Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- 3b-mb_base/README.md +164 -0
- 3b-mb_base/added_tokens.json +24 -0
- 3b-mb_base/checkpoint-169/added_tokens.json +24 -0
- 3b-mb_base/checkpoint-169/config.json +28 -0
- 3b-mb_base/checkpoint-169/generation_config.json +14 -0
- 3b-mb_base/checkpoint-169/latest +1 -0
- 3b-mb_base/checkpoint-169/merges.txt +0 -0
- 3b-mb_base/checkpoint-169/model-00001-of-00002.safetensors +3 -0
- 3b-mb_base/checkpoint-169/model-00002-of-00002.safetensors +3 -0
- 3b-mb_base/checkpoint-169/model.safetensors.index.json +442 -0
- 3b-mb_base/checkpoint-169/rng_state_0.pth +3 -0
- 3b-mb_base/checkpoint-169/rng_state_1.pth +3 -0
- 3b-mb_base/checkpoint-169/scheduler.pt +3 -0
- 3b-mb_base/checkpoint-169/special_tokens_map.json +31 -0
- 3b-mb_base/checkpoint-169/tokenizer.json +3 -0
- 3b-mb_base/checkpoint-169/tokenizer_config.json +208 -0
- 3b-mb_base/checkpoint-169/trainer_state.json +1240 -0
- 3b-mb_base/checkpoint-169/training_args.bin +3 -0
- 3b-mb_base/checkpoint-169/vocab.json +0 -0
- 3b-mb_base/checkpoint-169/zero_to_fp32.py +760 -0
- 3b-mb_base/checkpoint-338/added_tokens.json +24 -0
- 3b-mb_base/checkpoint-338/config.json +28 -0
- 3b-mb_base/checkpoint-338/generation_config.json +14 -0
- 3b-mb_base/checkpoint-338/latest +1 -0
- 3b-mb_base/checkpoint-338/merges.txt +0 -0
- 3b-mb_base/checkpoint-338/model-00001-of-00002.safetensors +3 -0
- 3b-mb_base/checkpoint-338/model-00002-of-00002.safetensors +3 -0
- 3b-mb_base/checkpoint-338/model.safetensors.index.json +442 -0
- 3b-mb_base/checkpoint-338/rng_state_0.pth +3 -0
- 3b-mb_base/checkpoint-338/rng_state_1.pth +3 -0
- 3b-mb_base/checkpoint-338/scheduler.pt +3 -0
- 3b-mb_base/checkpoint-338/special_tokens_map.json +31 -0
- 3b-mb_base/checkpoint-338/tokenizer.json +3 -0
- 3b-mb_base/checkpoint-338/tokenizer_config.json +208 -0
- 3b-mb_base/checkpoint-338/trainer_state.json +2447 -0
- 3b-mb_base/checkpoint-338/training_args.bin +3 -0
- 3b-mb_base/checkpoint-338/vocab.json +0 -0
- 3b-mb_base/checkpoint-338/zero_to_fp32.py +760 -0
- 3b-mb_base/checkpoint-507/added_tokens.json +24 -0
- 3b-mb_base/checkpoint-507/config.json +28 -0
- 3b-mb_base/checkpoint-507/generation_config.json +14 -0
- 3b-mb_base/checkpoint-507/latest +1 -0
- 3b-mb_base/checkpoint-507/merges.txt +0 -0
- 3b-mb_base/checkpoint-507/model-00001-of-00002.safetensors +3 -0
- 3b-mb_base/checkpoint-507/model-00002-of-00002.safetensors +3 -0
- 3b-mb_base/checkpoint-507/model.safetensors.index.json +442 -0
- 3b-mb_base/checkpoint-507/rng_state_0.pth +3 -0
- 3b-mb_base/checkpoint-507/rng_state_1.pth +3 -0
- 3b-mb_base/checkpoint-507/scheduler.pt +3 -0
- 3b-mb_base/checkpoint-507/special_tokens_map.json +31 -0
3b-mb_base/README.md
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: other
|
4 |
+
base_model: Qwen/Qwen2.5-3B-Instruct
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- mb_base.jsonl
|
9 |
+
model-index:
|
10 |
+
- name: outputs/out
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
|
18 |
+
<details><summary>See axolotl config</summary>
|
19 |
+
|
20 |
+
axolotl version: `0.6.0`
|
21 |
+
```yaml
|
22 |
+
base_model: Qwen/Qwen2.5-3B-Instruct
|
23 |
+
model_type: AutoModelForCausalLM
|
24 |
+
tokenizer_type: AutoTokenizer
|
25 |
+
trust_remote_code: false
|
26 |
+
|
27 |
+
load_in_8bit: false
|
28 |
+
load_in_4bit: false
|
29 |
+
strict: false
|
30 |
+
|
31 |
+
output_dir: ./outputs/out
|
32 |
+
chat_template: qwen_25
|
33 |
+
datasets:
|
34 |
+
- path: mb_base.jsonl
|
35 |
+
type: chat_template
|
36 |
+
field_messages: messages
|
37 |
+
message_field_role: role
|
38 |
+
message_field_content: content
|
39 |
+
roles:
|
40 |
+
system:
|
41 |
+
- system
|
42 |
+
user:
|
43 |
+
- user
|
44 |
+
assistant:
|
45 |
+
- assistant
|
46 |
+
|
47 |
+
dataset_prepared_path: last_run_prepared
|
48 |
+
val_set_size: 0.005
|
49 |
+
output_dir: ./outputs/out
|
50 |
+
eval_sample_packing: False
|
51 |
+
|
52 |
+
sequence_len: 8192
|
53 |
+
sample_packing: False
|
54 |
+
pad_to_sequence_len: False
|
55 |
+
|
56 |
+
wandb_project: mergedbench
|
57 |
+
wandb_entity:
|
58 |
+
wandb_watch:
|
59 |
+
wandb_name:
|
60 |
+
wandb_log_model:
|
61 |
+
|
62 |
+
plugins:
|
63 |
+
- axolotl.integrations.liger.LigerPlugin
|
64 |
+
liger_rope: true
|
65 |
+
liger_rms_norm: true
|
66 |
+
liger_swiglu: true
|
67 |
+
liger_fused_linear_cross_entropy: true
|
68 |
+
|
69 |
+
gradient_accumulation_steps: 4
|
70 |
+
micro_batch_size: 8
|
71 |
+
eval_batch_size: 4
|
72 |
+
num_epochs: 3
|
73 |
+
optimizer: paged_adamw_8bit
|
74 |
+
lr_scheduler: cosine
|
75 |
+
learning_rate: 2e-5
|
76 |
+
|
77 |
+
train_on_inputs: false
|
78 |
+
group_by_length: false
|
79 |
+
bf16: auto
|
80 |
+
fp16:
|
81 |
+
tf32: false
|
82 |
+
|
83 |
+
gradient_checkpointing: true
|
84 |
+
gradient_checkpointing_kwargs:
|
85 |
+
use_reentrant: false
|
86 |
+
early_stopping_patience:
|
87 |
+
resume_from_checkpoint:
|
88 |
+
logging_steps: 1
|
89 |
+
xformers_attention:
|
90 |
+
flash_attention: true
|
91 |
+
|
92 |
+
warmup_steps: 30
|
93 |
+
evals_per_epoch: 3
|
94 |
+
eval_max_new_tokens: 128
|
95 |
+
eval_table_size:
|
96 |
+
saves_per_epoch: 1
|
97 |
+
debug:
|
98 |
+
deepspeed: deepspeed_configs/zero1.json
|
99 |
+
weight_decay: 0.01
|
100 |
+
fsdp:
|
101 |
+
fsdp_config:
|
102 |
+
special_tokens:
|
103 |
+
```
|
104 |
+
|
105 |
+
</details><br>
|
106 |
+
|
107 |
+
# outputs/out
|
108 |
+
|
109 |
+
This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the mb_base.jsonl dataset.
