8895799647758912e-05,
976
+ "loss": 0.3127,
977
+ "step": 136
978
+ },
979
+ {
980
+ "epoch": 0.5597548518896833,
981
+ "grad_norm": 0.3799072504043579,
982
+ "learning_rate": 1.8875268826470875e-05,
983
+ "loss": 0.3319,
984
+ "step": 137
985
+ },
986
+ {
987
+ "epoch": 0.5638406537282942,
988
+ "grad_norm": 0.36491042375564575,
989
+ "learning_rate": 1.8854560256532098e-05,
990
+ "loss": 0.3296,
991
+ "step": 138
992
+ },
993
+ {
994
+ "epoch": 0.567926455566905,
995
+ "grad_norm": 0.3649715483188629,
996
+ "learning_rate": 1.8833674352681613e-05,
997
+ "loss": 0.3145,
998
+ "step": 139
999
+ },
1000
+ {
1001
+ "epoch": 0.5720122574055159,
1002
+ "grad_norm": 0.37904301285743713,
1003
+ "learning_rate": 1.881261153320999e-05,
1004
+ "loss": 0.341,
1005
+ "step": 140
1006
+ },
1007
+ {
1008
+ "epoch": 0.5760980592441267,
1009
+ "grad_norm": 0.3647158145904541,
1010
+ "learning_rate": 1.879137221995095e-05,
1011
+ "loss": 0.3412,
1012
+ "step": 141
1013
+ },
1014
+ {
1015
+ "epoch": 0.5801838610827375,
1016
+ "grad_norm": 0.397286593914032,
1017
+ "learning_rate": 1.8769956838272937e-05,
1018
+ "loss": 0.3156,
1019
+ "step": 142
1020
+ },
1021
+ {
1022
+ "epoch": 0.5842696629213483,
1023
+ "grad_norm": 0.3785179853439331,
1024
+ "learning_rate": 1.8748365817070586e-05,
1025
+ "loss": 0.3037,
1026
+ "step": 143
1027
+ },
1028
+ {
1029
+ "epoch": 0.5883554647599591,
1030
+ "grad_norm": 0.40976065397262573,
1031
+ "learning_rate": 1.8726599588756144e-05,
1032
+ "loss": 0.3194,
1033
+ "step": 144
1034
+ },
1035
+ {
1036
+ "epoch": 0.59244126659857,
1037
+ "grad_norm": 0.39624109864234924,
1038
+ "learning_rate": 1.8704658589250795e-05,
1039
+ "loss": 0.3442,
1040
+ "step": 145
1041
+ },
1042
+ {
1043
+ "epoch": 0.5965270684371808,
1044
+ "grad_norm": 0.3463563919067383,
1045
+ "learning_rate": 1.868254325797594e-05,
1046
+ "loss": 0.3178,
1047
+ "step": 146
1048
+ },
1049
+ {
1050
+ "epoch": 0.6006128702757916,
1051
+ "grad_norm": 0.4022400677204132,
1052
+ "learning_rate": 1.866025403784439e-05,
1053
+ "loss": 0.3175,
1054
+ "step": 147
1055
+ },
1056
+ {
1057
+ "epoch": 0.6046986721144024,
1058
+ "grad_norm": 0.39606690406799316,
1059
+ "learning_rate": 1.8637791375251505e-05,
1060
+ "loss": 0.314,
1061
+ "step": 148
1062
+ },
1063
+ {
1064
+ "epoch": 0.6087844739530133,
1065
+ "grad_norm": 0.3561919331550598,
1066
+ "learning_rate": 1.8615155720066247e-05,
1067
+ "loss": 0.3324,
1068
+ "step": 149
1069
+ },
1070
+ {
1071
+ "epoch": 0.6128702757916241,
1072
+ "grad_norm": 0.39145007729530334,
1073
+ "learning_rate": 1.859234752562217e-05,
1074
+ "loss": 0.3408,
1075
+ "step": 150
1076
+ },
1077
+ {
1078
+ "epoch": 0.616956077630235,
1079
+ "grad_norm": 0.34467753767967224,
1080
+ "learning_rate": 1.8569367248708343e-05,
1081
+ "loss": 0.3181,
1082
+ "step": 151
1083
+ },
1084
+ {
1085
+ "epoch": 0.6210418794688458,
1086
+ "grad_norm": 0.326642781496048,
1087
+ "learning_rate": 1.8546215349560204e-05,
1088
+ "loss": 0.3352,
1089
+ "step": 152
1090
+ },
1091
+ {
1092
+ "epoch": 0.6251276813074566,
1093
+ "grad_norm": 0.3399414122104645,
1094
+ "learning_rate": 1.8522892291850335e-05,
1095
+ "loss": 0.324,
1096
+ "step": 153
1097
+ },
1098
+ {
1099
+ "epoch": 0.6292134831460674,
1100
+ "grad_norm": 0.37066522240638733,
1101
+ "learning_rate": 1.849939854267919e-05,
1102
+ "loss": 0.3463,
1103
+ "step": 154
1104
+ },
1105
+ {
1106
+ "epoch": 0.6332992849846782,
1107
+ "grad_norm": 0.34315940737724304,
1108
+ "learning_rate": 1.847573457256571e-05,
1109
+ "loss": 0.3385,
1110
+ "step": 155
1111
+ },
1112
+ {
1113
+ "epoch": 0.6373850868232891,
1114
+ "grad_norm": 0.3131471574306488,
1115
+ "learning_rate": 1.845190085543795e-05,
1116
+ "loss": 0.3068,
1117
+ "step": 156
1118
+ },
1119
+ {
1120
+ "epoch": 0.6414708886618999,
1121
+ "grad_norm": 0.31940385699272156,
1122
+ "learning_rate": 1.8427897868623535e-05,
1123
+ "loss": 0.3227,
1124
+ "step": 157
1125
+ },
1126
+ {
1127
+ "epoch": 0.6455566905005107,
1128
+ "grad_norm": 0.3455657362937927,
1129
+ "learning_rate": 1.840372609284013e-05,
1130
+ "loss": 0.2897,
1131
+ "step": 158
1132
+ },
1133
+ {
1134
+ "epoch": 0.6496424923391215,
1135
+ "grad_norm": 0.3038015067577362,
1136
+ "learning_rate": 1.8379386012185813e-05,
1137
+ "loss": 0.3217,
1138
+ "step": 159
1139
+ },
1140
+ {
1141
+ "epoch": 0.6537282941777324,
1142
+ "grad_norm": 0.3192991614341736,
1143
+ "learning_rate": 1.8354878114129368e-05,
1144
+ "loss": 0.3274,
1145
+ "step": 160
1146
+ },
1147
+ {
1148
+ "epoch": 0.6578140960163432,
1149
+ "grad_norm": 0.3324792683124542,
1150
+ "learning_rate": 1.8330202889500518e-05,
1151
+ "loss": 0.3077,
1152
+ "step": 161
1153
+ },
1154
+ {
1155
+ "epoch": 0.6618998978549541,
1156
+ "grad_norm": 0.3139905333518982,
1157
+ "learning_rate": 1.8305360832480118e-05,
1158
+ "loss": 0.2977,
1159
+ "step": 162
1160
+ },
1161
+ {
1162
+ "epoch": 0.6659856996935649,
1163
+ "grad_norm": 0.3571060001850128,
1164
+ "learning_rate": 1.8280352440590236e-05,
1165
+ "loss": 0.345,
1166
+ "step": 163
1167
+ },
1168
+ {
1169
+ "epoch": 0.6700715015321757,
1170
+ "grad_norm": 0.47001609206199646,
1171
+ "learning_rate": 1.82551782146842e-05,
1172
+ "loss": 0.303,
1173
+ "step": 164
1174
+ },
1175
+ {
1176
+ "epoch": 0.6700715015321757,
1177
+ "eval_loss": 0.31244462728500366,
1178
+ "eval_runtime": 5.7126,
1179
+ "eval_samples_per_second": 13.829,
1180
+ "eval_steps_per_second": 1.751,
1181
+ "step": 164
1182
+ },
1183
+ {
1184
+ "epoch": 0.6741573033707865,
1185
+ "grad_norm": 0.3575729429721832,
1186
+ "learning_rate": 1.8229838658936566e-05,
1187
+ "loss": 0.3568,
1188
+ "step": 165
1189
+ },
1190
+ {
1191
+ "epoch": 0.6782431052093973,
1192
+ "grad_norm": 0.3167235553264618,
1193
+ "learning_rate": 1.8204334280833005e-05,
1194
+ "loss": 0.2982,
1195
+ "step": 166
1196
+ },
1197
+ {
1198
+ "epoch": 0.6823289070480082,
1199
+ "grad_norm": 0.4739898145198822,
1200
+ "learning_rate": 1.817866559116017e-05,
1201
+ "loss": 0.3613,
1202
+ "step": 167
1203
+ },
1204
+ {
1205
+ "epoch": 0.686414708886619,
1206
+ "grad_norm": 0.35848763585090637,
1207
+ "learning_rate": 1.8152833103995443e-05,
1208
+ "loss": 0.3438,
1209
+ "step": 168
1210
+ },
1211
+ {
1212
+ "epoch": 0.6905005107252298,
1213
+ "grad_norm": 0.3687516450881958,
1214
+ "learning_rate": 1.8126837336696645e-05,
1215
+ "loss": 0.3328,
1216
+ "step": 169
1217
+ },
1218
+ {
1219
+ "epoch": 0.6945863125638406,
1220
+ "grad_norm": 0.35989782214164734,
1221
+ "learning_rate": 1.8100678809891668e-05,
1222
+ "loss": 0.3279,
1223
+ "step": 170
1224
+ },
1225
+ {
1226
+ "epoch": 0.6986721144024515,
1227
+ "grad_norm": 0.3408145606517792,
1228
+ "learning_rate": 1.807435804746807e-05,
1229
+ "loss": 0.3076,
1230
+ "step": 171
1231
+ },
1232
+ {
1233
+ "epoch": 0.7027579162410623,
1234
+ "grad_norm": 0.3220236301422119,
1235
+ "learning_rate": 1.8047875576562556e-05,
1236
+ "loss": 0.3366,
1237
+ "step": 172
1238
+ },
1239
+ {
1240
+ "epoch": 0.7068437180796732,
1241
+ "grad_norm": 0.3259022533893585,
1242
+ "learning_rate": 1.802123192755044e-05,
1243
+ "loss": 0.3052,
1244
+ "step": 173
1245
+ },
1246
+ {
1247
+ "epoch": 0.710929519918284,
1248
+ "grad_norm": 0.33262839913368225,
1249
+ "learning_rate": 1.7994427634035016e-05,
1250
+ "loss": 0.3016,
1251
+ "step": 174
1252
+ },
1253
+ {
1254
+ "epoch": 0.7150153217568948,
1255
+ "grad_norm": 0.33660101890563965,
1256
+ "learning_rate": 1.796746323283686e-05,
1257
+ "loss": 0.3356,
1258
+ "step": 175
1259
+ },
1260
+ {
1261
+ "epoch": 0.7191011235955056,
1262
+ "grad_norm": 0.32823285460472107,
1263
+ "learning_rate": 1.7940339263983112e-05,
1264
+ "loss": 0.3216,
1265
+ "step": 176
1266
+ },
1267
+ {
1268
+ "epoch": 0.7231869254341164,
1269
+ "grad_norm": 0.34937459230422974,
1270
+ "learning_rate": 1.791305627069662e-05,
1271
+ "loss": 0.3351,
1272
+ "step": 177
1273
+ },
1274
+ {
1275
+ "epoch": 0.7272727272727273,
1276
+ "grad_norm": 0.34692323207855225,
1277
+ "learning_rate": 1.7885614799385086e-05,
1278
+ "loss": 0.3142,
1279
+ "step": 178
1280
+ },
1281
+ {
1282
+ "epoch": 0.7313585291113381,
1283
+ "grad_norm": 0.3434458076953888,
1284
+ "learning_rate": 1.785801539963012e-05,
1285
+ "loss": 0.325,
1286
+ "step": 179
1287
+ },
1288
+ {
1289
+ "epoch": 0.7354443309499489,
1290
+ "grad_norm": 0.30833402276039124,
1291
+ "learning_rate": 1.7830258624176224e-05,
1292
+ "loss": 0.2976,
1293
+ "step": 180
1294
+ },
1295
+ {
1296
+ "epoch": 0.7395301327885597,
1297
+ "grad_norm": 0.318734735250473,
1298
+ "learning_rate": 1.7802345028919728e-05,
1299
+ "loss": 0.3127,
1300
+ "step": 181
1301
+ },
1302
+ {
1303
+ "epoch": 0.7436159346271706,
1304
+ "grad_norm": 0.34027615189552307,
1305
+ "learning_rate": 1.777427517289766e-05,
1306
+ "loss": 0.316,
1307
+ "step": 182
1308
+ },
1309
+ {
1310
+ "epoch": 0.7477017364657814,
1311
+ "grad_norm": 0.35010436177253723,
1312
+ "learning_rate": 1.7746049618276545e-05,
1313
+ "loss": 0.3036,
1314
+ "step": 183
1315
+ },
1316
+ {
1317
+ "epoch": 0.7517875383043923,
1318
+ "grad_norm": 0.3359059691429138,
1319
+ "learning_rate": 1.7717668930341152e-05,
1320
+ "loss": 0.3076,
1321