|
110 |
+
It achieves the following results on the evaluation set:
|
111 |
+
- Loss: 0.3531
|
112 |
+
|
113 |
+
## Model description
|
114 |
+
|
115 |
+
More information needed
|
116 |
+
|
117 |
+
## Intended uses & limitations
|
118 |
+
|
119 |
+
More information needed
|
120 |
+
|
121 |
+
## Training and evaluation data
|
122 |
+
|
123 |
+
More information needed
|
124 |
+
|
125 |
+
## Training procedure
|
126 |
+
|
127 |
+
### Training hyperparameters
|
128 |
+
|
129 |
+
The following hyperparameters were used during training:
|
130 |
+
- learning_rate: 2e-05
|
131 |
+
- train_batch_size: 8
|
132 |
+
- eval_batch_size: 4
|
133 |
+
- seed: 42
|
134 |
+
- distributed_type: multi-GPU
|
135 |
+
- num_devices: 2
|
136 |
+
- gradient_accumulation_steps: 4
|
137 |
+
- total_train_batch_size: 64
|
138 |
+
- total_eval_batch_size: 8
|
139 |
+
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
140 |
+
- lr_scheduler_type: cosine
|
141 |
+
- lr_scheduler_warmup_steps: 30
|
142 |
+
- num_epochs: 3.0
|
143 |
+
|
144 |
+
### Training results
|
145 |
+
|
146 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
147 |
+
|:-------------:|:------:|:----:|:---------------:|
|
148 |
+
| 1.062 | 0.0059 | 1 | 1.0835 |
|
149 |
+
| 0.3584 | 0.3368 | 57 | 0.3954 |
|
150 |
+
| 0.3372 | 0.6736 | 114 | 0.3638 |
|
151 |
+
| 0.2579 | 1.0059 | 171 | 0.3497 |
|
152 |
+
| 0.2359 | 1.3427 | 228 | 0.3520 |
|
153 |
+
| 0.2258 | 1.6795 | 285 | 0.3461 |
|
154 |
+
| 0.1673 | 2.0118 | 342 | 0.3411 |
|
155 |
+
| 0.1567 | 2.3486 | 399 | 0.3547 |
|
156 |
+
| 0.1571 | 2.6854 | 456 | 0.3531 |
|
157 |
+
|
158 |
+
|
159 |
+
### Framework versions
|
160 |
+
|
161 |
+
- Transformers 4.48.1
|
162 |
+
- Pytorch 2.5.1+cu121
|
163 |
+
- Datasets 3.2.0
|
164 |
+
- Tokenizers 0.21.0
|
3b-mb_base/added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
3b-mb_base/checkpoint-169/added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
3b-mb_base/checkpoint-169/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen2.5-3B-Instruct",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"eos_token_id": 151645,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 2048,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 11008,
|
12 |
+
"max_position_embeddings": 32768,
|
13 |
+
"max_window_layers": 70,
|
14 |
+
"model_type": "qwen2",
|
15 |
+
"num_attention_heads": 16,
|
16 |
+
"num_hidden_layers": 36,
|
17 |
+
"num_key_value_heads": 2,
|
18 |
+
"rms_norm_eps": 1e-06,
|
19 |
+
"rope_scaling": null,
|
20 |
+
"rope_theta": 1000000.0,
|
21 |
+
"sliding_window": null,
|
22 |
+
"tie_word_embeddings": true,
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"transformers_version": "4.48.1",
|
25 |
+
"use_cache": false,
|
26 |
+
"use_sliding_window": false,
|
27 |
+
"vocab_size": 151665
|
28 |
+
}
|
3b-mb_base/checkpoint-169/generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.05,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.48.1"
|
14 |
+
}
|
3b-mb_base/checkpoint-169/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step169
|
3b-mb_base/checkpoint-169/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
3b-mb_base/checkpoint-169/model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38bbb82b5eaddd2218ee91401271bd0a8f1feb8a88645a5a6a5d4f463a4db80e
|
3 |
+
size 4956450288
|
3b-mb_base/checkpoint-169/model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c34e9667355221493ef25c9b481baef41b9d892ed7f471f8e96dd2b8087a2ffd
|
3 |
+
size 1835586736
|
3b-mb_base/checkpoint-169/model.safetensors.index.json
ADDED
@@ -0,0 +1,442 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 6791987200
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
260 |
+
"model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
261 |
+
"model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
262 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
263 |
+
"model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
264 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
265 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
266 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
268 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
269 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
270 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
271 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
272 |
+
"model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
273 |
+
"model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
274 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
275 |
+
"model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
276 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
277 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
278 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
279 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
280 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
281 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
282 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
283 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
284 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
285 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
286 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
287 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
288 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
289 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
290 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
291 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
292 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
293 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
294 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
295 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
296 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
297 |
+
"model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
298 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
299 |
+
"model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
300 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
301 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
302 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
303 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
304 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
305 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
306 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
307 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
308 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
309 |
+
"model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
310 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
311 |
+
"model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
312 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
313 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
314 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
315 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
316 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
317 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
318 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
319 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
320 |
+
"model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
321 |
+
"model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
322 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
323 |
+
"model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
324 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
325 |
+
"model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
326 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
327 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
328 |
+
"model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
329 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
330 |
+
"model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
331 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
332 |
+
"model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
333 |
+
"model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
334 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
335 |
+
"model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
336 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
337 |
+
"model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
338 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
339 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
340 |
+
"model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
341 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
342 |
+
"model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
343 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
344 |
+
"model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
345 |
+
"model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
346 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
347 |
+
"model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
348 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
349 |
+
"model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
350 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
351 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
352 |
+
"model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
353 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
354 |
+
"model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
355 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
356 |
+
"model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
357 |
+
"model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
358 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
359 |
+
"model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
360 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
361 |
+
"model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
362 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
363 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
364 |
+
"model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
365 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
366 |
+
"model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
367 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
368 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
369 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
370 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
371 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
372 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
373 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
374 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
375 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
376 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
377 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
378 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
379 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
380 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
381 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
382 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
383 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
384 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
385 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
386 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
387 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
388 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
389 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
390 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
391 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
392 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
393 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
394 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
395 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
396 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
397 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
398 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
399 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
400 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
401 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
402 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
403 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
404 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
405 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
406 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
407 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
408 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
409 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
410 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
411 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
412 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
413 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
414 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
415 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
416 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
417 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
418 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
419 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
420 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
421 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
422 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
423 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
424 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
425 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
426 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
427 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
428 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
429 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
430 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
431 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
432 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
433 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
434 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
435 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
436 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
437 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
438 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
439 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
440 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
441 |
+
}
|
442 |
+
}
|
3b-mb_base/checkpoint-169/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9affc1541e7e94c18354d5173bc55400c5f07faf3d080c6d453d48e7a8d6ac3
|
3 |
+
size 14512
|
3b-mb_base/checkpoint-169/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4748c3ebf0e4c051c58b92e4a8c5b87cdb39d55cfdc2aec81a1baef0f02fc113
|
3 |
+
size 14512
|
3b-mb_base/checkpoint-169/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:579fc25e0fa1981bf31c24488d0d7572584313555af920879f011e878787fee4
|
3 |
+
size 1064
|
3b-mb_base/checkpoint-169/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
3b-mb_base/checkpoint-169/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
3 |
+
size 11421896
|
3b-mb_base/checkpoint-169/tokenizer_config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|im_end|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"extra_special_tokens": {},
|
203 |
+
"model_max_length": 131072,
|
204 |
+
"pad_token": "<|endoftext|>",
|
205 |
+
"split_special_tokens": false,
|
206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
207 |
+
"unk_token": null
|
208 |
+
}
|
3b-mb_base/checkpoint-169/trainer_state.json
ADDED
@@ -0,0 +1,1240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.9985228951255539,
|
5 |
+
"eval_steps": 57,
|
6 |
+
"global_step": 169,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.005908419497784343,
|
13 |
+
"grad_norm": 4.501461029052734,
|
14 |
+
"learning_rate": 6.666666666666667e-07,
|
15 |
+
"loss": 1.062,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.005908419497784343,
|
20 |
+
"eval_loss": 1.0835397243499756,
|
21 |
+
"eval_runtime": 4.3539,
|
22 |
+
"eval_samples_per_second": 12.632,
|
23 |
+
"eval_steps_per_second": 1.608,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.011816838995568686,
|
28 |
+
"grad_norm": 4.469114303588867,
|
29 |
+
"learning_rate": 1.3333333333333334e-06,
|
30 |
+
"loss": 1.0268,
|
31 |
+
"step": 2
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.01772525849335303,
|
35 |
+
"grad_norm": 4.554893970489502,
|
36 |
+
"learning_rate": 2.0000000000000003e-06,
|
37 |
+
"loss": 1.0401,
|
38 |
+
"step": 3
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.023633677991137372,
|
42 |
+
"grad_norm": 4.374792575836182,
|
43 |
+
"learning_rate": 2.666666666666667e-06,
|
44 |
+
"loss": 1.0423,
|
45 |
+
"step": 4
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.029542097488921712,
|
49 |
+
"grad_norm": 3.4377498626708984,
|
50 |
+
"learning_rate": 3.3333333333333333e-06,
|
51 |
+
"loss": 0.9965,
|
52 |
+
"step": 5
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.03545051698670606,
|
56 |
+
"grad_norm": 3.1242499351501465,
|
57 |
+
"learning_rate": 4.000000000000001e-06,
|
58 |
+
"loss": 0.9479,
|
59 |
+
"step": 6
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.0413589364844904,
|
63 |
+
"grad_norm": 1.8368685245513916,
|
64 |
+
"learning_rate": 4.666666666666667e-06,
|
65 |
+
"loss": 0.8296,
|
66 |
+
"step": 7
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.047267355982274745,
|
70 |
+
"grad_norm": 1.7457680702209473,
|
71 |
+
"learning_rate": 5.333333333333334e-06,
|
72 |
+
"loss": 0.8159,
|
73 |
+
"step": 8
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.053175775480059084,
|
77 |
+
"grad_norm": 1.2953853607177734,
|
78 |
+
"learning_rate": 6e-06,
|
79 |
+
"loss": 0.664,
|
80 |
+
"step": 9
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.059084194977843424,
|
84 |
+
"grad_norm": 1.1054794788360596,
|
85 |
+
"learning_rate": 6.666666666666667e-06,
|
86 |
+
"loss": 0.6486,
|
87 |
+
"step": 10
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.06499261447562776,
|
91 |
+
"grad_norm": 0.8712942004203796,
|
92 |
+
"learning_rate": 7.333333333333333e-06,
|
93 |
+
"loss": 0.6415,
|
94 |
+
"step": 11
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.07090103397341212,
|
98 |
+
"grad_norm": 1.4441039562225342,
|
99 |
+
"learning_rate": 8.000000000000001e-06,
|
100 |
+
"loss": 0.6255,
|
101 |
+
"step": 12
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.07680945347119646,
|
105 |
+
"grad_norm": 1.4984484910964966,
|
106 |
+
"learning_rate": 8.666666666666668e-06,
|
107 |
+
"loss": 0.5561,
|
108 |
+
"step": 13
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.0827178729689808,
|
112 |
+
"grad_norm": 0.8376960754394531,
|
113 |
+
"learning_rate": 9.333333333333334e-06,
|
114 |
+
"loss": 0.5534,
|
115 |
+
"step": 14
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.08862629246676514,
|
119 |
+
"grad_norm": 0.7184750437736511,
|
120 |
+
"learning_rate": 1e-05,
|
121 |
+
"loss": 0.5062,
|
122 |
+
"step": 15
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.09453471196454949,
|
126 |
+
"grad_norm": 0.8381787538528442,
|
127 |
+
"learning_rate": 1.0666666666666667e-05,
|
128 |
+
"loss": 0.5531,
|
129 |
+