+ "step": 184
1322
+ },
1323
+ {
1324
+ "epoch": 0.7558733401430031,
1325
+ "grad_norm": 0.3144778311252594,
1326
+ "learning_rate": 1.768913367748316e-05,
1327
+ "loss": 0.3063,
1328
+ "step": 185
1329
+ },
1330
+ {
1331
+ "epoch": 0.7599591419816139,
1332
+ "grad_norm": 0.34391850233078003,
1333
+ "learning_rate": 1.766044443118978e-05,
1334
+ "loss": 0.3295,
1335
+ "step": 186
1336
+ },
1337
+ {
1338
+ "epoch": 0.7640449438202247,
1339
+ "grad_norm": 0.33601975440979004,
1340
+ "learning_rate": 1.7631601766032337e-05,
1341
+ "loss": 0.3086,
1342
+ "step": 187
1343
+ },
1344
+ {
1345
+ "epoch": 0.7681307456588355,
1346
+ "grad_norm": 0.3327379524707794,
1347
+ "learning_rate": 1.7602606259654704e-05,
1348
+ "loss": 0.3164,
1349
+ "step": 188
1350
+ },
1351
+ {
1352
+ "epoch": 0.7722165474974464,
1353
+ "grad_norm": 0.30492648482322693,
1354
+ "learning_rate": 1.7573458492761802e-05,
1355
+ "loss": 0.311,
1356
+ "step": 189
1357
+ },
1358
+ {
1359
+ "epoch": 0.7763023493360572,
1360
+ "grad_norm": 0.33100536465644836,
1361
+ "learning_rate": 1.7544159049107902e-05,
1362
+ "loss": 0.3025,
1363
+ "step": 190
1364
+ },
1365
+ {
1366
+ "epoch": 0.780388151174668,
1367
+ "grad_norm": 0.3391270637512207,
1368
+ "learning_rate": 1.7514708515485002e-05,
1369
+ "loss": 0.3348,
1370
+ "step": 191
1371
+ },
1372
+ {
1373
+ "epoch": 0.7844739530132788,
1374
+ "grad_norm": 0.3125060796737671,
1375
+ "learning_rate": 1.7485107481711014e-05,
1376
+ "loss": 0.31,
1377
+ "step": 192
1378
+ },
1379
+ {
1380
+ "epoch": 0.7885597548518897,
1381
+ "grad_norm": 0.3132609724998474,
1382
+ "learning_rate": 1.7455356540617988e-05,
1383
+ "loss": 0.3204,
1384
+ "step": 193
1385
+ },
1386
+ {
1387
+ "epoch": 0.7926455566905005,
1388
+ "grad_norm": 0.31536075472831726,
1389
+ "learning_rate": 1.7425456288040236e-05,
1390
+ "loss": 0.3202,
1391
+ "step": 194
1392
+ },
1393
+ {
1394
+ "epoch": 0.7967313585291114,
1395
+ "grad_norm": 0.3190646171569824,
1396
+ "learning_rate": 1.7395407322802374e-05,
1397
+ "loss": 0.3075,
1398
+ "step": 195
1399
+ },
1400
+ {
1401
+ "epoch": 0.8008171603677222,
1402
+ "grad_norm": 0.333128422498703,
1403
+ "learning_rate": 1.736521024670737e-05,
1404
+ "loss": 0.3088,
1405
+ "step": 196
1406
+ },
1407
+ {
1408
+ "epoch": 0.804902962206333,
1409
+ "grad_norm": 0.3181339204311371,
1410
+ "learning_rate": 1.733486566452446e-05,
1411
+ "loss": 0.31,
1412
+ "step": 197
1413
+ },
1414
+ {
1415
+ "epoch": 0.8089887640449438,
1416
+ "grad_norm": 0.3423081338405609,
1417
+ "learning_rate": 1.7304374183977032e-05,
1418
+ "loss": 0.3158,
1419
+ "step": 198
1420
+ },
1421
+ {
1422
+ "epoch": 0.8130745658835546,
1423
+ "grad_norm": 0.32152727246284485,
1424
+ "learning_rate": 1.7273736415730488e-05,
1425
+ "loss": 0.3125,
1426
+ "step": 199
1427
+ },
1428
+ {
1429
+ "epoch": 0.8171603677221655,
1430
+ "grad_norm": 0.3334408402442932,
1431
+ "learning_rate": 1.7242952973379983e-05,
1432
+ "loss": 0.3015,
1433
+ "step": 200
1434
+ },
1435
+ {
1436
+ "epoch": 0.8212461695607763,
1437
+ "grad_norm": 0.32138195633888245,
1438
+ "learning_rate": 1.7212024473438145e-05,
1439
+ "loss": 0.3069,
1440
+ "step": 201
1441
+ },
1442
+ {
1443
+ "epoch": 0.8253319713993871,
1444
+ "grad_norm": 0.3368797302246094,
1445
+ "learning_rate": 1.7180951535322742e-05,
1446
+ "loss": 0.3141,
1447
+ "step": 202
1448
+ },
1449
+ {
1450
+ "epoch": 0.8294177732379979,
1451
+ "grad_norm": 0.3377224802970886,
1452
+ "learning_rate": 1.7149734781344247e-05,
1453
+ "loss": 0.3102,
1454
+ "step": 203
1455
+ },
1456
+ {
1457
+ "epoch": 0.8335035750766088,
1458
+ "grad_norm": 0.3103748857975006,
1459
+ "learning_rate": 1.7118374836693407e-05,
1460
+ "loss": 0.3417,
1461
+ "step": 204
1462
+ },
1463
+ {
1464
+ "epoch": 0.8375893769152196,
1465
+ "grad_norm": 0.299224853515625,
1466
+ "learning_rate": 1.7086872329428702e-05,
1467
+ "loss": 0.3059,
1468
+ "step": 205
1469
+ },
1470
+ {
1471
+ "epoch": 0.8416751787538305,
1472
+ "grad_norm": 0.3273285925388336,
1473
+ "learning_rate": 1.705522789046377e-05,
1474
+ "loss": 0.298,
1475
+ "step": 206
1476
+ },
1477
+ {
1478
+ "epoch": 0.8457609805924413,
1479
+ "grad_norm": 0.34890103340148926,
1480
+ "learning_rate": 1.7023442153554776e-05,
1481
+ "loss": 0.327,
1482
+ "step": 207
1483
+ },
1484
+ {
1485
+ "epoch": 0.849846782431052,
1486
+ "grad_norm": 0.3465830087661743,
1487
+ "learning_rate": 1.6991515755287715e-05,
1488
+ "loss": 0.3457,
1489
+ "step": 208
1490
+ },
1491
+ {
1492
+ "epoch": 0.8539325842696629,
1493
+ "grad_norm": 0.32012030482292175,
1494
+ "learning_rate": 1.695944933506567e-05,
1495
+ "loss": 0.2886,
1496
+ "step": 209
1497
+ },
1498
+ {
1499
+ "epoch": 0.8580183861082737,
1500
+ "grad_norm": 0.31332501769065857,
1501
+ "learning_rate": 1.6927243535095995e-05,
1502
+ "loss": 0.3145,
1503
+ "step": 210
1504
+ },
1505
+ {
1506
+ "epoch": 0.8621041879468846,
1507
+ "grad_norm": 0.31248798966407776,
1508
+ "learning_rate": 1.6894899000377462e-05,
1509
+ "loss": 0.3065,
1510
+ "step": 211
1511
+ },
1512
+ {
1513
+ "epoch": 0.8661899897854954,
1514
+ "grad_norm": 0.32849758863449097,
1515
+ "learning_rate": 1.686241637868734e-05,
1516
+ "loss": 0.2961,
1517
+ "step": 212
1518
+ },
1519
+ {
1520
+ "epoch": 0.8702757916241062,
1521
+ "grad_norm": 0.33984649181365967,
1522
+ "learning_rate": 1.6829796320568416e-05,
1523
+ "loss": 0.2948,
1524
+ "step": 213
1525
+ },
1526
+ {
1527
+ "epoch": 0.874361593462717,
1528
+ "grad_norm": 0.33225297927856445,
1529
+ "learning_rate": 1.6797039479315994e-05,
1530
+ "loss": 0.3039,
1531
+ "step": 214
1532
+ },
1533
+ {
1534
+ "epoch": 0.8784473953013279,
1535
+ "grad_norm": 0.32829374074935913,
1536
+ "learning_rate": 1.6764146510964762e-05,
1537
+ "loss": 0.3269,
1538
+ "step": 215
1539
+ },
1540
+ {
1541
+ "epoch": 0.8825331971399387,
1542
+ "grad_norm": 0.35096362233161926,
1543
+ "learning_rate": 1.67311180742757e-05,
1544
+ "loss": 0.3142,
1545
+ "step": 216
1546
+ },
1547
+ {
1548
+ "epoch": 0.8866189989785496,
1549
+ "grad_norm": 0.32767823338508606,
1550
+ "learning_rate": 1.669795483072287e-05,
1551
+ "loss": 0.3038,
1552
+ "step": 217
1553
+ },
1554
+ {
1555
+ "epoch": 0.8907048008171604,
1556
+ "grad_norm": 0.3024498522281647,
1557
+ "learning_rate": 1.6664657444480145e-05,
1558
+ "loss": 0.2988,
1559
+ "step": 218
1560
+ },
1561
+ {
1562
+ "epoch": 0.8947906026557712,
1563
+ "grad_norm": 0.3320610821247101,
1564
+ "learning_rate": 1.6631226582407954e-05,
1565
+ "loss": 0.2902,
1566
+ "step": 219
1567
+ },
1568
+ {
1569
+ "epoch": 0.898876404494382,
1570
+ "grad_norm": 0.3502938449382782,
1571
+ "learning_rate": 1.6597662914039885e-05,
1572
+ "loss": 0.3039,
1573
+ "step": 220
1574
+ },
1575
+ {
1576
+ "epoch": 0.9029622063329928,
1577
+ "grad_norm": 0.3509136140346527,
1578
+ "learning_rate": 1.65639671115693e-05,
1579
+ "loss": 0.3114,
1580
+ "step": 221
1581
+ },
1582
+ {
1583
+ "epoch": 0.9070480081716037,
1584
+ "grad_norm": 0.3239796459674835,
1585
+ "learning_rate": 1.653013984983585e-05,
1586
+ "loss": 0.297,
1587
+ "step": 222
1588
+ },
1589
+ {
1590
+ "epoch": 0.9111338100102145,
1591
+ "grad_norm": 0.340690940618515,
1592
+ "learning_rate": 1.6496181806312005e-05,
1593
+ "loss": 0.3071,
1594
+ "step": 223
1595
+ },
1596
+ {
1597
+ "epoch": 0.9152196118488254,
1598
+ "grad_norm": 0.342742919921875,
1599
+ "learning_rate": 1.6462093661089432e-05,
1600
+ "loss": 0.2908,
1601
+ "step": 224
1602
+ },
1603
+ {
1604
+ "epoch": 0.9193054136874361,
1605
+ "grad_norm": 0.33802884817123413,
1606
+ "learning_rate": 1.6427876096865394e-05,
1607
+ "loss": 0.3135,
1608
+ "step": 225
1609
+ },
1610
+ {
1611
+ "epoch": 0.923391215526047,
1612
+ "grad_norm": 0.32046419382095337,
1613
+ "learning_rate": 1.6393529798929103e-05,
1614
+ "loss": 0.32,
1615
+ "step": 226
1616
+ },
1617
+ {
1618
+ "epoch": 0.9274770173646578,
1619
+ "grad_norm": 0.32189199328422546,
1620
+ "learning_rate": 1.635905545514795e-05,
1621
+ "loss": 0.3277,
1622
+ "step": 227
1623
+ },
1624
+ {
1625
+ "epoch": 0.9315628192032687,
1626
+ "grad_norm": 0.3596160113811493,
1627
+ "learning_rate": 1.6324453755953772e-05,
1628
+ "loss": 0.3115,
1629
+ "step": 228
1630
+ },
1631
+ {
1632
+ "epoch": 0.9356486210418795,
1633
+ "grad_norm": 0.36959317326545715,
1634
+ "learning_rate": 1.6289725394328998e-05,
1635
+ "loss": 0.3255,
1636
+ "step": 229
1637
+ },
1638
+ {
1639
+ "epoch": 0.9397344228804902,
1640
+ "grad_norm": 0.3319382071495056,
1641
+ "learning_rate": 1.6254871065792776e-05,
1642
+ "loss": 0.3413,
1643
+ "step": 230
1644
+ },
1645
+ {
1646
+ "epoch": 0.9438202247191011,
1647
+ "grad_norm": 0.32328999042510986,
1648
+ "learning_rate": 1.621989146838704e-05,
1649
+ "loss": 0.3164,
1650
+ "step": 231
1651
+ },
1652
+ {
1653
+ "epoch": 0.947906026557712,
1654
+ "grad_norm": 0.35541966557502747,
1655
+ "learning_rate": 1.618478730266255e-05,
1656
+ "loss": 0.3006,
1657
+ "step": 232
1658
+ },
1659
+ {
1660
+ "epoch": 0.9519918283963228,
1661
+ "grad_norm": 0.31904998421669006,
1662
+ "learning_rate": 1.6149559271664835e-05,
1663
+ "loss": 0.2973,
1664
+ "step": 233
1665
+ },
1666
+ {
1667
+ "epoch": 0.9560776302349336,
1668