"step": 16
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.10044313146233383,
|
133 |
+
"grad_norm": 0.7621350288391113,
|
134 |
+
"learning_rate": 1.1333333333333334e-05,
|
135 |
+
"loss": 0.4876,
|
136 |
+
"step": 17
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.10635155096011817,
|
140 |
+
"grad_norm": 0.6955872178077698,
|
141 |
+
"learning_rate": 1.2e-05,
|
142 |
+
"loss": 0.5019,
|
143 |
+
"step": 18
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.11225997045790251,
|
147 |
+
"grad_norm": 0.5844917297363281,
|
148 |
+
"learning_rate": 1.2666666666666667e-05,
|
149 |
+
"loss": 0.4368,
|
150 |
+
"step": 19
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.11816838995568685,
|
154 |
+
"grad_norm": 0.5807573795318604,
|
155 |
+
"learning_rate": 1.3333333333333333e-05,
|
156 |
+
"loss": 0.4965,
|
157 |
+
"step": 20
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.1240768094534712,
|
161 |
+
"grad_norm": 0.5376399755477905,
|
162 |
+
"learning_rate": 1.4e-05,
|
163 |
+
"loss": 0.4841,
|
164 |
+
"step": 21
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.12998522895125553,
|
168 |
+
"grad_norm": 0.5053263902664185,
|
169 |
+
"learning_rate": 1.4666666666666666e-05,
|
170 |
+
"loss": 0.4573,
|
171 |
+
"step": 22
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.1358936484490399,
|
175 |
+
"grad_norm": 0.5155225396156311,
|
176 |
+
"learning_rate": 1.5333333333333334e-05,
|
177 |
+
"loss": 0.451,
|
178 |
+
"step": 23
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.14180206794682423,
|
182 |
+
"grad_norm": 0.52030348777771,
|
183 |
+
"learning_rate": 1.6000000000000003e-05,
|
184 |
+
"loss": 0.4199,
|
185 |
+
"step": 24
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.14771048744460857,
|
189 |
+
"grad_norm": 0.5321907997131348,
|
190 |
+
"learning_rate": 1.6666666666666667e-05,
|
191 |
+
"loss": 0.4532,
|
192 |
+
"step": 25
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.1536189069423929,
|
196 |
+
"grad_norm": 0.5318155288696289,
|
197 |
+
"learning_rate": 1.7333333333333336e-05,
|
198 |
+
"loss": 0.4813,
|
199 |
+
"step": 26
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.15952732644017725,
|
203 |
+
"grad_norm": 0.5176340937614441,
|
204 |
+
"learning_rate": 1.8e-05,
|
205 |
+
"loss": 0.4288,
|
206 |
+
"step": 27
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.1654357459379616,
|
210 |
+
"grad_norm": 0.43893975019454956,
|
211 |
+
"learning_rate": 1.866666666666667e-05,
|
212 |
+
"loss": 0.3766,
|
213 |
+
"step": 28
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.17134416543574593,
|
217 |
+
"grad_norm": 0.43830162286758423,
|
218 |
+
"learning_rate": 1.9333333333333333e-05,
|
219 |
+
"loss": 0.4159,
|
220 |
+
"step": 29
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 0.17725258493353027,
|
224 |
+
"grad_norm": 0.45950719714164734,
|
225 |
+
"learning_rate": 2e-05,
|
226 |
+
"loss": 0.4505,
|
227 |
+
"step": 30
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 0.1831610044313146,
|
231 |
+
"grad_norm": 0.40500667691230774,
|
232 |
+
"learning_rate": 1.9999783114048658e-05,
|
233 |
+
"loss": 0.3726,
|
234 |
+
"step": 31
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.18906942392909898,
|
238 |
+
"grad_norm": 0.43435147404670715,
|
239 |
+
"learning_rate": 1.9999132465602526e-05,
|
240 |
+
"loss": 0.442,
|
241 |
+
"step": 32
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 0.19497784342688332,
|
245 |
+
"grad_norm": 0.44813328981399536,
|
246 |
+
"learning_rate": 1.999804808288491e-05,
|
247 |
+
"loss": 0.437,
|
248 |
+
"step": 33
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.20088626292466766,
|
252 |
+
"grad_norm": 0.48166996240615845,
|
253 |
+
"learning_rate": 1.9996530012933285e-05,
|
254 |
+
"loss": 0.4107,
|
255 |
+
"step": 34
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.206794682422452,
|
259 |
+
"grad_norm": 0.398764044046402,
|
260 |
+
"learning_rate": 1.9994578321597258e-05,
|
261 |
+
"loss": 0.3882,
|
262 |
+
"step": 35
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"epoch": 0.21270310192023634,
|
266 |
+
"grad_norm": 0.44229164719581604,
|
267 |
+
"learning_rate": 1.999219309353572e-05,
|
268 |
+
"loss": 0.4154,
|
269 |
+
"step": 36
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.21861152141802068,
|
273 |
+
"grad_norm": 0.44369620084762573,
|
274 |
+
"learning_rate": 1.998937443221316e-05,
|
275 |
+
"loss": 0.3863,
|
276 |
+
"step": 37
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 0.22451994091580502,
|
280 |
+
"grad_norm": 0.44270017743110657,
|
281 |
+
"learning_rate": 1.9986122459895182e-05,
|
282 |
+
"loss": 0.3945,
|
283 |
+
"step": 38
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"epoch": 0.23042836041358936,
|
287 |
+
"grad_norm": 0.42152372002601624,
|
288 |
+
"learning_rate": 1.9982437317643218e-05,
|
289 |
+
"loss": 0.4094,
|
290 |
+
"step": 39
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.2363367799113737,
|
294 |
+
"grad_norm": 0.4120837450027466,
|
295 |
+
"learning_rate": 1.9978319165308373e-05,
|
296 |
+
"loss": 0.4411,
|
297 |
+
"step": 40
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.24224519940915806,
|
301 |
+
"grad_norm": 0.4064903259277344,
|
302 |
+
"learning_rate": 1.997376818152453e-05,
|
303 |
+
"loss": 0.3818,
|
304 |
+
"step": 41
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 0.2481536189069424,
|
308 |
+
"grad_norm": 0.3692624270915985,
|
309 |
+
"learning_rate": 1.9968784563700586e-05,
|
310 |
+
"loss": 0.3874,
|
311 |
+
"step": 42
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 0.25406203840472674,
|
315 |
+
"grad_norm": 0.4399218261241913,
|
316 |
+
"learning_rate": 1.9963368528011867e-05,
|
317 |
+
"loss": 0.3749,
|
318 |
+
"step": 43
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 0.25997045790251105,
|
322 |
+
"grad_norm": 0.3779003620147705,
|
323 |
+
"learning_rate": 1.9957520309390786e-05,
|
324 |
+
"loss": 0.3656,
|
325 |
+
"step": 44
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"epoch": 0.2658788774002954,
|
329 |
+
"grad_norm": 0.3946981132030487,
|
330 |
+
"learning_rate": 1.9951240161516643e-05,
|
331 |
+
"loss": 0.3612,
|
332 |
+
"step": 45
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.2717872968980798,
|
336 |
+
"grad_norm": 0.3969726264476776,
|
337 |
+
"learning_rate": 1.99445283568046e-05,
|
338 |
+
"loss": 0.3932,
|
339 |
+
"step": 46
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.2776957163958641,
|
343 |
+
"grad_norm": 0.4239075183868408,
|
344 |
+
"learning_rate": 1.9937385186393888e-05,
|
345 |
+
"loss": 0.387,
|
346 |
+
"step": 47
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 0.28360413589364847,
|
350 |
+
"grad_norm": 0.3688453733921051,
|
351 |
+
"learning_rate": 1.992981096013517e-05,
|
352 |
+
"loss": 0.3524,
|
353 |
+
"step": 48
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.2895125553914328,
|
357 |
+
"grad_norm": 0.4294806718826294,
|
358 |
+
"learning_rate": 1.9921806006577102e-05,
|
359 |
+
"loss": 0.3787,
|
360 |
+
"step": 49
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 0.29542097488921715,
|
364 |
+
"grad_norm": 0.3867166042327881,
|
365 |
+
"learning_rate": 1.9913370672952074e-05,
|
366 |
+
"loss": 0.3756,
|
367 |
+
"step": 50
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 0.30132939438700146,
|
371 |
+
"grad_norm": 0.43365901708602905,
|
372 |
+
"learning_rate": 1.990450532516116e-05,
|
373 |
+
"loss": 0.3896,
|
374 |
+
"step": 51
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.3072378138847858,
|
378 |
+
"grad_norm": 0.38658151030540466,
|
379 |
+
"learning_rate": 1.9895210347758233e-05,
|
380 |
+
"loss": 0.3703,
|
381 |
+
"step": 52
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.31314623338257014,
|
385 |
+
"grad_norm": 0.37093815207481384,
|
386 |
+
"learning_rate": 1.98854861439333e-05,
|
387 |
+
"loss": 0.3763,
|
388 |
+
"step": 53
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 0.3190546528803545,
|
392 |
+
"grad_norm": 0.40044137835502625,
|
393 |
+
"learning_rate": 1.9875333135495e-05,
|
394 |
+
"loss": 0.3752,
|
395 |
+
"step": 54
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.3249630723781389,
|
399 |
+
"grad_norm": 0.39133360981941223,
|
400 |
+
"learning_rate": 1.986475176285232e-05,
|
401 |
+
"loss": 0.3589,
|
402 |
+
"step": 55
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 0.3308714918759232,
|
406 |
+
"grad_norm": 0.38397374749183655,
|
407 |
+
"learning_rate": 1.985374248499546e-05,
|
408 |
+
"loss": 0.3701,
|
409 |
+
"step": 56
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 0.33677991137370755,
|
413 |
+
"grad_norm": 0.3795414865016937,
|
414 |
+
"learning_rate": 1.984230577947597e-05,
|
415 |
+
"loss": 0.3584,
|
416 |
+
"step": 57
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.33677991137370755,
|
420 |
+
"eval_loss": 0.3953791558742523,
|
421 |
+
"eval_runtime": 4.6385,
|
422 |
+
"eval_samples_per_second": 11.857,
|
423 |
+
"eval_steps_per_second": 1.509,
|
424 |
+
"step": 57
|
425 |
+
},
|
426 |
+
{
|
427 |
+
"epoch": 0.34268833087149186,
|
428 |
+
"grad_norm": 0.3709493577480316,
|
429 |
+
"learning_rate": 1.9830442142386e-05,
|
430 |
+
"loss": 0.3647,
|
431 |
+
"step": 58
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"epoch": 0.34859675036927623,
|
435 |
+
"grad_norm": 0.35005033016204834,
|
436 |
+
"learning_rate": 1.9818152088336786e-05,
|
437 |
+
"loss": 0.3317,
|
438 |
+
"step": 59
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"epoch": 0.35450516986706054,
|
442 |
+
"grad_norm": 0.3652004599571228,
|
443 |
+
"learning_rate": 1.9805436150436352e-05,
|
444 |
+
"loss": 0.3394,