+ "grad_norm": 0.30805569887161255,
1669
+ "learning_rate": 1.6114208080920125e-05,
1670
+ "loss": 0.2857,
1671
+ "step": 234
1672
+ },
1673
+ {
1674
+ "epoch": 0.9601634320735445,
1675
+ "grad_norm": 0.3331436812877655,
1676
+ "learning_rate": 1.607873443842122e-05,
1677
+ "loss": 0.2957,
1678
+ "step": 235
1679
+ },
1680
+ {
1681
+ "epoch": 0.9642492339121552,
1682
+ "grad_norm": 0.34486424922943115,
1683
+ "learning_rate": 1.6043139054613326e-05,
1684
+ "loss": 0.3332,
1685
+ "step": 236
1686
+ },
1687
+ {
1688
+ "epoch": 0.9683350357507661,
1689
+ "grad_norm": 0.38448622822761536,
1690
+ "learning_rate": 1.600742264237979e-05,
1691
+ "loss": 0.3209,
1692
+ "step": 237
1693
+ },
1694
+ {
1695
+ "epoch": 0.9724208375893769,
1696
+ "grad_norm": 0.3303643465042114,
1697
+ "learning_rate": 1.5971585917027864e-05,
1698
+ "loss": 0.2967,
1699
+ "step": 238
1700
+ },
1701
+ {
1702
+ "epoch": 0.9765066394279878,
1703
+ "grad_norm": 0.3266353905200958,
1704
+ "learning_rate": 1.5935629596274345e-05,
1705
+ "loss": 0.3328,
1706
+ "step": 239
1707
+ },
1708
+ {
1709
+ "epoch": 0.9805924412665986,
1710
+ "grad_norm": 0.32337427139282227,
1711
+ "learning_rate": 1.5899554400231233e-05,
1712
+ "loss": 0.3077,
1713
+ "step": 240
1714
+ },
1715
+ {
1716
+ "epoch": 0.9846782431052093,
1717
+ "grad_norm": 0.3424544632434845,
1718
+ "learning_rate": 1.586336105139127e-05,
1719
+ "loss": 0.3404,
1720
+ "step": 241
1721
+ },
1722
+ {
1723
+ "epoch": 0.9887640449438202,
1724
+ "grad_norm": 0.3608018755912781,
1725
+ "learning_rate": 1.5827050274613512e-05,
1726
+ "loss": 0.305,
1727
+ "step": 242
1728
+ },
1729
+ {
1730
+ "epoch": 0.992849846782431,
1731
+ "grad_norm": 0.3088077902793884,
1732
+ "learning_rate": 1.579062279710879e-05,
1733
+ "loss": 0.3021,
1734
+ "step": 243
1735
+ },
1736
+ {
1737
+ "epoch": 0.9969356486210419,
1738
+ "grad_norm": 0.3329155743122101,
1739
+ "learning_rate": 1.5754079348425137e-05,
1740
+ "loss": 0.3141,
1741
+ "step": 244
1742
+ },
1743
+ {
1744
+ "epoch": 1.0040858018386107,
1745
+ "grad_norm": 0.47268807888031006,
1746
+ "learning_rate": 1.57174206604332e-05,
1747
+ "loss": 0.5285,
1748
+ "step": 245
1749
+ },
1750
+ {
1751
+ "epoch": 1.0081716036772217,
1752
+ "grad_norm": 0.19290198385715485,
1753
+ "learning_rate": 1.568064746731156e-05,
1754
+ "loss": 0.2298,
1755
+ "step": 246
1756
+ },
1757
+ {
1758
+ "epoch": 1.0081716036772217,
1759
+ "eval_loss": 0.3009270131587982,
1760
+ "eval_runtime": 5.657,
1761
+ "eval_samples_per_second": 13.965,
1762
+ "eval_steps_per_second": 1.768,
1763
+ "step": 246
1764
+ },
1765
+ {
1766
+ "epoch": 1.0122574055158324,
1767
+ "grad_norm": 0.18387500941753387,
1768
+ "learning_rate": 1.564376050553205e-05,
1769
+ "loss": 0.2149,
1770
+ "step": 247
1771
+ },
1772
+ {
1773
+ "epoch": 1.0163432073544434,
1774
+ "grad_norm": 0.22477443516254425,
1775
+ "learning_rate": 1.560676051384499e-05,
1776
+ "loss": 0.2182,
1777
+ "step": 248
1778
+ },
1779
+ {
1780
+ "epoch": 1.0204290091930541,
1781
+ "grad_norm": 0.2133513242006302,
1782
+ "learning_rate": 1.5569648233264395e-05,
1783
+ "loss": 0.2251,
1784
+ "step": 249
1785
+ },
1786
+ {
1787
+ "epoch": 1.0245148110316649,
1788
+ "grad_norm": 0.21625001728534698,
1789
+ "learning_rate": 1.553242440705314e-05,
1790
+ "loss": 0.2231,
1791
+ "step": 250
1792
+ },
1793
+ {
1794
+ "epoch": 1.0286006128702758,
1795
+ "grad_norm": 0.21452628076076508,
1796
+ "learning_rate": 1.5495089780708062e-05,
1797
+ "loss": 0.2129,
1798
+ "step": 251
1799
+ },
1800
+ {
1801
+ "epoch": 1.0326864147088866,
1802
+ "grad_norm": 0.22355499863624573,
1803
+ "learning_rate": 1.5457645101945046e-05,
1804
+ "loss": 0.2248,
1805
+ "step": 252
1806
+ },
1807
+ {
1808
+ "epoch": 1.0367722165474975,
1809
+ "grad_norm": 0.247604101896286,
1810
+ "learning_rate": 1.5420091120684042e-05,
1811
+ "loss": 0.2473,
1812
+ "step": 253
1813
+ },
1814
+ {
1815
+ "epoch": 1.0408580183861083,
1816
+ "grad_norm": 0.2052946239709854,
1817
+ "learning_rate": 1.538242858903404e-05,
1818
+ "loss": 0.2322,
1819
+ "step": 254
1820
+ },
1821
+ {
1822
+ "epoch": 1.0449438202247192,
1823
+ "grad_norm": 0.23112209141254425,
1824
+ "learning_rate": 1.5344658261278013e-05,
1825
+ "loss": 0.2128,
1826
+ "step": 255
1827
+ },
1828
+ {
1829
+ "epoch": 1.04902962206333,
1830
+ "grad_norm": 0.236256405711174,
1831
+ "learning_rate": 1.530678089385782e-05,
1832
+ "loss": 0.2062,
1833
+ "step": 256
1834
+ },
1835
+ {
1836
+ "epoch": 1.0531154239019407,
1837
+ "grad_norm": 0.2142944186925888,
1838
+ "learning_rate": 1.5268797245359035e-05,
1839
+ "loss": 0.2222,
1840
+ "step": 257
1841
+ },
1842
+ {
1843
+ "epoch": 1.0572012257405516,
1844
+ "grad_norm": 0.21305693686008453,
1845
+ "learning_rate": 1.5230708076495777e-05,
1846
+ "loss": 0.2192,
1847
+ "step": 258
1848
+ },
1849
+ {
1850
+ "epoch": 1.0612870275791624,
1851
+ "grad_norm": 0.20170477032661438,
1852
+ "learning_rate": 1.519251415009546e-05,
1853
+ "loss": 0.2107,
1854
+ "step": 259
1855
+ },
1856
+ {
1857
+ "epoch": 1.0653728294177733,
1858
+ "grad_norm": 0.22234131395816803,
1859
+ "learning_rate": 1.5154216231083522e-05,
1860
+ "loss": 0.2298,
1861
+ "step": 260
1862
+ },
1863
+ {
1864
+ "epoch": 1.069458631256384,
1865
+ "grad_norm": 0.21675555408000946,
1866
+ "learning_rate": 1.5115815086468103e-05,
1867
+ "loss": 0.2296,
1868
+ "step": 261
1869
+ },
1870
+ {
1871
+ "epoch": 1.0735444330949948,
1872
+ "grad_norm": 0.24653805792331696,
1873
+ "learning_rate": 1.507731148532468e-05,
1874
+ "loss": 0.2209,
1875
+ "step": 262
1876
+ },
1877
+ {
1878
+ "epoch": 1.0776302349336058,
1879
+ "grad_norm": 0.21882732212543488,
1880
+ "learning_rate": 1.5038706198780673e-05,
1881
+ "loss": 0.2239,
1882
+ "step": 263
1883
+ },
1884
+ {
1885
+ "epoch": 1.0817160367722165,
1886
+ "grad_norm": 0.19836413860321045,
1887
+ "learning_rate": 1.5000000000000002e-05,
1888
+ "loss": 0.2286,
1889
+ "step": 264
1890
+ },
1891
+ {
1892
+ "epoch": 1.0858018386108275,
1893
+ "grad_norm": 0.22002094984054565,
1894
+ "learning_rate": 1.496119366416759e-05,
1895
+ "loss": 0.2261,
1896
+ "step": 265
1897
+ },
1898
+ {
1899
+ "epoch": 1.0898876404494382,
1900
+ "grad_norm": 0.22356298565864563,
1901
+ "learning_rate": 1.492228796847385e-05,
1902
+ "loss": 0.2165,
1903
+ "step": 266
1904
+ },
1905
+ {
1906
+ "epoch": 1.093973442288049,
1907
+ "grad_norm": 0.19260676205158234,
1908
+ "learning_rate": 1.4883283692099114e-05,
1909
+ "loss": 0.217,
1910
+ "step": 267
1911
+ },
1912
+ {
1913
+ "epoch": 1.09805924412666,
1914
+ "grad_norm": 0.2038644701242447,
1915
+ "learning_rate": 1.4844181616198028e-05,
1916
+ "loss": 0.2234,
1917
+ "step": 268
1918
+ },
1919
+ {
1920
+ "epoch": 1.1021450459652706,
1921
+ "grad_norm": 0.24655131995677948,
1922
+ "learning_rate": 1.4804982523883915e-05,
1923
+ "loss": 0.2316,
1924
+ "step": 269
1925
+ },
1926
+ {
1927
+ "epoch": 1.1062308478038816,
1928
+ "grad_norm": 0.2111218273639679,
1929
+ "learning_rate": 1.4765687200213079e-05,
1930
+ "loss": 0.2258,
1931
+ "step": 270
1932
+ },
1933
+ {
1934
+ "epoch": 1.1103166496424923,
1935
+ "grad_norm": 0.20191776752471924,
1936
+ "learning_rate": 1.4726296432169095e-05,
1937
+ "loss": 0.2168,
1938
+ "step": 271
1939
+ },
1940
+ {
1941
+ "epoch": 1.1144024514811033,
1942
+ "grad_norm": 0.20933739840984344,
1943
+ "learning_rate": 1.4686811008647037e-05,
1944
+ "loss": 0.2141,
1945
+ "step": 272
1946
+ },
1947
+ {
1948
+ "epoch": 1.118488253319714,
1949
+ "grad_norm": 0.21544787287712097,
1950
+ "learning_rate": 1.4647231720437687e-05,
1951
+ "loss": 0.2278,
1952
+ "step": 273
1953
+ },
1954
+ {
1955
+ "epoch": 1.1225740551583248,
1956
+ "grad_norm": 0.21159909665584564,
1957
+ "learning_rate": 1.4607559360211688e-05,
1958
+ "loss": 0.2131,
1959
+ "step": 274
1960
+ },
1961
+ {
1962
+ "epoch": 1.1266598569969357,
1963
+ "grad_norm": 0.20316191017627716,
1964
+ "learning_rate": 1.456779472250368e-05,
1965
+ "loss": 0.2154,
1966
+ "step": 275
1967
+ },
1968
+ {
1969
+ "epoch": 1.1307456588355465,
1970
+ "grad_norm": 0.19834713637828827,
1971
+ "learning_rate": 1.4527938603696376e-05,
1972
+ "loss": 0.2181,
1973
+ "step": 276
1974
+ },
1975
+ {
1976
+ "epoch": 1.1348314606741572,
1977
+ "grad_norm": 0.19414545595645905,
1978
+ "learning_rate": 1.4487991802004625e-05,
1979
+ "loss": 0.2198,
1980
+ "step": 277
1981
+ },
1982
+ {
1983
+ "epoch": 1.1389172625127681,
1984
+ "grad_norm": 0.19380849599838257,
1985
+ "learning_rate": 1.4447955117459414e-05,
1986
+ "loss": 0.2219,
1987
+ "step": 278
1988
+ },
1989
+ {
1990
+ "epoch": 1.1430030643513789,
1991
+ "grad_norm": 0.20117753744125366,
1992
+ "learning_rate": 1.4407829351891858e-05,
1993
+ "loss": 0.2195,
1994
+ "step": 279
1995
+ },
1996
+ {
1997
+ "epoch": 1.1470888661899898,
1998
+ "grad_norm": 0.20845960080623627,
1999
+ "learning_rate": 1.436761530891713e-05,
2000
+ "loss": 0.2331,
2001
+ "step": 280
2002
+ },
2003
+ {
2004
+ "epoch": 1.1511746680286006,
2005
+ "grad_norm": 0.20118166506290436,
2006
+ "learning_rate": 1.4327313793918362e-05,
2007
+ "loss": 0.2106,
2008
+ "step": 281
2009
+ },
2010
+ {
2011
+ "epoch": 1.1552604698672115,
2012