|
445 |
+
"step": 60
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"epoch": 0.3604135893648449,
|
449 |
+
"grad_norm": 0.3940984904766083,
|
450 |
+
"learning_rate": 1.9792294880266346e-05,
|
451 |
+
"loss": 0.3711,
|
452 |
+
"step": 61
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 0.3663220088626292,
|
456 |
+
"grad_norm": 0.35634928941726685,
|
457 |
+
"learning_rate": 1.977872884785815e-05,
|
458 |
+
"loss": 0.3455,
|
459 |
+
"step": 62
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.3722304283604136,
|
463 |
+
"grad_norm": 0.3972924053668976,
|
464 |
+
"learning_rate": 1.9764738641668137e-05,
|
465 |
+
"loss": 0.3652,
|
466 |
+
"step": 63
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 0.37813884785819796,
|
470 |
+
"grad_norm": 0.40372708439826965,
|
471 |
+
"learning_rate": 1.9750324868552133e-05,
|
472 |
+
"loss": 0.3662,
|
473 |
+
"step": 64
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"epoch": 0.38404726735598227,
|
477 |
+
"grad_norm": 0.396133691072464,
|
478 |
+
"learning_rate": 1.9735488153739128e-05,
|
479 |
+
"loss": 0.3726,
|
480 |
+
"step": 65
|
481 |
+
},
|
482 |
+
{
|
483 |
+
"epoch": 0.38995568685376664,
|
484 |
+
"grad_norm": 0.398989737033844,
|
485 |
+
"learning_rate": 1.972022914080411e-05,
|
486 |
+
"loss": 0.3595,
|
487 |
+
"step": 66
|
488 |
+
},
|
489 |
+
{
|
490 |
+
"epoch": 0.39586410635155095,
|
491 |
+
"grad_norm": 0.4102807939052582,
|
492 |
+
"learning_rate": 1.9704548491640195e-05,
|
493 |
+
"loss": 0.3308,
|
494 |
+
"step": 67
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 0.4017725258493353,
|
498 |
+
"grad_norm": 0.344397634267807,
|
499 |
+
"learning_rate": 1.9688446886429885e-05,
|
500 |
+
"loss": 0.3653,
|
501 |
+
"step": 68
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 0.4076809453471196,
|
505 |
+
"grad_norm": 0.3550814390182495,
|
506 |
+
"learning_rate": 1.9671925023615572e-05,
|
507 |
+
"loss": 0.3412,
|
508 |
+
"step": 69
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"epoch": 0.413589364844904,
|
512 |
+
"grad_norm": 0.4047009348869324,
|
513 |
+
"learning_rate": 1.9654983619869242e-05,
|
514 |
+
"loss": 0.3578,
|
515 |
+
"step": 70
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"epoch": 0.4194977843426883,
|
519 |
+
"grad_norm": 0.41112563014030457,
|
520 |
+
"learning_rate": 1.9637623410061392e-05,
|
521 |
+
"loss": 0.3694,
|
522 |
+
"step": 71
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"epoch": 0.4254062038404727,
|
526 |
+
"grad_norm": 0.3775319755077362,
|
527 |
+
"learning_rate": 1.961984514722914e-05,
|
528 |
+
"loss": 0.3571,
|
529 |
+
"step": 72
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"epoch": 0.43131462333825704,
|
533 |
+
"grad_norm": 0.3610381782054901,
|
534 |
+
"learning_rate": 1.960164960254358e-05,
|
535 |
+
"loss": 0.3713,
|
536 |
+
"step": 73
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 0.43722304283604135,
|
540 |
+
"grad_norm": 0.38662371039390564,
|
541 |
+
"learning_rate": 1.9583037565276314e-05,
|
542 |
+
"loss": 0.311,
|
543 |
+
"step": 74
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 0.4431314623338257,
|
547 |
+
"grad_norm": 0.3574771285057068,
|
548 |
+
"learning_rate": 1.9564009842765225e-05,
|
549 |
+
"loss": 0.3353,
|
550 |
+
"step": 75
|
551 |
+
},
|
552 |
+
{
|
553 |
+
"epoch": 0.44903988183161003,
|
554 |
+
"grad_norm": 0.3932562470436096,
|
555 |
+
"learning_rate": 1.9544567260379455e-05,
|
556 |
+
"loss": 0.3536,
|
557 |
+
"step": 76
|
558 |
+
},
|
559 |
+
{
|
560 |
+
"epoch": 0.4549483013293944,
|
561 |
+
"grad_norm": 0.3974682092666626,
|
562 |
+
"learning_rate": 1.9524710661483594e-05,
|
563 |
+
"loss": 0.3556,
|
564 |
+
"step": 77
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 0.4608567208271787,
|
568 |
+
"grad_norm": 0.37172290682792664,
|
569 |
+
"learning_rate": 1.9504440907401113e-05,
|
570 |
+
"loss": 0.3568,
|
571 |
+
"step": 78
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 0.4667651403249631,
|
575 |
+
"grad_norm": 0.37170422077178955,
|
576 |
+
"learning_rate": 1.948375887737699e-05,
|
577 |
+
"loss": 0.3556,
|
578 |
+
"step": 79
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 0.4726735598227474,
|
582 |
+
"grad_norm": 0.3596966862678528,
|
583 |
+
"learning_rate": 1.9462665468539582e-05,
|
584 |
+
"loss": 0.332,
|
585 |
+
"step": 80
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 0.47858197932053176,
|
589 |
+
"grad_norm": 0.35934680700302124,
|
590 |
+
"learning_rate": 1.944116159586169e-05,
|
591 |
+
"loss": 0.3276,
|
592 |
+
"step": 81
|
593 |
+
},
|
594 |
+
{
|
595 |
+
"epoch": 0.4844903988183161,
|
596 |
+
"grad_norm": 0.40984946489334106,
|
597 |
+
"learning_rate": 1.94192481921209e-05,
|
598 |
+
"loss": 0.3685,
|
599 |
+
"step": 82
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"epoch": 0.49039881831610044,
|
603 |
+
"grad_norm": 0.3622114658355713,
|
604 |
+
"learning_rate": 1.9396926207859085e-05,
|
605 |
+
"loss": 0.3336,
|
606 |
+
"step": 83
|
607 |
+
},
|
608 |
+
{
|
609 |
+
"epoch": 0.4963072378138848,
|
610 |
+
"grad_norm": 0.34888842701911926,
|
611 |
+
"learning_rate": 1.9374196611341212e-05,
|
612 |
+
"loss": 0.3625,
|
613 |
+
"step": 84
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"epoch": 0.5022156573116692,
|
617 |
+
"grad_norm": 0.37125518918037415,
|
618 |
+
"learning_rate": 1.9351060388513304e-05,
|
619 |
+
"loss": 0.3304,
|
620 |
+
"step": 85
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 0.5081240768094535,
|
624 |
+
"grad_norm": 0.4107120931148529,
|
625 |
+
"learning_rate": 1.9327518542959717e-05,
|
626 |
+
"loss": 0.3755,
|
627 |
+
"step": 86
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 0.5140324963072378,
|
631 |
+
"grad_norm": 0.3420109748840332,
|
632 |
+
"learning_rate": 1.9303572095859545e-05,
|
633 |
+
"loss": 0.3457,
|
634 |
+
"step": 87
|
635 |
+
},
|
636 |
+
{
|
637 |
+
"epoch": 0.5199409158050221,
|
638 |
+
"grad_norm": 0.35079535841941833,
|
639 |
+
"learning_rate": 1.9279222085942396e-05,
|
640 |
+
"loss": 0.3454,
|
641 |
+
"step": 88
|
642 |
+
},
|
643 |
+
{
|
644 |
+
"epoch": 0.5258493353028065,
|
645 |
+
"grad_norm": 0.3775666058063507,
|
646 |
+
"learning_rate": 1.9254469569443274e-05,
|
647 |
+
"loss": 0.3501,
|
648 |
+
"step": 89
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"epoch": 0.5317577548005908,
|
652 |
+
"grad_norm": 0.3327409625053406,
|
653 |
+
"learning_rate": 1.9229315620056805e-05,
|
654 |
+
"loss": 0.3507,
|
655 |
+
"step": 90
|
656 |
+
},
|
657 |
+
{
|
658 |
+
"epoch": 0.5376661742983752,
|
659 |
+
"grad_norm": 0.37142789363861084,
|
660 |
+
"learning_rate": 1.9203761328890626e-05,
|
661 |
+
"loss": 0.3453,
|
662 |
+
"step": 91
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 0.5435745937961596,
|
666 |
+
"grad_norm": 0.36256077885627747,
|
667 |
+
"learning_rate": 1.91778078044181e-05,
|
668 |
+
"loss": 0.3588,
|
669 |
+
"step": 92
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 0.5494830132939439,
|
673 |
+
"grad_norm": 0.3861102759838104,
|
674 |
+
"learning_rate": 1.9151456172430186e-05,
|
675 |
+
"loss": 0.3479,
|
676 |
+
"step": 93
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 0.5553914327917282,
|
680 |
+
"grad_norm": 0.3359353542327881,
|
681 |
+
"learning_rate": 1.9124707575986642e-05,
|
682 |
+
"loss": 0.318,
|
683 |
+
"step": 94
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"epoch": 0.5612998522895125,
|
687 |
+
"grad_norm": 0.33662593364715576,
|
688 |
+
"learning_rate": 1.909756317536643e-05,
|
689 |
+
"loss": 0.3421,
|
690 |
+
"step": 95
|
691 |
+
},
|
692 |
+
{
|
693 |
+
"epoch": 0.5672082717872969,
|
694 |
+
"grad_norm": 0.35831600427627563,
|
695 |
+
"learning_rate": 1.9070024148017375e-05,
|
696 |
+
"loss": 0.3409,
|
697 |
+
"step": 96
|
698 |
+
},
|
699 |
+
{
|
700 |
+
"epoch": 0.5731166912850812,
|
701 |
+
"grad_norm": 0.39858701825141907,
|
702 |
+
"learning_rate": 1.9042091688505104e-05,
|
703 |
+
"loss": 0.3319,
|
704 |
+
"step": 97
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 0.5790251107828656,
|
708 |
+
"grad_norm": 0.3343643546104431,
|
709 |
+
"learning_rate": 1.9013767008461236e-05,
|
710 |
+
"loss": 0.3352,
|
711 |
+
"step": 98
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 0.5849335302806499,
|
715 |
+
"grad_norm": 0.3519919216632843,
|
716 |
+
"learning_rate": 1.89850513365308e-05,
|
717 |
+
"loss": 0.3634,
|
718 |
+
"step": 99
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"epoch": 0.5908419497784343,
|
722 |
+
"grad_norm": 0.32900717854499817,
|
723 |
+
"learning_rate": 1.895594591831896e-05,
|
724 |
+
"loss": 0.3415,
|
725 |
+
"step": 100
|
726 |
+
},
|
727 |
+
{
|
728 |
+
"epoch": 0.5967503692762186,
|
729 |
+
"grad_norm": 0.34432175755500793,
|
730 |
+
"learning_rate": 1.8926452016336987e-05,
|
731 |
+
"loss": 0.3169,
|
732 |
+
"step": 101
|
733 |
+
},
|
734 |
+
{
|
735 |
+
"epoch": 0.6026587887740029,
|
736 |
+
"grad_norm": 0.33144107460975647,
|
737 |
+
"learning_rate": 1.8896570909947477e-05,
|
738 |
+
"loss": 0.3431,
|
739 |
+
"step": 102
|
740 |
+
},
|
741 |
+
{
|
742 |
+
"epoch": 0.6085672082717873,
|
743 |
+
"grad_norm": 0.3299802839756012,
|
744 |
+
"learning_rate": 1.8866303895308856e-05,
|
745 |
+
"loss": 0.3411,
|
746 |
+
"step": 103
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 0.6144756277695717,
|
750 |
+
"grad_norm": 0.30740225315093994,
|
751 |
+
"learning_rate": 1.883565228531919e-05,
|
752 |
+
"loss": 0.3355,
|
753 |
+
"step": 104
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 0.620384047267356,
|
757 |
+
"grad_norm": 0.34325993061065674,
|
758 |
+
"learning_rate": 1.88046174095592e-05,
|
759 |
+
"loss": 0.3188,