+ "grad_norm": 0.2053423970937729,
2013
+ "learning_rate": 1.4286925614030542e-05,
2014
+ "loss": 0.2118,
2015
+ "step": 282
2016
+ },
2017
+ {
2018
+ "epoch": 1.1593462717058223,
2019
+ "grad_norm": 0.2187694013118744,
2020
+ "learning_rate": 1.4246451578124321e-05,
2021
+ "loss": 0.2227,
2022
+ "step": 283
2023
+ },
2024
+ {
2025
+ "epoch": 1.163432073544433,
2026
+ "grad_norm": 0.20455628633499146,
2027
+ "learning_rate": 1.4205892496789816e-05,
2028
+ "loss": 0.223,
2029
+ "step": 284
2030
+ },
2031
+ {
2032
+ "epoch": 1.167517875383044,
2033
+ "grad_norm": 0.1947728395462036,
2034
+ "learning_rate": 1.4165249182320401e-05,
2035
+ "loss": 0.2045,
2036
+ "step": 285
2037
+ },
2038
+ {
2039
+ "epoch": 1.1716036772216547,
2040
+ "grad_norm": 0.1993764191865921,
2041
+ "learning_rate": 1.4124522448696407e-05,
2042
+ "loss": 0.2111,
2043
+ "step": 286
2044
+ },
2045
+ {
2046
+ "epoch": 1.1756894790602657,
2047
+ "grad_norm": 0.20859940350055695,
2048
+ "learning_rate": 1.4083713111568841e-05,
2049
+ "loss": 0.2138,
2050
+ "step": 287
2051
+ },
2052
+ {
2053
+ "epoch": 1.1797752808988764,
2054
+ "grad_norm": 0.2091362327337265,
2055
+ "learning_rate": 1.404282198824305e-05,
2056
+ "loss": 0.2233,
2057
+ "step": 288
2058
+ },
2059
+ {
2060
+ "epoch": 1.1838610827374871,
2061
+ "grad_norm": 0.21919092535972595,
2062
+ "learning_rate": 1.4001849897662337e-05,
2063
+ "loss": 0.2004,
2064
+ "step": 289
2065
+ },
2066
+ {
2067
+ "epoch": 1.187946884576098,
2068
+ "grad_norm": 0.21487314999103546,
2069
+ "learning_rate": 1.396079766039157e-05,
2070
+ "loss": 0.2116,
2071
+ "step": 290
2072
+ },
2073
+ {
2074
+ "epoch": 1.1920326864147088,
2075
+ "grad_norm": 0.19989344477653503,
2076
+ "learning_rate": 1.3919666098600753e-05,
2077
+ "loss": 0.1993,
2078
+ "step": 291
2079
+ },
2080
+ {
2081
+ "epoch": 1.1961184882533198,
2082
+ "grad_norm": 0.22701528668403625,
2083
+ "learning_rate": 1.387845603604855e-05,
2084
+ "loss": 0.2261,
2085
+ "step": 292
2086
+ },
2087
+ {
2088
+ "epoch": 1.2002042900919305,
2089
+ "grad_norm": 0.20408843457698822,
2090
+ "learning_rate": 1.3837168298065798e-05,
2091
+ "loss": 0.2001,
2092
+ "step": 293
2093
+ },
2094
+ {
2095
+ "epoch": 1.2042900919305413,
2096
+ "grad_norm": 0.19744303822517395,
2097
+ "learning_rate": 1.3795803711538966e-05,
2098
+ "loss": 0.2216,
2099
+ "step": 294
2100
+ },
2101
+ {
2102
+ "epoch": 1.2083758937691522,
2103
+ "grad_norm": 0.19279907643795013,
2104
+ "learning_rate": 1.37543631048936e-05,
2105
+ "loss": 0.2086,
2106
+ "step": 295
2107
+ },
2108
+ {
2109
+ "epoch": 1.212461695607763,
2110
+ "grad_norm": 0.20809710025787354,
2111
+ "learning_rate": 1.3712847308077737e-05,
2112
+ "loss": 0.2192,
2113
+ "step": 296
2114
+ },
2115
+ {
2116
+ "epoch": 1.216547497446374,
2117
+ "grad_norm": 0.20847246050834656,
2118
+ "learning_rate": 1.3671257152545277e-05,
2119
+ "loss": 0.191,
2120
+ "step": 297
2121
+ },
2122
+ {
2123
+ "epoch": 1.2206332992849847,
2124
+ "grad_norm": 0.20084427297115326,
2125
+ "learning_rate": 1.3629593471239328e-05,
2126
+ "loss": 0.2143,
2127
+ "step": 298
2128
+ },
2129
+ {
2130
+ "epoch": 1.2247191011235956,
2131
+ "grad_norm": 0.21558277308940887,
2132
+ "learning_rate": 1.3587857098575534e-05,
2133
+ "loss": 0.2075,
2134
+ "step": 299
2135
+ },
2136
+ {
2137
+ "epoch": 1.2288049029622063,
2138
+ "grad_norm": 0.20744889974594116,
2139
+ "learning_rate": 1.3546048870425356e-05,
2140
+ "loss": 0.2204,
2141
+ "step": 300
2142
+ },
2143
+ {
2144
+ "epoch": 1.232890704800817,
2145
+ "grad_norm": 0.22505250573158264,
2146
+ "learning_rate": 1.350416962409934e-05,
2147
+ "loss": 0.2217,
2148
+ "step": 301
2149
+ },
2150
+ {
2151
+ "epoch": 1.236976506639428,
2152
+ "grad_norm": 0.1689983457326889,
2153
+ "learning_rate": 1.346222019833033e-05,
2154
+ "loss": 0.2111,
2155
+ "step": 302
2156
+ },
2157
+ {
2158
+ "epoch": 1.2410623084780388,
2159
+ "grad_norm": 0.208964005112648,
2160
+ "learning_rate": 1.342020143325669e-05,
2161
+ "loss": 0.2033,
2162
+ "step": 303
2163
+ },
2164
+ {
2165
+ "epoch": 1.2451481103166497,
2166
+ "grad_norm": 0.19528621435165405,
2167
+ "learning_rate": 1.3378114170405473e-05,
2168
+ "loss": 0.2101,
2169
+ "step": 304
2170
+ },
2171
+ {
2172
+ "epoch": 1.2492339121552605,
2173
+ "grad_norm": 0.21318338811397552,
2174
+ "learning_rate": 1.3335959252675566e-05,
2175
+ "loss": 0.2175,
2176
+ "step": 305
2177
+ },
2178
+ {
2179
+ "epoch": 1.2533197139938714,
2180
+ "grad_norm": 0.196754589676857,
2181
+ "learning_rate": 1.3293737524320798e-05,
2182
+ "loss": 0.2186,
2183
+ "step": 306
2184
+ },
2185
+ {
2186
+ "epoch": 1.2574055158324822,
2187
+ "grad_norm": 0.20901250839233398,
2188
+ "learning_rate": 1.3251449830933052e-05,
2189
+ "loss": 0.207,
2190
+ "step": 307
2191
+ },
2192
+ {
2193
+ "epoch": 1.261491317671093,
2194
+ "grad_norm": 0.1850128173828125,
2195
+ "learning_rate": 1.3209097019425317e-05,
2196
+ "loss": 0.2126,
2197
+ "step": 308
2198
+ },
2199
+ {
2200
+ "epoch": 1.2655771195097039,
2201
+ "grad_norm": 0.19966518878936768,
2202
+ "learning_rate": 1.3166679938014728e-05,
2203
+ "loss": 0.2229,
2204
+ "step": 309
2205
+ },
2206
+ {
2207
+ "epoch": 1.2696629213483146,
2208
+ "grad_norm": 0.19698403775691986,
2209
+ "learning_rate": 1.3124199436205575e-05,
2210
+ "loss": 0.202,
2211
+ "step": 310
2212
+ },
2213
+ {
2214
+ "epoch": 1.2737487231869253,
2215
+ "grad_norm": 0.19038128852844238,
2216
+ "learning_rate": 1.3081656364772308e-05,
2217
+ "loss": 0.2102,
2218
+ "step": 311
2219
+ },
2220
+ {
2221
+ "epoch": 1.2778345250255363,
2222
+ "grad_norm": 0.21141470968723297,
2223
+ "learning_rate": 1.303905157574247e-05,
2224
+ "loss": 0.2131,
2225
+ "step": 312
2226
+ },
2227
+ {
2228
+ "epoch": 1.281920326864147,
2229
+ "grad_norm": 0.19535590708255768,
2230
+ "learning_rate": 1.2996385922379657e-05,
2231
+ "loss": 0.2014,
2232
+ "step": 313
2233
+ },
2234
+ {
2235
+ "epoch": 1.286006128702758,
2236
+ "grad_norm": 0.21494199335575104,
2237
+ "learning_rate": 1.2953660259166413e-05,
2238
+ "loss": 0.221,
2239
+ "step": 314
2240
+ },
2241
+ {
2242
+ "epoch": 1.2900919305413687,
2243
+ "grad_norm": 0.20786255598068237,
2244
+ "learning_rate": 1.291087544178713e-05,
2245
+ "loss": 0.21,
2246
+ "step": 315
2247
+ },
2248
+ {
2249
+ "epoch": 1.2941777323799797,
2250
+ "grad_norm": 0.2005888670682907,
2251
+ "learning_rate": 1.2868032327110904e-05,
2252
+ "loss": 0.2142,
2253
+ "step": 316
2254
+ },
2255
+ {
2256
+ "epoch": 1.2982635342185904,
2257
+ "grad_norm": 0.20467688143253326,
2258
+ "learning_rate": 1.2825131773174371e-05,
2259
+ "loss": 0.2115,
2260
+ "step": 317
2261
+ },
2262
+ {
2263
+ "epoch": 1.3023493360572012,
2264
+ "grad_norm": 0.20571133494377136,
2265
+ "learning_rate": 1.2782174639164528e-05,
2266
+ "loss": 0.1892,
2267
+ "step": 318
2268
+ },
2269
+ {
2270
+ "epoch": 1.3064351378958121,
2271
+ "grad_norm": 0.19496022164821625,
2272
+ "learning_rate": 1.2739161785401525e-05,
2273
+ "loss": 0.2074,
2274
+ "step": 319
2275
+ },
2276
+ {
2277
+ "epoch": 1.3105209397344229,
2278
+ "grad_norm": 0.18286117911338806,
2279
+ "learning_rate": 1.269609407332144e-05,
2280
+ "loss": 0.2112,
2281
+ "step": 320
2282
+ },
2283
+ {
2284
+ "epoch": 1.3146067415730336,
2285
+ "grad_norm": 0.1806853860616684,
2286
+ "learning_rate": 1.2652972365459008e-05,
2287
+ "loss": 0.2261,
2288
+ "step": 321
2289
+ },
2290
+ {
2291
+ "epoch": 1.3186925434116445,
2292
+ "grad_norm": 0.22207584977149963,
2293
+ "learning_rate": 1.2609797525430374e-05,
2294
+ "loss": 0.2246,
2295
+ "step": 322
2296
+ },
2297
+ {
2298
+ "epoch": 1.3227783452502553,
2299
+ "grad_norm": 0.19839420914649963,
2300
+ "learning_rate": 1.2566570417915769e-05,
2301
+ "loss": 0.2022,
2302
+ "step": 323
2303
+ },
2304
+ {
2305
+ "epoch": 1.3268641470888662,
2306
+ "grad_norm": 0.21665321290493011,
2307
+ "learning_rate": 1.2523291908642219e-05,
2308
+ "loss": 0.2234,
2309
+ "step": 324
2310
+ },
2311
+ {
2312
+ "epoch": 1.330949948927477,
2313
+ "grad_norm": 0.2002275288105011,
2314
+ "learning_rate": 1.2479962864366186e-05,
2315
+ "loss": 0.2089,
2316
+ "step": 325
2317
+ },
2318
+ {
2319
+ "epoch": 1.335035750766088,
2320
+ "grad_norm": 0.22598706185817719,
2321
+ "learning_rate": 1.243658415285622e-05,
2322
+ "loss": 0.2098,
2323
+ "step": 326
2324
+ },
2325
+ {
2326
+ "epoch": 1.3391215526046987,
2327
+ "grad_norm": 0.2339962273836136,
2328
+ "learning_rate": 1.2393156642875579e-05,
2329
+ "loss": 0.2385,
2330
+ "step": 327
2331
+ },
2332
+ {
2333
+ "epoch": 1.3432073544433094,
2334
+ "grad_norm": 0.21430878341197968,
2335
+ "learning_rate": 1.2349681204164823e-05,
2336
+ "loss": 0.2219,
2337
+ "step": 328
2338
+ },
2339
+ {
2340
+ "epoch": 1.3432073544433094,
2341
+ "eval_loss": 0.31022945046424866,
2342
+ "eval_runtime": 5.6917,
2343
+ "eval_samples_per_second": 13.88,
2344
+ "eval_steps_per_second": 1.757,
2345
+ "step": 328
2346
+ },
2347
+ {
2348
+ "epoch": 1.3472931562819204,
2349
+ "grad_norm": 0.23316442966461182,
2350
+ "learning_rate": 1.2306158707424402e-05,
2351
+ "loss": 0.2149,
2352
+ "step": 329
2353
+ },
2354
+ {
2355
+ "epoch": 1.351378958120531,
2356
+ "grad_norm": 0.2072836458683014,