|
760 |
+
"step": 105
|
761 |
+
},
|
762 |
+
{
|
763 |
+
"epoch": 0.6262924667651403,
|
764 |
+
"grad_norm": 0.3394065797328949,
|
765 |
+
"learning_rate": 1.8773200614234587e-05,
|
766 |
+
"loss": 0.3153,
|
767 |
+
"step": 106
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"epoch": 0.6322008862629247,
|
771 |
+
"grad_norm": 0.35468512773513794,
|
772 |
+
"learning_rate": 1.874140326211766e-05,
|
773 |
+
"loss": 0.3387,
|
774 |
+
"step": 107
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 0.638109305760709,
|
778 |
+
"grad_norm": 0.36726799607276917,
|
779 |
+
"learning_rate": 1.8709226732488216e-05,
|
780 |
+
"loss": 0.3457,
|
781 |
+
"step": 108
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 0.6440177252584933,
|
785 |
+
"grad_norm": 0.3223711848258972,
|
786 |
+
"learning_rate": 1.86766724210737e-05,
|
787 |
+
"loss": 0.3588,
|
788 |
+
"step": 109
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 0.6499261447562777,
|
792 |
+
"grad_norm": 0.3537541925907135,
|
793 |
+
"learning_rate": 1.8643741739988672e-05,
|
794 |
+
"loss": 0.3506,
|
795 |
+
"step": 110
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 0.6558345642540621,
|
799 |
+
"grad_norm": 0.3755073845386505,
|
800 |
+
"learning_rate": 1.8610436117673557e-05,
|
801 |
+
"loss": 0.3221,
|
802 |
+
"step": 111
|
803 |
+
},
|
804 |
+
{
|
805 |
+
"epoch": 0.6617429837518464,
|
806 |
+
"grad_norm": 0.31778833270072937,
|
807 |
+
"learning_rate": 1.8576756998832667e-05,
|
808 |
+
"loss": 0.3161,
|
809 |
+
"step": 112
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"epoch": 0.6676514032496307,
|
813 |
+
"grad_norm": 0.3517738878726959,
|
814 |
+
"learning_rate": 1.8542705844371544e-05,
|
815 |
+
"loss": 0.3442,
|
816 |
+
"step": 113
|
817 |
+
},
|
818 |
+
{
|
819 |
+
"epoch": 0.6735598227474151,
|
820 |
+
"grad_norm": 0.3254755139350891,
|
821 |
+
"learning_rate": 1.8508284131333604e-05,
|
822 |
+
"loss": 0.3372,
|
823 |
+
"step": 114
|
824 |
+
},
|
825 |
+
{
|
826 |
+
"epoch": 0.6735598227474151,
|
827 |
+
"eval_loss": 0.363791823387146,
|
828 |
+
"eval_runtime": 4.0908,
|
829 |
+
"eval_samples_per_second": 13.445,
|
830 |
+
"eval_steps_per_second": 1.711,
|
831 |
+
"step": 114
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"epoch": 0.6794682422451994,
|
835 |
+
"grad_norm": 0.3458060622215271,
|
836 |
+
"learning_rate": 1.8473493352836032e-05,
|
837 |
+
"loss": 0.3329,
|
838 |
+
"step": 115
|
839 |
+
},
|
840 |
+
{
|
841 |
+
"epoch": 0.6853766617429837,
|
842 |
+
"grad_norm": 0.33962881565093994,
|
843 |
+
"learning_rate": 1.8438335018005052e-05,
|
844 |
+
"loss": 0.3478,
|
845 |
+
"step": 116
|
846 |
+
},
|
847 |
+
{
|
848 |
+
"epoch": 0.691285081240768,
|
849 |
+
"grad_norm": 0.33980926871299744,
|
850 |
+
"learning_rate": 1.8402810651910444e-05,
|
851 |
+
"loss": 0.3484,
|
852 |
+
"step": 117
|
853 |
+
},
|
854 |
+
{
|
855 |
+
"epoch": 0.6971935007385525,
|
856 |
+
"grad_norm": 0.355694979429245,
|
857 |
+
"learning_rate": 1.8366921795499394e-05,
|
858 |
+
"loss": 0.3686,
|
859 |
+
"step": 118
|
860 |
+
},
|
861 |
+
{
|
862 |
+
"epoch": 0.7031019202363368,
|
863 |
+
"grad_norm": 0.3415476083755493,
|
864 |
+
"learning_rate": 1.8330670005529657e-05,
|
865 |
+
"loss": 0.3204,
|
866 |
+
"step": 119
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 0.7090103397341211,
|
870 |
+
"grad_norm": 0.3336890935897827,
|
871 |
+
"learning_rate": 1.829405685450202e-05,
|
872 |
+
"loss": 0.3323,
|
873 |
+
"step": 120
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 0.7149187592319055,
|
877 |
+
"grad_norm": 0.34337785840034485,
|
878 |
+
"learning_rate": 1.8257083930592102e-05,
|
879 |
+
"loss": 0.3283,
|
880 |
+
"step": 121
|
881 |
+
},
|
882 |
+
{
|
883 |
+
"epoch": 0.7208271787296898,
|
884 |
+
"grad_norm": 0.3578524887561798,
|
885 |
+
"learning_rate": 1.8219752837581466e-05,
|
886 |
+
"loss": 0.3326,
|
887 |
+
"step": 122
|
888 |
+
},
|
889 |
+
{
|
890 |
+
"epoch": 0.7267355982274741,
|
891 |
+
"grad_norm": 0.32392922043800354,
|
892 |
+
"learning_rate": 1.8182065194788024e-05,
|
893 |
+
"loss": 0.3141,
|
894 |
+
"step": 123
|
895 |
+
},
|
896 |
+
{
|
897 |
+
"epoch": 0.7326440177252584,
|
898 |
+
"grad_norm": 0.36127492785453796,
|
899 |
+
"learning_rate": 1.814402263699584e-05,
|
900 |
+
"loss": 0.3461,
|
901 |
+
"step": 124
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"epoch": 0.7385524372230429,
|
905 |
+
"grad_norm": 0.33812931180000305,
|
906 |
+
"learning_rate": 1.8105626814384173e-05,
|
907 |
+
"loss": 0.3404,
|
908 |
+
"step": 125
|
909 |
+
},
|
910 |
+
{
|
911 |
+
"epoch": 0.7444608567208272,
|
912 |
+
"grad_norm": 0.3138431906700134,
|
913 |
+
"learning_rate": 1.8066879392455932e-05,
|
914 |
+
"loss": 0.3237,
|
915 |
+
"step": 126
|
916 |
+
},
|
917 |
+
{
|
918 |
+
"epoch": 0.7503692762186115,
|
919 |
+
"grad_norm": 0.33033978939056396,
|
920 |
+
"learning_rate": 1.8027782051965408e-05,
|
921 |
+
"loss": 0.3416,
|
922 |
+
"step": 127
|
923 |
+
},
|
924 |
+
{
|
925 |
+
"epoch": 0.7562776957163959,
|
926 |
+
"grad_norm": 0.3907163143157959,
|
927 |
+
"learning_rate": 1.7988336488845374e-05,
|
928 |
+
"loss": 0.3352,
|
929 |
+
"step": 128
|
930 |
+
},
|
931 |
+
{
|
932 |
+
"epoch": 0.7621861152141802,
|
933 |
+
"grad_norm": 0.315248042345047,
|
934 |
+
"learning_rate": 1.7948544414133534e-05,
|
935 |
+
"loss": 0.3225,
|
936 |
+
"step": 129
|
937 |
+
},
|
938 |
+
{
|
939 |
+
"epoch": 0.7680945347119645,
|
940 |
+
"grad_norm": 0.3284492790699005,
|
941 |
+
"learning_rate": 1.7908407553898282e-05,
|
942 |
+
"loss": 0.3217,
|
943 |
+
"step": 130
|
944 |
+
},
|
945 |
+
{
|
946 |
+
"epoch": 0.7740029542097489,
|
947 |
+
"grad_norm": 0.3439176082611084,
|
948 |
+
"learning_rate": 1.7867927649163838e-05,
|
949 |
+
"loss": 0.3367,
|
950 |
+
"step": 131
|
951 |
+
},
|
952 |
+
{
|
953 |
+
"epoch": 0.7799113737075333,
|
954 |
+
"grad_norm": 0.31954073905944824,
|
955 |
+
"learning_rate": 1.782710645583473e-05,
|
956 |
+
"loss": 0.3133,
|
957 |
+
"step": 132
|
958 |
+
},
|
959 |
+
{
|
960 |
+
"epoch": 0.7858197932053176,
|
961 |
+
"grad_norm": 0.38416293263435364,
|
962 |
+
"learning_rate": 1.7785945744619642e-05,
|
963 |
+
"loss": 0.3484,
|
964 |
+
"step": 133
|
965 |
+
},
|
966 |
+
{
|
967 |
+
"epoch": 0.7917282127031019,
|
968 |
+
"grad_norm": 0.34139737486839294,
|
969 |
+
"learning_rate": 1.774444730095456e-05,
|
970 |
+
"loss": 0.3042,
|
971 |
+
"step": 134
|
972 |
+
},
|
973 |
+
{
|
974 |
+
"epoch": 0.7976366322008862,
|
975 |
+
"grad_norm": 0.3623535931110382,
|
976 |
+
"learning_rate": 1.7702612924925377e-05,
|
977 |
+
"loss": 0.3318,
|
978 |
+
"step": 135
|
979 |
+
},
|
980 |
+
{
|
981 |
+
"epoch": 0.8035450516986706,
|
982 |
+
"grad_norm": 0.32973209023475647,
|
983 |
+
"learning_rate": 1.766044443118978e-05,
|
984 |
+
"loss": 0.3092,
|
985 |
+
"step": 136
|
986 |
+
},
|
987 |
+
{
|
988 |
+
"epoch": 0.8094534711964549,
|
989 |
+
"grad_norm": 0.30704402923583984,
|
990 |
+
"learning_rate": 1.761794364889855e-05,
|
991 |
+
"loss": 0.321,
|
992 |
+
"step": 137
|
993 |
+
},
|
994 |
+
{
|
995 |
+
"epoch": 0.8153618906942393,
|
996 |
+
"grad_norm": 0.34877485036849976,
|
997 |
+
"learning_rate": 1.7575112421616203e-05,
|
998 |
+
"loss": 0.3266,
|
999 |
+
"step": 138
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 0.8212703101920237,
|
1003 |
+
"grad_norm": 0.3538282811641693,
|
1004 |
+
"learning_rate": 1.7531952607241033e-05,
|
1005 |
+
"loss": 0.3703,
|
1006 |
+
"step": 139
|
1007 |
+
},
|
1008 |
+
{
|
1009 |
+
"epoch": 0.827178729689808,
|
1010 |
+
"grad_norm": 0.35590365529060364,
|
1011 |
+
"learning_rate": 1.7488466077924525e-05,
|
1012 |
+
"loss": 0.3506,
|
1013 |
+
"step": 140
|
1014 |
+
},
|
1015 |
+
{
|
1016 |
+
"epoch": 0.8330871491875923,
|
1017 |
+
"grad_norm": 0.33215418457984924,
|
1018 |
+
"learning_rate": 1.7444654719990128e-05,
|
1019 |
+
"loss": 0.3207,
|
1020 |
+
"step": 141
|
1021 |
+
},
|
1022 |
+
{
|
1023 |
+
"epoch": 0.8389955686853766,
|
1024 |
+
"grad_norm": 0.3381923735141754,
|
1025 |
+
"learning_rate": 1.7400520433851457e-05,
|
1026 |
+
"loss": 0.3237,
|
1027 |
+
"step": 142
|
1028 |
+
},
|
1029 |
+
{
|
1030 |
+
"epoch": 0.844903988183161,
|
1031 |
+
"grad_norm": 0.3371356129646301,
|
1032 |
+
"learning_rate": 1.735606513392984e-05,
|
1033 |
+
"loss": 0.3394,
|
1034 |
+
"step": 143
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 0.8508124076809453,
|
1038 |
+
"grad_norm": 0.344291627407074,
|
1039 |
+
"learning_rate": 1.7311290748571273e-05,
|
1040 |
+
"loss": 0.3604,
|
1041 |
+
"step": 144
|
1042 |
+
},
|
1043 |
+
{
|
1044 |
+
"epoch": 0.8567208271787297,
|
1045 |
+
"grad_norm": 0.3567575216293335,
|
1046 |
+
"learning_rate": 1.72661992199628e-05,
|
1047 |
+
"loss": 0.3518,
|
1048 |
+
"step": 145
|
1049 |
+
},
|
1050 |
+
{
|
1051 |
+
"epoch": 0.8626292466765141,
|
1052 |
+
"grad_norm": 0.33762165904045105,
|
1053 |
+
"learning_rate": 1.7220792504048227e-05,
|
1054 |
+
"loss": 0.3146,
|
1055 |
+
"step": 146
|
1056 |
+
},
|
1057 |
+
{
|
1058 |
+
"epoch": 0.8685376661742984,
|
1059 |
+
"grad_norm": 0.3404117822647095,
|
1060 |
+
"learning_rate": 1.717507257044331e-05,
|
1061 |
+
"loss": 0.3192,
|
1062 |
+
"step": 147
|
1063 |
+
},
|
1064 |
+
{
|
1065 |
+
"epoch": 0.8744460856720827,
|
1066 |
+
"grad_norm": 0.3535095751285553,
|
1067 |
+
"learning_rate": 1.7129041402350317e-05,
|
1068 |
+
"loss": 0.3364,
|
1069 |
+
"step": 148
|
1070 |
+
},
|
1071 |
+
{
|
1072 |
+
"epoch": 0.880354505169867,
|
1073 |
+
"grad_norm": 0.3418992757797241,
|
1074 |
+
"learning_rate": 1.708270099647198e-05,
|
1075 |
+
"loss": 0.3327,
|
1076 |
+
"step": 149
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 0.8862629246676514,
|
1080 |
+
"grad_norm": 0.3172495663166046,
|
1081 |
+
"learning_rate": 1.7036053362924896e-05,
|
1082 |
+
"loss": 0.3404,
|
1083 |
+
"step": 150
|
1084 |
+
},
|
1085 |
+
{
|
1086 |
+
"epoch": 0.8921713441654358,
|
1087 |
+
"grad_norm": 0.3307952284812927,
|
1088 |
+
"learning_rate": 1.6989100525152346e-05,
|
1089 |
+
"loss": 0.3279,
|
1090 |
+
"step": 151
|
1091 |
+
},
|
1092 |
+
{
|
1093 |
+
"epoch": 0.8980797636632201,
|
1094 |
+
"grad_norm": 0.29014381766319275,
|
1095 |
+
"learning_rate": 1.694184451983651e-05,
|
1096 |
+
"loss": 0.3027,
|
1097 |
+
"step": 152
|
1098 |
+
},
|
1099 |
+
{
|
1100 |
+
"epoch": 0.9039881831610044,
|
1101 |
+
"grad_norm": 0.3290538191795349,
|
1102 |
+
"learning_rate": 1.689428739681012e-05,
|
1103 |
+
"loss": 0.3297,
|
1104 |
+
"step": 153
|
1105 |
+
},
|
1106 |
+
{
|
1107 |
+
"epoch": 0.9098966026587888,
|
1108 |
+
"grad_norm": 0.3165034353733063,
|
1109 |
+
"learning_rate": 1.684643121896755e-05,
|
1110 |
+
"loss": 0.3225,
|
1111 |
+
"step": 154
|
1112 |
+
},
|
1113 |
+
{
|
1114 |
+
"epoch": 0.9158050221565731,
|
1115 |
+
"grad_norm": 0.3677435517311096,
|
1116 |
+
"learning_rate": 1.679827806217533e-05,
|
1117 |
+
"loss": 0.328,
|
1118 |
+
"step": 155
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 0.9217134416543574,
|
1122 |
+
"grad_norm": 0.3617594242095947,
|
1123 |
+
"learning_rate": 1.6749830015182106e-05,
|
1124 |
+
"loss": 0.3299,
|
1125 |
+
"step": 156
|
1126 |
+
},
|
1127 |
+
{
|
1128 |
+
"epoch": 0.9276218611521418,
|
1129 |
+
"grad_norm": 0.31069889664649963,
|
1130 |
+
"learning_rate": 1.6701089179528032e-05,
|
1131 |
+
"loss": 0.3146,
|
1132 |
+
"step": 157
|
1133 |
+
},
|
1134 |
+
{
|
1135 |
+
"epoch": 0.9335302806499262,
|
1136 |
+
"grad_norm": 0.3610530197620392,
|
1137 |
+
"learning_rate": 1.6652057669453606e-05,
|
1138 |
+
"loss": 0.3223,
|
1139 |
+
"step": 158
|
1140 |
+
},
|
1141 |
+
{
|
1142 |
+
"epoch": 0.9394387001477105,
|
1143 |
+
"grad_norm": 0.3169001638889313,
|
1144 |
+
"learning_rate": 1.6602737611807975e-05,
|
1145 |
+
"loss": 0.3194,
|
1146 |
+
"step": 159
|
1147 |
+
},
|
1148 |
+
{
|
1149 |
+
"epoch": 0.9453471196454948,
|
1150 |
+
"grad_norm": 0.33033737540245056,
|
1151 |
+
"learning_rate": 1.655313114595666e-05,
|
1152 |
+
"loss": 0.3317,
|
1153 |
+
"step": 160
|
1154 |
+
},
|
1155 |
+
{
|
1156 |
+
"epoch": 0.9512555391432792,
|
1157 |
+
"grad_norm": 0.35510334372520447,
|
1158 |
+
"learning_rate": 1.6503240423688768e-05,
|
1159 |
+
"loss": 0.3249,
|
1160 |
+
"step": 161
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 0.9571639586410635,
|
1164 |
+
"grad_norm": 0.356079638004303,
|
1165 |
+
"learning_rate": 1.6453067609123656e-05,
|
1166 |
+
"loss": 0.3274,
|
1167 |
+
"step": 162
|
1168 |
+
},
|
1169 |
+
{
|
1170 |
+
"epoch": 0.9630723781388478,
|
1171 |
+
"grad_norm": 0.36350899934768677,
|
1172 |
+
"learning_rate": 1.6402614878617037e-05,
|
1173 |
+
"loss": 0.3553,
|
1174 |
+
"step": 163
|
1175 |
+
},
|
1176 |
+
{
|
1177 |
+
"epoch": 0.9689807976366323,
|
1178 |
+
"grad_norm": 0.3371831476688385,
|
1179 |
+
"learning_rate": 1.6351884420666616e-05,
|
1180 |
+
"loss": 0.3245,
|
1181 |
+
"step": 164
|
1182 |
+
},
|
1183 |
+
{
|
1184 |
+
"epoch": 0.9748892171344166,
|
1185 |
+
"grad_norm": 0.3398657739162445,
|
1186 |
+
"learning_rate": 1.6300878435817115e-05,
|
1187 |
+
"loss": 0.3043,
|
1188 |
+
"step": 165
|
1189 |
+
},
|
1190 |
+
{
|
1191 |
+
"epoch": 0.9807976366322009,
|
1192 |
+
"grad_norm": 0.34537115693092346,
|
1193 |
+
"learning_rate": 1.6249599136564837e-05,
|
1194 |
+
"loss": 0.349,
|
1195 |
+
"step": 166
|
1196 |
+
},
|
1197 |
+
{
|
1198 |
+
"epoch": 0.9867060561299852,
|
1199 |
+
"grad_norm": 0.31506776809692383,
|
1200 |
+
"learning_rate": 1.619804874726171e-05,
|
1201 |
+
"loss": 0.315,
|
1202 |
+
"step": 167
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 0.9926144756277696,
|
1206 |
+
"grad_norm": 0.32844215631484985,
|
1207 |
+
"learning_rate": 1.6146229504018777e-05,
|
1208 |
+
"loss": 0.3247,
|
1209 |
+
"step": 168
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 0.9985228951255539,
|
1213 |
+
"grad_norm": 0.3447742760181427,
|
1214 |
+
"learning_rate": 1.609414365460921e-05,
|
1215 |
+
"loss": 0.3193,
|
1216 |
+
"step": 169
|
1217 |
+
}
|
1218 |
+
],
|
1219 |
+
"logging_steps": 1,
|
1220 |
+
"max_steps": 507,
|
1221 |
+
"num_input_tokens_seen": 0,
|
1222 |
+
"num_train_epochs": 3,
|
1223 |
+
"save_steps": 169,
|
1224 |
+
"stateful_callbacks": {
|
1225 |
+
"TrainerControl": {
|
1226 |
+
"args": {
|
1227 |
+
"should_epoch_stop": false,
|
1228 |
+
"should_evaluate": false,
|
1229 |
+
"should_log": false,
|
1230 |
+
"should_save": true,
|
1231 |
+
"should_training_stop": false
|
1232 |
+
},
|
1233 |
+
"attributes": {}
|
1234 |
+
}
|
1235 |
+
},
|
1236 |
+
"total_flos": 2.892740285085778e+17,
|
1237 |
+
"train_batch_size": 8,
|
1238 |
+
"trial_name": null,
|
1239 |
+
"trial_params": null
|
1240 |
+
}
|
3b-mb_base/checkpoint-169/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d657c9786dc6c8c08c64e914a96a01397e0a80c1d965337767408bc8f80e5cf
|
3 |
+
size 10744
|
3b-mb_base/checkpoint-169/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
3b-mb_base/checkpoint-169/zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
3b-mb_base/checkpoint-338/added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
3b-mb_base/checkpoint-338/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen2.5-3B-Instruct",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"eos_token_id": 151645,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 2048,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 11008,
|
12 |
+
"max_position_embeddings": 32768,
|
13 |
+
"max_window_layers": 70,
|
14 |
+
"model_type": "qwen2",
|
15 |
+
"num_attention_heads": 16,
|
16 |
+
"num_hidden_layers": 36,
|
17 |
+
"num_key_value_heads": 2,
|
18 |
+
"rms_norm_eps": 1e-06,
|
19 |
+
"rope_scaling": null,
|
20 |
+
"rope_theta": 1000000.0,
|
21 |
+
"sliding_window": null,
|
22 |
+
"tie_word_embeddings": true,
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"transformers_version": "4.48.1",
|
25 |
+
"use_cache": false,
|
26 |
+
"use_sliding_window": false,
|
27 |
+
"vocab_size": 151665
|
28 |
+
}
|
3b-mb_base/checkpoint-338/generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.05,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.48.1"
|
14 |
+
}
|
3b-mb_base/checkpoint-338/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step337
|
3b-mb_base/checkpoint-338/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
3b-mb_base/checkpoint-338/model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec1dcaf6f5430f06caba435ab343745ffde124cf70490a36f66d78187bf075e4
|
3 |
+
size 4956450288
|
3b-mb_base/checkpoint-338/model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c3981a3a9d6b4e220344b35a25a971d7825c700fbd96ff52859b234be31da7df
|
3 |
+
size 1835586736
|
3b-mb_base/checkpoint-338/model.safetensors.index.json
ADDED
@@ -0,0 +1,442 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 6791987200
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
260 |
+
"model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
261 |
+
"model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
262 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
263 |
+
"model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
264 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
265 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
266 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
268 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
269 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
270 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
271 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
272 |
+
"model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
273 |
+
"model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
274 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
275 |
+
"model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
276 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
277 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
278 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
279 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
280 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
281 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
282 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
283 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
284 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
285 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
286 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
287 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
288 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
289 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
290 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
291 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
292 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
293 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
294 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
295 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
296 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
297 |
+
"model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
298 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
299 |
+
"model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
300 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
301 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
302 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
303 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