2357
+ "learning_rate": 1.2262590024297226e-05,
2358
+ "loss": 0.2143,
2359
+ "step": 330
2360
+ },
2361
+ {
2362
+ "epoch": 1.355464759959142,
2363
+ "grad_norm": 0.18483592569828033,
2364
+ "learning_rate": 1.2218976027351177e-05,
2365
+ "loss": 0.2119,
2366
+ "step": 331
2367
+ },
2368
+ {
2369
+ "epoch": 1.3595505617977528,
2370
+ "grad_norm": 0.2679055333137512,
2371
+ "learning_rate": 1.2175317590061676e-05,
2372
+ "loss": 0.2135,
2373
+ "step": 332
2374
+ },
2375
+ {
2376
+ "epoch": 1.3636363636363638,
2377
+ "grad_norm": 0.23311381042003632,
2378
+ "learning_rate": 1.2131615586794162e-05,
2379
+ "loss": 0.2211,
2380
+ "step": 333
2381
+ },
2382
+ {
2383
+ "epoch": 1.3677221654749745,
2384
+ "grad_norm": 0.20625115931034088,
2385
+ "learning_rate": 1.2087870892786588e-05,
2386
+ "loss": 0.2247,
2387
+ "step": 334
2388
+ },
2389
+ {
2390
+ "epoch": 1.3718079673135852,
2391
+ "grad_norm": 0.19579333066940308,
2392
+ "learning_rate": 1.2044084384131891e-05,
2393
+ "loss": 0.2033,
2394
+ "step": 335
2395
+ },
2396
+ {
2397
+ "epoch": 1.3758937691521962,
2398
+ "grad_norm": 0.20389385521411896,
2399
+ "learning_rate": 1.2000256937760446e-05,
2400
+ "loss": 0.1935,
2401
+ "step": 336
2402
+ },
2403
+ {
2404
+ "epoch": 1.379979570990807,
2405
+ "grad_norm": 0.19781693816184998,
2406
+ "learning_rate": 1.1956389431422508e-05,
2407
+ "loss": 0.2225,
2408
+ "step": 337
2409
+ },
2410
+ {
2411
+ "epoch": 1.3840653728294177,
2412
+ "grad_norm": 0.19394108653068542,
2413
+ "learning_rate": 1.1912482743670624e-05,
2414
+ "loss": 0.199,
2415
+ "step": 338
2416
+ },
2417
+ {
2418
+ "epoch": 1.3881511746680286,
2419
+ "grad_norm": 0.20754311978816986,
2420
+ "learning_rate": 1.1868537753842052e-05,
2421
+ "loss": 0.2127,
2422
+ "step": 339
2423
+ },
2424
+ {
2425
+ "epoch": 1.3922369765066394,
2426
+ "grad_norm": 0.20178458094596863,
2427
+ "learning_rate": 1.1824555342041129e-05,
2428
+ "loss": 0.222,
2429
+ "step": 340
2430
+ },
2431
+ {
2432
+ "epoch": 1.3963227783452503,
2433
+ "grad_norm": 0.21634997427463531,
2434
+ "learning_rate": 1.1780536389121668e-05,
2435
+ "loss": 0.2201,
2436
+ "step": 341
2437
+ },
2438
+ {
2439
+ "epoch": 1.400408580183861,
2440
+ "grad_norm": 0.22160372138023376,
2441
+ "learning_rate": 1.1736481776669307e-05,
2442
+ "loss": 0.2137,
2443
+ "step": 342
2444
+ },
2445
+ {
2446
+ "epoch": 1.404494382022472,
2447
+ "grad_norm": 0.2184736281633377,
2448
+ "learning_rate": 1.1692392386983837e-05,
2449
+ "loss": 0.2247,
2450
+ "step": 343
2451
+ },
2452
+ {
2453
+ "epoch": 1.4085801838610827,
2454
+ "grad_norm": 0.19715434312820435,
2455
+ "learning_rate": 1.1648269103061567e-05,
2456
+ "loss": 0.2119,
2457
+ "step": 344
2458
+ },
2459
+ {
2460
+ "epoch": 1.4126659856996935,
2461
+ "grad_norm": 0.2113262563943863,
2462
+ "learning_rate": 1.1604112808577603e-05,
2463
+ "loss": 0.2108,
2464
+ "step": 345
2465
+ },
2466
+ {
2467
+ "epoch": 1.4167517875383044,
2468
+ "grad_norm": 0.22849951684474945,
2469
+ "learning_rate": 1.155992438786818e-05,
2470
+ "loss": 0.2193,
2471
+ "step": 346
2472
+ },
2473
+ {
2474
+ "epoch": 1.4208375893769152,
2475
+ "grad_norm": 0.20339028537273407,
2476
+ "learning_rate": 1.1515704725912926e-05,
2477
+ "loss": 0.2041,
2478
+ "step": 347
2479
+ },
2480
+ {
2481
+ "epoch": 1.424923391215526,
2482
+ "grad_norm": 0.21201005578041077,
2483
+ "learning_rate": 1.1471454708317163e-05,
2484
+ "loss": 0.2105,
2485
+ "step": 348
2486
+ },
2487
+ {
2488
+ "epoch": 1.4290091930541369,
2489
+ "grad_norm": 0.22068007290363312,
2490
+ "learning_rate": 1.1427175221294145e-05,
2491
+ "loss": 0.2198,
2492
+ "step": 349
2493
+ },
2494
+ {
2495
+ "epoch": 1.4330949948927478,
2496
+ "grad_norm": 0.2174069881439209,
2497
+ "learning_rate": 1.1382867151647333e-05,
2498
+ "loss": 0.2093,
2499
+ "step": 350
2500
+ },
2501
+ {
2502
+ "epoch": 1.4371807967313586,
2503
+ "grad_norm": 0.193963423371315,
2504
+ "learning_rate": 1.1338531386752618e-05,
2505
+ "loss": 0.2068,
2506
+ "step": 351
2507
+ },
2508
+ {
2509
+ "epoch": 1.4412665985699693,
2510
+ "grad_norm": 0.20459222793579102,
2511
+ "learning_rate": 1.1294168814540554e-05,
2512
+ "loss": 0.1933,
2513
+ "step": 352
2514
+ },
2515
+ {
2516
+ "epoch": 1.4453524004085803,
2517
+ "grad_norm": 0.22635479271411896,
2518
+ "learning_rate": 1.1249780323478585e-05,
2519
+ "loss": 0.2065,
2520
+ "step": 353
2521
+ },
2522
+ {
2523
+ "epoch": 1.449438202247191,
2524
+ "grad_norm": 0.194682314991951,
2525
+ "learning_rate": 1.1205366802553231e-05,
2526
+ "loss": 0.1927,
2527
+ "step": 354
2528
+ },
2529
+ {
2530
+ "epoch": 1.4535240040858017,
2531
+ "grad_norm": 0.21696004271507263,
2532
+ "learning_rate": 1.1160929141252303e-05,
2533
+ "loss": 0.2278,
2534
+ "step": 355
2535
+ },
2536
+ {
2537
+ "epoch": 1.4576098059244127,
2538
+ "grad_norm": 0.21389201283454895,
2539
+ "learning_rate": 1.1116468229547079e-05,
2540
+ "loss": 0.2002,
2541
+ "step": 356
2542
+ },
2543
+ {
2544
+ "epoch": 1.4616956077630234,
2545
+ "grad_norm": 0.2095150500535965,
2546
+ "learning_rate": 1.107198495787448e-05,
2547
+ "loss": 0.2068,
2548
+ "step": 357
2549
+ },
2550
+ {
2551
+ "epoch": 1.4657814096016344,
2552
+ "grad_norm": 0.17831739783287048,
2553
+ "learning_rate": 1.1027480217119245e-05,
2554
+ "loss": 0.197,
2555
+ "step": 358
2556
+ },
2557
+ {
2558
+ "epoch": 1.4698672114402451,
2559
+ "grad_norm": 0.20202742516994476,
2560
+ "learning_rate": 1.0982954898596072e-05,
2561
+ "loss": 0.2045,
2562
+ "step": 359
2563
+ },
2564
+ {
2565
+ "epoch": 1.473953013278856,
2566
+ "grad_norm": 0.22862711548805237,
2567
+ "learning_rate": 1.0938409894031793e-05,
2568
+ "loss": 0.2325,
2569
+ "step": 360
2570
+ },
2571
+ {
2572
+ "epoch": 1.4780388151174668,
2573
+ "grad_norm": 0.1705763190984726,
2574
+ "learning_rate": 1.0893846095547493e-05,
2575
+ "loss": 0.1981,
2576
+ "step": 361
2577
+ },
2578
+ {
2579
+ "epoch": 1.4821246169560776,
2580
+ "grad_norm": 0.18474915623664856,
2581
+ "learning_rate": 1.084926439564065e-05,
2582
+ "loss": 0.2056,
2583
+ "step": 362
2584
+ },
2585
+ {
2586
+ "epoch": 1.4862104187946885,
2587
+ "grad_norm": 0.20779083669185638,
2588
+ "learning_rate": 1.0804665687167262e-05,
2589
+ "loss": 0.2144,
2590
+ "step": 363
2591
+ },
2592
+ {
2593
+ "epoch": 1.4902962206332993,
2594
+ "grad_norm": 0.21080774068832397,
2595
+ "learning_rate": 1.0760050863323961e-05,
2596
+ "loss": 0.2129,
2597
+ "step": 364
2598
+ },
2599
+ {
2600
+ "epoch": 1.49438202247191,
2601
+ "grad_norm": 0.2220941036939621,
2602
+ "learning_rate": 1.0715420817630137e-05,
2603
+ "loss": 0.2143,
2604
+ "step": 365
2605
+ },
2606
+ {
2607
+ "epoch": 1.498467824310521,
2608
+ "grad_norm": 0.2133949249982834,
2609
+ "learning_rate": 1.0670776443910024e-05,
2610
+ "loss": 0.2124,
2611
+ "step": 366
2612
+ },
2613
+ {
2614
+ "epoch": 1.502553626149132,
2615
+ "grad_norm": 0.18696293234825134,
2616
+ "learning_rate": 1.062611863627482e-05,
2617
+ "loss": 0.1942,
2618
+ "step": 367
2619
+ },
2620
+ {
2621
+ "epoch": 1.5066394279877426,
2622
+ "grad_norm": 0.23111994564533234,
2623
+ "learning_rate": 1.0581448289104759e-05,
2624
+ "loss": 0.2029,
2625
+ "step": 368
2626
+ },
2627
+ {
2628
+ "epoch": 1.5107252298263534,
2629
+ "grad_norm": 0.22670774161815643,
2630
+ "learning_rate": 1.0536766297031216e-05,
2631
+ "loss": 0.2142,
2632
+ "step": 369
2633
+ },
2634
+ {
2635
+ "epoch": 1.5148110316649643,
2636
+ "grad_norm": 0.2128949612379074,
2637
+ "learning_rate": 1.0492073554918782e-05,
2638
+ "loss": 0.2159,
2639
+ "step": 370
2640
+ },
2641
+ {
2642
+ "epoch": 1.518896833503575,
2643
+ "grad_norm": 0.22443941235542297,
2644
+ "learning_rate": 1.0447370957847343e-05,
2645
+ "loss": 0.2142,
2646
+ "step": 371
2647
+ },
2648
+ {
2649
+ "epoch": 1.5229826353421858,
2650
+ "grad_norm": 0.2178109586238861,
2651
+ "learning_rate": 1.0402659401094154e-05,
2652
+ "loss": 0.2087,
2653
+ "step": 372
2654
+ },
2655
+ {
2656
+ "epoch": 1.5270684371807968,
2657
+ "grad_norm": 0.20667575299739838,
2658
+ "learning_rate": 1.0357939780115906e-05,
2659
+ "loss": 0.2106,
2660
+ "step": 373
2661
+ },
2662
+ {
2663
+ "epoch": 1.5311542390194075,
2664
+ "grad_norm": 0.22103561460971832,
2665
+ "learning_rate": 1.0313212990530804e-05,
2666
+ "loss": 0.2052,
2667
+ "step": 374
2668
+ },
2669
+ {
2670
+ "epoch": 1.5352400408580182,
2671
+ "grad_norm": 0.24241849780082703,
2672
+ "learning_rate": 1.0268479928100615e-05,
2673
+ "loss": 0.2166,
2674
+ "step": 375
2675
+ },
2676
+ {
2677
+ "epoch": 1.5393258426966292,
2678
+ "grad_norm": 0.2349155843257904,
2679
+ "learning_rate": 1.0223741488712732e-05,
2680
+ "loss": 0.2065,
2681
+ "step": 376
2682
+ },
2683
+ {
2684
+ "epoch": 1.5434116445352402,
2685
+ "grad_norm": 0.21443332731723785,
2686
+ "learning_rate": 1.0178998568362243e-05,
2687
+ "loss": 0.215,
2688
+ "step": 377
2689
+ },
2690
+ {
2691
+ "epoch": 1.547497446373851,
2692
+ "grad_norm": 0.20891189575195312,
2693
+ "learning_rate": 1.0134252063133976e-05,
2694
+ "loss": 0.2057,
2695
+ "step": 378
2696
+ },
2697
+ {
2698
+ "epoch": 1.5515832482124616,
2699
+ "grad_norm": 0.1952524334192276,
2700
+ "learning_rate": 1.0089502869184549e-05,
2701
+ "loss": 0.2008,
2702
+ "step": 379
2703
+ },
2704
+ {
2705
+ "epoch": 1.5556690500510726,
2706
+ "grad_norm": 0.21196359395980835,
2707
+ "learning_rate": 1.0044751882724436e-05,
2708
+ "loss": 0.2076,
2709
+ "step": 380
2710
+ },
2711
+ {
2712
+ "epoch": 1.5597548518896833,
2713
+ "grad_norm": 0.2183002382516861,
2714
+ "learning_rate": 1e-05,
2715
+ "loss": 0.2136,
2716
+ "step": 381
2717
+ },
2718
+ {
2719
+ "epoch": 1.563840653728294,
2720
+ "grad_norm": 0.18016640841960907,
2721
+ "learning_rate": 9.955248117275566e-06,
2722
+ "loss": 0.215,
2723
+ "step": 382
2724
+ },
2725
+ {
2726
+ "epoch": 1.567926455566905,
2727
+ "grad_norm": 0.2017180472612381,
2728
+ "learning_rate": 9.910497130815454e-06,
2729
+ "loss": 0.2215,
2730
+ "step": 383
2731
+ },
2732
+ {
2733
+ "epoch": 1.572012257405516,
2734
+ "grad_norm": 0.19466502964496613,
2735
+ "learning_rate": 9.865747936866027e-06,
2736
+ "loss": 0.2062,
2737
+ "step": 384
2738
+ },
2739
+ {
2740
+ "epoch": 1.5760980592441267,
2741
+ "grad_norm": 0.20503178238868713,
2742
+ "learning_rate": 9.821001431637759e-06,
2743
+ "loss": 0.2043,
2744
+ "step": 385
2745
+ },
2746
+ {
2747
+ "epoch": 1.5801838610827375,
2748
+ "grad_norm": 0.2414986789226532,
2749
+ "learning_rate": 9.776258511287271e-06,
2750
+ "loss": 0.2063,
2751
+ "step": 386
2752
+ },
2753
+ {
2754
+ "epoch": 1.5842696629213484,
2755
+ "grad_norm": 0.21953481435775757,
2756
+ "learning_rate": 9.73152007189939e-06,
2757
+ "loss": 0.2246,
2758
+ "step": 387
2759
+ },
2760
+ {
2761
+ "epoch": 1.5883554647599591,
2762
+ "grad_norm": 0.20504049956798553,
2763
+ "learning_rate": 9.6867870094692e-06,
2764
+ "loss": 0.1999,
2765
+ "step": 388
2766
+ },
2767
+ {
2768
+ "epoch": 1.5924412665985699,
2769
+ "grad_norm": 0.17664040625095367,
2770
+ "learning_rate": 9.642060219884096e-06,
2771
+ "loss": 0.1965,
2772
+ "step": 389
2773
+ },
2774
+ {
2775
+ "epoch": 1.5965270684371808,
2776
+ "grad_norm": 0.2129695564508438,
2777
+ "learning_rate": 9.597340598905851e-06,
2778
+ "loss": 0.2218,
2779
+ "step": 390
2780
+ },
2781
+ {
2782
+ "epoch": 1.6006128702757916,
2783
+ "grad_norm": 0.20206192135810852,
2784
+ "learning_rate": 9.55262904215266e-06,
2785
+ "loss": 0.2126,
2786
+ "step": 391
2787
+ },
2788
+ {
2789
+ "epoch": 1.6046986721144023,
2790
+ "grad_norm": 0.19526894390583038,
2791
+ "learning_rate": 9.50792644508122e-06,
2792
+ "loss": 0.2032,
2793
+ "step": 392
2794
+ },
2795
+ {
2796
+ "epoch": 1.6087844739530133,
2797
+ "grad_norm": 0.22161059081554413,
2798
+ "learning_rate": 9.463233702968784e-06,
2799
+ "loss": 0.2228,
2800
+ "step": 393
2801
+ },
2802
+ {
2803
+ "epoch": 1.6128702757916242,
2804
+ "grad_norm": 0.22896061837673187,
2805
+ "learning_rate": 9.418551710895243e-06,
2806
+ "loss": 0.2149,
2807
+ "step": 394
2808
+ },
2809
+ {
2810
+ "epoch": 1.616956077630235,
2811
+ "grad_norm": 0.19969528913497925,
2812
+ "learning_rate": 9.373881363725182e-06,
2813
+ "loss": 0.2059,
2814
+ "step": 395
2815
+ },
2816
+ {
2817
+ "epoch": 1.6210418794688457,
2818
+ "grad_norm": 0.19778963923454285,
2819
+ "learning_rate": 9.329223556089976e-06,
2820
+ "loss": 0.1946,
2821
+ "step": 396
2822
+ },
2823
+ {
2824
+ "epoch": 1.6251276813074567,
2825
+ "grad_norm": 0.21220386028289795,
2826
+ "learning_rate": 9.284579182369868e-06,
2827
+ "loss": 0.2047,
2828
+ "step": 397
2829
+ },
2830
+ {
2831
+ "epoch": 1.6292134831460674,
2832
+ "grad_norm": 0.20156344771385193,
2833
+ "learning_rate": 9.239949136676042e-06,
2834
+ "loss": 0.2057,
2835
+ "step": 398
2836
+ },
2837
+ {
2838
+ "epoch": 1.6332992849846781,
2839
+ "grad_norm": 0.21823804080486298,
2840
+ "learning_rate": 9.195334312832742e-06,
2841
+ "loss": 0.1971,
2842
+ "step": 399
2843
+ },
2844
+ {
2845
+ "epoch": 1.637385086823289,
2846
+ "grad_norm": 0.1959310621023178,
2847
+ "learning_rate": 9.15073560435935e-06,
2848
+ "loss": 0.1925,
2849
+ "step": 400
2850
+ },
2851
+ {
2852
+ "epoch": 1.6414708886619,
2853
+ "grad_norm": 0.18495595455169678,
2854
+ "learning_rate": 9.10615390445251e-06,
2855
+ "loss": 0.1966,
2856
+ "step": 401
2857
+ },
2858
+ {
2859
+ "epoch": 1.6455566905005106,
2860
+ "grad_norm": 0.21264636516571045,
2861
+ "learning_rate": 9.061590105968208e-06,
2862
+ "loss": 0.2295,
2863
+ "step": 402
2864
+ },
2865
+ {
2866
+ "epoch": 1.6496424923391215,
2867
+ "grad_norm": 0.19887572526931763,
2868
+ "learning_rate": 9.01704510140393e-06,
2869
+ "loss": 0.2005,
2870
+ "step": 403
2871
+ },
2872
+ {
2873
+ "epoch": 1.6537282941777325,
2874
+ "grad_norm": 0.22931122779846191,
2875
+ "learning_rate": 8.97251978288076e-06,
2876
+ "loss": 0.2066,
2877
+ "step": 404
2878
+ },
2879
+ {
2880
+ "epoch": 1.6578140960163432,
2881
+ "grad_norm": 0.20790022611618042,
2882
+ "learning_rate": 8.928015042125523e-06,
2883
+ "loss": 0.2174,
2884
+ "step": 405
2885
+ },
2886
+ {
2887
+ "epoch": 1.661899897854954,
2888
+ "grad_norm": 0.18505467474460602,
2889
+ "learning_rate": 8.883531770452924e-06,
2890
+ "loss": 0.1917,
2891
+ "step": 406
2892
+ },
2893
+ {
2894
+ "epoch": 1.665985699693565,
2895
+ "grad_norm": 0.22820204496383667,
2896
+ "learning_rate": 8.839070858747697e-06,
2897
+ "loss": 0.2176,
2898
+ "step": 407
2899
+ },
2900
+ {
2901
+ "epoch": 1.6700715015321757,
2902
+ "grad_norm": 0.20349323749542236,
2903
+ "learning_rate": 8.79463319744677e-06,
2904
+ "loss": 0.2168,
2905
+ "step": 408
2906
+ },
2907
+ {
2908
+ "epoch": 1.6741573033707864,
2909
+ "grad_norm": 0.21869666874408722,
2910
+ "learning_rate": 8.750219676521417e-06,
2911
+ "loss": 0.2074,
2912
+ "step": 409
2913
+ },
2914
+ {
2915
+ "epoch": 1.6782431052093973,
2916
+ "grad_norm": 0.1885787397623062,
2917
+ "learning_rate": 8.705831185459446e-06,
2918
+ "loss": 0.196,
2919
+ "step": 410
2920
+ },
2921
+ {
2922
+ "epoch": 1.6782431052093973,
2923
+ "eval_loss": 0.3017351031303406,
2924
+ "eval_runtime": 5.6615,
2925
+ "eval_samples_per_second": 13.954,
2926
+ "eval_steps_per_second": 1.766,
2927
+ "step": 410
2928
+ },
2929
+ {
2930
+ "epoch": 1.6823289070480083,
2931
+ "grad_norm": 0.19935843348503113,
2932
+ "learning_rate": 8.661468613247387e-06,
2933
+ "loss": 0.2205,
2934
+ "step": 411
2935
+ },
2936
+ {
2937
+ "epoch": 1.686414708886619,
2938
+ "grad_norm": 0.21857048571109772,
2939
+ "learning_rate": 8.617132848352672e-06,
2940
+ "loss": 0.2153,
2941
+ "step": 412
2942
+ },
2943
+ {
2944
+ "epoch": 1.6905005107252298,
2945
+ "grad_norm": 0.22006161510944366,
2946
+ "learning_rate": 8.572824778705858e-06,
2947
+ "loss": 0.207,
2948
+ "step": 413
2949
+ },
2950
+ {
2951
+ "epoch": 1.6945863125638407,
2952
+ "grad_norm": 0.18598918616771698,
2953
+ "learning_rate": 8.528545291682839e-06,
2954
+ "loss": 0.2124,
2955
+ "step": 414
2956
+ },
2957
+ {
2958
+ "epoch": 1.6986721144024515,
2959
+ "grad_norm": 0.20595507323741913,
2960
+ "learning_rate": 8.484295274087077e-06,
2961
+ "loss": 0.1969,
2962
+ "step": 415
2963
+ },
2964
+ {
2965
+ "epoch": 1.7027579162410622,
2966
+ "grad_norm": 0.20170485973358154,
2967
+ "learning_rate": 8.440075612131823e-06,
2968
+ "loss": 0.2135,
2969
+ "step": 416
2970
+ },
2971
+ {
2972
+ "epoch": 1.7068437180796732,
2973
+ "grad_norm": 0.177800714969635,
2974
+ "learning_rate": 8.395887191422397e-06,
2975
+ "loss": 0.1942,
2976
+ "step": 417
2977
+ },
2978
+ {
2979
+ "epoch": 1.7109295199182841,
2980
+ "grad_norm": 0.1993665099143982,
2981
+ "learning_rate": 8.351730896938438e-06,
2982
+ "loss": 0.2128,
2983
+ "step": 418
2984
+ },
2985
+ {
2986
+ "epoch": 1.7150153217568946,
2987
+ "grad_norm": 0.20131590962409973,
2988
+ "learning_rate": 8.307607613016166e-06,
2989
+ "loss": 0.2119,
2990
+ "step": 419
2991
+ },
2992
+ {
2993
+ "epoch": 1.7191011235955056,
2994
+ "grad_norm": 0.21999968588352203,
2995
+ "learning_rate": 8.263518223330698e-06,
2996
+ "loss": 0.2053,
2997
+ "step": 420
2998
+ },
2999
+ {
3000
+ "epoch": 1.7231869254341166,
3001
+ "grad_norm": 0.2145904302597046,
3002
+ "learning_rate": 8.219463610878336e-06,
3003
+ "loss": 0.2163,
3004
+ "step": 421
3005
+ },
3006
+ {
3007
+ "epoch": 1.7272727272727273,
3008
+ "grad_norm": 0.19223150610923767,
3009
+ "learning_rate": 8.175444657958875e-06,
3010
+ "loss": 0.1933,
3011
+ "step": 422
3012
+ },
3013
+ {
3014
+ "epoch": 1.731358529111338,
3015
+ "grad_norm": 0.19847947359085083,
3016
+ "learning_rate": 8.131462246157953e-06,
3017
+ "loss": 0.2091,
3018
+ "step": 423
3019
+ },
3020
+ {
3021
+ "epoch": 1.735444330949949,
3022
+ "grad_norm": 0.2146064192056656,
3023
+ "learning_rate": 8.087517256329376e-06,
3024
+ "loss": 0.1981,
3025
+ "step": 424
3026
+ },
3027
+ {
3028
+ "epoch": 1.7395301327885597,
3029
+ "grad_norm": 0.18579524755477905,
3030
+ "learning_rate": 8.043610568577497e-06,
3031
+ "loss": 0.2158,
3032
+ "step": 425
3033
+ },
3034
+ {
3035
+ "epoch": 1.7436159346271705,
3036
+ "grad_norm": 0.2061241865158081,
3037
+ "learning_rate": 7.999743062239557e-06,
3038
+ "loss": 0.1977,
3039
+ "step": 426
3040
+ },
3041
+ {
3042
+ "epoch": 1.7477017364657814,
3043
+ "grad_norm": 0.2085464894771576,
3044
+ "learning_rate": 7.95591561586811e-06,
3045
+ "loss": 0.2048,
3046
+ "step": 427
3047
+ },
3048