304 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
305 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
306 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
307 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
308 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
309 |
+
"model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
310 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
311 |
+
"model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
312 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
313 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
314 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
315 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
316 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
317 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
318 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
319 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
320 |
+
"model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
321 |
+
"model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
322 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
323 |
+
"model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
324 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
325 |
+
"model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
326 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
327 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
328 |
+
"model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
329 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
330 |
+
"model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
331 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
332 |
+
"model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
333 |
+
"model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
334 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
335 |
+
"model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
336 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
337 |
+
"model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
338 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
339 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
340 |
+
"model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
341 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
342 |
+
"model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
343 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
344 |
+
"model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
345 |
+
"model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
346 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
347 |
+
"model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
348 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
349 |
+
"model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
350 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
351 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
352 |
+
"model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
353 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
354 |
+
"model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
355 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
356 |
+
"model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
357 |
+
"model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
358 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
359 |
+
"model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
360 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
361 |
+
"model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
362 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
363 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
364 |
+
"model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
365 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
366 |
+
"model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
367 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
368 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
369 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
370 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
371 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
372 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
373 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
374 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
375 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
376 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
377 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
378 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
379 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
380 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
381 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
382 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
383 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
384 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
385 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
386 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
387 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
388 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
389 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
390 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
391 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
392 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
393 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
394 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
395 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
396 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
397 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
398 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
399 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
400 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
401 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
402 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
403 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
404 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
405 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
406 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
407 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
408 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
409 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
410 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
411 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
412 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
413 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
414 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
415 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
416 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
417 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
418 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
419 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
420 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
421 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
422 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
423 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
424 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
425 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
426 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
427 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
428 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
429 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
430 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
431 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
432 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
433 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
434 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
435 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
436 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
437 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
438 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
439 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
440 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
441 |
+
}
|
442 |
+
}
|
3b-mb_base/checkpoint-338/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3dcb161b22b2558dbf7e3f8c871050cec383d11a40423fab11f18d5e630639bf
|
3 |
+
size 14512
|
3b-mb_base/checkpoint-338/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d50af6aef769414a6f28fa1b1bc51ce707dc8ecd15474e03f99a2f10fde086be
|
3 |
+
size 14512
|
3b-mb_base/checkpoint-338/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd0ff87d03adec7a7483b66c31fc3a08e9184f59f52667e0a62a335c052ee5c8
|
3 |
+
size 1064
|
3b-mb_base/checkpoint-338/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
3b-mb_base/checkpoint-338/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
3 |
+
size 11421896
|
3b-mb_base/checkpoint-338/tokenizer_config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|im_end|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"extra_special_tokens": {},
|
203 |
+
"model_max_length": 131072,
|
204 |
+
"pad_token": "<|endoftext|>",
|
205 |
+
"split_special_tokens": false,
|
206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
207 |
+
"unk_token": null
|
208 |
+
}
|
3b-mb_base/checkpoint-338/trainer_state.json
ADDED
@@ -0,0 +1,2447 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.9926144756277697,
|
5 |
+
"eval_steps": 57,
|
6 |
+
"global_step": 338,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.005908419497784343,
|
13 |
+
"grad_norm": 4.501461029052734,
|
14 |
+
"learning_rate": 6.