+ {
3049
+ "epoch": 1.7517875383043924,
3050
+ "grad_norm": 0.18300579488277435,
3051
+ "learning_rate": 7.912129107213417e-06,
3052
+ "loss": 0.1924,
3053
+ "step": 428
3054
+ },
3055
+ {
3056
+ "epoch": 1.7558733401430031,
3057
+ "grad_norm": 0.20025411248207092,
3058
+ "learning_rate": 7.868384413205842e-06,
3059
+ "loss": 0.2064,
3060
+ "step": 429
3061
+ },
3062
+ {
3063
+ "epoch": 1.7599591419816139,
3064
+ "grad_norm": 0.20789940655231476,
3065
+ "learning_rate": 7.824682409938328e-06,
3066
+ "loss": 0.2078,
3067
+ "step": 430
3068
+ },
3069
+ {
3070
+ "epoch": 1.7640449438202248,
3071
+ "grad_norm": 0.20518545806407928,
3072
+ "learning_rate": 7.781023972648826e-06,
3073
+ "loss": 0.2144,
3074
+ "step": 431
3075
+ },
3076
+ {
3077
+ "epoch": 1.7681307456588355,
3078
+ "grad_norm": 0.20950093865394592,
3079
+ "learning_rate": 7.73740997570278e-06,
3080
+ "loss": 0.2045,
3081
+ "step": 432
3082
+ },
3083
+ {
3084
+ "epoch": 1.7722165474974463,
3085
+ "grad_norm": 0.19912225008010864,
3086
+ "learning_rate": 7.6938412925756e-06,
3087
+ "loss": 0.2015,
3088
+ "step": 433
3089
+ },
3090
+ {
3091
+ "epoch": 1.7763023493360572,
3092
+ "grad_norm": 0.23430877923965454,
3093
+ "learning_rate": 7.650318795835179e-06,
3094
+ "loss": 0.2262,
3095
+ "step": 434
3096
+ },
3097
+ {
3098
+ "epoch": 1.780388151174668,
3099
+ "grad_norm": 0.19112354516983032,
3100
+ "learning_rate": 7.606843357124426e-06,
3101
+ "loss": 0.2059,
3102
+ "step": 435
3103
+ },
3104
+ {
3105
+ "epoch": 1.7844739530132787,
3106
+ "grad_norm": 0.20528246462345123,
3107
+ "learning_rate": 7.563415847143782e-06,
3108
+ "loss": 0.1966,
3109
+ "step": 436
3110
+ },
3111
+ {
3112
+ "epoch": 1.7885597548518897,
3113
+ "grad_norm": 0.19889222085475922,
3114
+ "learning_rate": 7.520037135633817e-06,
3115
+ "loss": 0.2039,
3116
+ "step": 437
3117
+ },
3118
+ {
3119
+ "epoch": 1.7926455566905006,
3120
+ "grad_norm": 0.23072609305381775,
3121
+ "learning_rate": 7.476708091357783e-06,
3122
+ "loss": 0.2142,
3123
+ "step": 438
3124
+ },
3125
+ {
3126
+ "epoch": 1.7967313585291114,
3127
+ "grad_norm": 0.24155430495738983,
3128
+ "learning_rate": 7.433429582084233e-06,
3129
+ "loss": 0.2224,
3130
+ "step": 439
3131
+ },
3132
+ {
3133
+ "epoch": 1.800817160367722,
3134
+ "grad_norm": 0.20754969120025635,
3135
+ "learning_rate": 7.39020247456963e-06,
3136
+ "loss": 0.2087,
3137
+ "step": 440
3138
+ },
3139
+ {
3140
+ "epoch": 1.804902962206333,
3141
+ "grad_norm": 0.20180056989192963,
3142
+ "learning_rate": 7.347027634540993e-06,
3143
+ "loss": 0.2136,
3144
+ "step": 441
3145
+ },
3146
+ {
3147
+ "epoch": 1.8089887640449438,
3148
+ "grad_norm": 0.1921422928571701,
3149
+ "learning_rate": 7.303905926678565e-06,
3150
+ "loss": 0.2002,
3151
+ "step": 442
3152
+ },
3153
+ {
3154
+ "epoch": 1.8130745658835545,
3155
+ "grad_norm": 0.19783474504947662,
3156
+ "learning_rate": 7.260838214598475e-06,
3157
+ "loss": 0.1969,
3158
+ "step": 443
3159
+ },
3160
+ {
3161
+ "epoch": 1.8171603677221655,
3162
+ "grad_norm": 0.19810006022453308,
3163
+ "learning_rate": 7.217825360835475e-06,
3164
+ "loss": 0.1953,
3165
+ "step": 444
3166
+ },
3167
+ {
3168
+ "epoch": 1.8212461695607765,
3169
+ "grad_norm": 0.20617030560970306,
3170
+ "learning_rate": 7.174868226825631e-06,
3171
+ "loss": 0.2057,
3172
+ "step": 445
3173
+ },
3174
+ {
3175
+ "epoch": 1.825331971399387,
3176
+ "grad_norm": 0.20550931990146637,
3177
+ "learning_rate": 7.131967672889101e-06,
3178
+ "loss": 0.2023,
3179
+ "step": 446
3180
+ },
3181
+ {
3182
+ "epoch": 1.829417773237998,
3183
+ "grad_norm": 0.20049825310707092,
3184
+ "learning_rate": 7.089124558212872e-06,
3185
+ "loss": 0.2069,
3186
+ "step": 447
3187
+ },
3188
+ {
3189
+ "epoch": 1.8335035750766089,
3190
+ "grad_norm": 0.20448057353496552,
3191
+ "learning_rate": 7.04633974083359e-06,
3192
+ "loss": 0.2117,
3193
+ "step": 448
3194
+ },
3195
+ {
3196
+ "epoch": 1.8375893769152196,
3197
+ "grad_norm": 0.20932386815547943,
3198
+ "learning_rate": 7.003614077620348e-06,
3199
+ "loss": 0.2075,
3200
+ "step": 449
3201
+ },
3202
+ {
3203
+ "epoch": 1.8416751787538304,
3204
+ "grad_norm": 0.20885604619979858,
3205
+ "learning_rate": 6.960948424257532e-06,
3206
+ "loss": 0.2224,
3207
+ "step": 450
3208
+ },
3209
+ {
3210
+ "epoch": 1.8457609805924413,
3211
+ "grad_norm": 0.20506371557712555,
3212
+ "learning_rate": 6.918343635227694e-06,
3213
+ "loss": 0.2022,
3214
+ "step": 451
3215
+ },
3216
+ {
3217
+ "epoch": 1.849846782431052,
3218
+ "grad_norm": 0.20515413582324982,
3219
+ "learning_rate": 6.8758005637944245e-06,
3220
+ "loss": 0.1968,
3221
+ "step": 452
3222
+ },
3223
+ {
3224
+ "epoch": 1.8539325842696628,
3225
+ "grad_norm": 0.20033307373523712,
3226
+ "learning_rate": 6.833320061985278e-06,
3227
+ "loss": 0.1958,
3228
+ "step": 453
3229
+ },
3230
+ {
3231
+ "epoch": 1.8580183861082737,
3232
+ "grad_norm": 0.18687546253204346,
3233
+ "learning_rate": 6.7909029805746855e-06,
3234
+ "loss": 0.2085,
3235
+ "step": 454
3236
+ },
3237
+ {
3238
+ "epoch": 1.8621041879468847,
3239
+ "grad_norm": 0.20156648755073547,
3240
+ "learning_rate": 6.7485501690669495e-06,
3241
+ "loss": 0.2031,
3242
+ "step": 455
3243
+ },
3244
+ {
3245
+ "epoch": 1.8661899897854954,
3246
+ "grad_norm": 0.1979530155658722,
3247
+ "learning_rate": 6.706262475679205e-06,
3248
+ "loss": 0.2061,
3249
+ "step": 456
3250
+ },
3251
+ {
3252
+ "epoch": 1.8702757916241062,
3253
+ "grad_norm": 0.20796051621437073,
3254
+ "learning_rate": 6.664040747324437e-06,
3255
+ "loss": 0.1968,
3256
+ "step": 457
3257
+ },
3258
+ {
3259
+ "epoch": 1.8743615934627171,
3260
+ "grad_norm": 0.19492687284946442,
3261
+ "learning_rate": 6.62188582959453e-06,
3262
+ "loss": 0.2145,
3263
+ "step": 458
3264
+ },
3265
+ {
3266
+ "epoch": 1.8784473953013279,
3267
+ "grad_norm": 0.21463002264499664,
3268
+ "learning_rate": 6.579798566743314e-06,
3269
+ "loss": 0.195,
3270
+ "step": 459
3271
+ },
3272
+ {
3273
+ "epoch": 1.8825331971399386,
3274
+ "grad_norm": 0.1875930279493332,
3275
+ "learning_rate": 6.537779801669677e-06,
3276
+ "loss": 0.1987,
3277
+ "step": 460
3278
+ },
3279
+ {
3280
+ "epoch": 1.8866189989785496,
3281
+ "grad_norm": 0.22397062182426453,
3282
+ "learning_rate": 6.495830375900665e-06,
3283
+ "loss": 0.2237,
3284
+ "step": 461
3285
+ },
3286
+ {
3287
+ "epoch": 1.8907048008171605,
3288
+ "grad_norm": 0.21807466447353363,
3289
+ "learning_rate": 6.453951129574644e-06,
3290
+ "loss": 0.21,
3291
+ "step": 462
3292
+ },
3293
+ {
3294
+ "epoch": 1.894790602655771,
3295
+ "grad_norm": 0.2611398994922638,
3296
+ "learning_rate": 6.41214290142447e-06,
3297
+ "loss": 0.1902,
3298
+ "step": 463
3299
+ },
3300
+ {
3301
+ "epoch": 1.898876404494382,
3302
+ "grad_norm": 0.1971069723367691,
3303
+ "learning_rate": 6.370406528760675e-06,
3304
+ "loss": 0.1914,
3305
+ "step": 464
3306
+ },
3307
+ {
3308
+ "epoch": 1.902962206332993,
3309
+ "grad_norm": 0.2033158540725708,
3310
+ "learning_rate": 6.3287428474547256e-06,
3311
+ "loss": 0.2088,
3312
+ "step": 465
3313
+ },
3314
+ {
3315
+ "epoch": 1.9070480081716037,
3316
+ "grad_norm": 0.18615838885307312,
3317
+ "learning_rate": 6.287152691922264e-06,
3318
+ "loss": 0.1832,
3319
+ "step": 466
3320
+ },
3321
+ {
3322
+ "epoch": 1.9111338100102144,
3323
+ "grad_norm": 0.2230215072631836,
3324
+ "learning_rate": 6.245636895106403e-06,
3325
+ "loss": 0.216,
3326
+ "step": 467
3327
+ },
3328
+ {
3329
+ "epoch": 1.9152196118488254,
3330
+ "grad_norm": 0.18996527791023254,
3331
+ "learning_rate": 6.204196288461037e-06,
3332
+ "loss": 0.1968,
3333
+ "step": 468
3334
+ },
3335
+ {
3336
+ "epoch": 1.9193054136874361,
3337
+ "grad_norm": 0.2129172682762146,
3338
+ "learning_rate": 6.162831701934203e-06,
3339
+ "loss": 0.204,
3340
+ "step": 469
3341
+ },
3342
+ {
3343
+ "epoch": 1.9233912155260469,
3344
+ "grad_norm": 0.20386871695518494,
3345
+ "learning_rate": 6.121543963951453e-06,
3346
+ "loss": 0.1933,
3347
+ "step": 470
3348
+ },
3349
+ {
3350
+ "epoch": 1.9274770173646578,
3351
+ "grad_norm": 0.1936495006084442,
3352
+ "learning_rate": 6.080333901399252e-06,
3353
+ "loss": 0.1869,
3354
+ "step": 471
3355
+ },
3356
+ {
3357
+ "epoch": 1.9315628192032688,
3358
+ "grad_norm": 0.200775146484375,
3359
+ "learning_rate": 6.039202339608432e-06,
3360
+ "loss": 0.1922,
3361
+ "step": 472
3362
+ },
3363
+ {
3364
+ "epoch": 1.9356486210418795,
3365
+ "grad_norm": 0.19721902906894684,
3366
+ "learning_rate": 5.998150102337665e-06,
3367
+ "loss": 0.1946,
3368
+ "step": 473
3369
+ },
3370
+ {
3371
+ "epoch": 1.9397344228804902,
3372
+ "grad_norm": 0.22053122520446777,
3373
+ "learning_rate": 5.957178011756952e-06,
3374
+ "loss": 0.2083,
3375
+ "step": 474
3376
+ },
3377
+ {
3378
+ "epoch": 1.9438202247191012,
3379
+ "grad_norm": 0.20996588468551636,
3380
+ "learning_rate": 5.9162868884311596e-06,
3381
+ "loss": 0.2069,
3382
+ "step": 475
3383
+ },
3384
+ {
3385
+ "epoch": 1.947906026557712,
3386
+ "grad_norm": 0.2055818736553192,
3387
+ "learning_rate": 5.875477551303596e-06,
3388
+ "loss": 0.2082,
3389
+ "step": 476
3390
+ },
3391
+ {
3392
+ "epoch": 1.9519918283963227,
3393
+ "grad_norm": 0.18722133338451385,
3394
+ "learning_rate": 5.834750817679606e-06,
3395
+ "loss": 0.1904,
3396
+ "step": 477
3397
+ },
3398
+ {
3399
+ "epoch": 1.9560776302349336,
3400
+ "grad_norm": 0.2298428863286972,
3401
+ "learning_rate": 5.794107503210187e-06,
3402
+ "loss": 0.2141,
3403
+ "step": 478
3404
+ },
3405
+ {
3406
+ "epoch": 1.9601634320735446,
3407
+ "grad_norm": 0.20707903802394867,
3408
+ "learning_rate": 5.753548421875686e-06,
3409
+ "loss": 0.2166,
3410
+ "step": 479
3411
+ },
3412
+ {
3413
+ "epoch": 1.9642492339121551,
3414
+ "grad_norm": 0.21654275059700012,
3415
+ "learning_rate": 5.713074385969457e-06,
3416
+ "loss": 0.207,
3417
+ "step": 480
3418
+ },
3419
+ {
3420
+ "epoch": 1.968335035750766,
3421
+ "grad_norm": 0.1973462849855423,
3422
+ "learning_rate": 5.672686206081638e-06,
3423
+ "loss": 0.1936,
3424
+ "step": 481
3425
+ },
3426
+ {
3427
+ "epoch": 1.972420837589377,
3428
+ "grad_norm": 0.2014143168926239,
3429
+ "learning_rate": 5.632384691082874e-06,
3430
+ "loss": 0.2031,
3431
+ "step": 482
3432
+ },
3433
+ {
3434
+ "epoch": 1.9765066394279878,
3435
+ "grad_norm": 0.19778530299663544,
3436
+ "learning_rate": 5.5921706481081405e-06,
3437
+ "loss": 0.1984,
3438
+ "step": 483
3439
+ },
3440
+ {
3441
+ "epoch": 1.9805924412665985,
3442
+ "grad_norm": 0.20483283698558807,
3443
+ "learning_rate": 5.55204488254059e-06,
3444
+ "loss": 0.1892,
3445
+ "step": 484
3446
+ },
3447
+ {
3448
+ "epoch": 1.9846782431052095,
3449
+ "grad_norm": 0.18423794209957123,
3450
+ "learning_rate": 5.512008197995379e-06,
3451
+ "loss": 0.1954,
3452
+ "step": 485
3453
+ },
3454
+ {
3455
+ "epoch": 1.9887640449438202,
3456
+ "grad_norm": 0.19180485606193542,
3457
+ "learning_rate": 5.47206139630363e-06,
3458
+ "loss": 0.1983,
3459
+ "step": 486
3460
+ },
3461
+ {
3462
+ "epoch": 1.992849846782431,
3463
+ "grad_norm": 0.21696338057518005,
3464
+ "learning_rate": 5.432205277496327e-06,
3465
+ "loss": 0.2151,
3466
+ "step": 487
3467
+ },
3468
+ {
3469
+ "epoch": 1.996935648621042,
3470
+ "grad_norm": 0.20143908262252808,
3471
+ "learning_rate": 5.3924406397883174e-06,
3472
+ "loss": 0.2001,
3473
+ "step": 488
3474
+ }
3475
+ ],
3476
+ "logging_steps": 1,
3477
+ "max_steps": 732,
3478
+ "num_input_tokens_seen": 0,
3479
+ "num_train_epochs": 3,
3480
+ "save_steps": 244,
3481
+ "stateful_callbacks": {
3482
+ "TrainerControl": {
3483
+ "args": {
3484
+ "should_epoch_stop": false,
3485
+ "should_evaluate": false,
3486
+ "should_log": false,
3487
+ "should_save": true,
3488
+ "should_training_stop": false
3489
+ },
3490
+ "attributes": {}
3491
+ }
3492
+ },
3493
+ "total_flos": 8.255680921752044e+17,
3494
+ "train_batch_size": 8,
3495
+ "trial_name": null,
3496
+ "trial_params": null
3497
+ }
3b-mb_qwen/checkpoint-488/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:adb0d71cc227e5931c5bf7b539200b82417ba4790efbcda6702c240d70a34d6a
3
+ size 10744
3b-mb_qwen/checkpoint-488/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
3b-mb_qwen/checkpoint-488/zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
3b-mb_qwen/checkpoint-507/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
3b-mb_qwen/checkpoint-507/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-3B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "eos_token_id": 151645,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 2048,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_position_embeddings": 32768,
13
+ "max_window_layers": 70,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 16,
16
+ "num_hidden_layers": 36,
17
+ "num_key_value_heads": 2,
18
+ "rms_norm_eps": 1e-06,
19
+ "rope_scaling": null,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": true,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.48.1",
25
+ "use_cache": false,
26
+ "use_sliding_window": false,
27
+ "vocab_size": 151665
28
+ }
3b-mb_qwen/checkpoint-507/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.48.1"
14
+ }
3b-mb_qwen/checkpoint-507/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step505
3b-mb_qwen/checkpoint-507/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
3b-mb_qwen/checkpoint-507/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c63c90852fa3fa4280db2cd535d3288d97103797c36bc01f6b86838774637395
3
+ size 4956450288
3b-mb_qwen/checkpoint-507/model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5abba5a27427c5628dcedab5d617b319036407f2fc964f81ba71cfb4a973b178
3
+ size 1835586736
3b-mb_qwen/checkpoint-507/model.safetensors.index.json ADDED
@@ -0,0 +1,442 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 6791987200
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
368
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
369
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
370
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
371
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
372
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
373
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
374
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
376
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
377
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
378
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
379
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
380
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
382
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
384
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
385
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
386
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
387
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
388
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
389
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
390
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
391
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
394
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
395
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
396
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
397
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
398
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
399
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
400
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
401
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
402
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
403
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
404
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
405
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
406
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
407
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
408
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
409
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
410
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
411
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
412
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
413
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
414
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
415
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
416
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
417
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
418
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
419
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
420
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
421
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
422
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
423
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
424
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
425
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
426
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
427
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
428
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
429
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
430
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
431
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
432
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
433
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
434
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
435
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
436
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
437
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
438
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
439
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
440
+ "model.norm.weight": "model-00002-of-00002.safetensors"
441
+ }
442
+ }
3b-mb_qwen/checkpoint-507/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f3803bff3f596c03b55881de967a825b5734e4a581739164f9cb9e7fd1aee89
3
+ size 14512
3b-mb_qwen/checkpoint-507/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d768a04b798e2ca42effbe096b8e4481f32a402a9125a2ced390586dab8eb29e
3
+ size 14512
3b-mb_qwen/checkpoint-507/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7cc083c6282a60be998cf859b1a6c559bc7ea7e1edebd39819cd91f2b32e45e
3
+ size 1064
3b-mb_qwen/checkpoint-507/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }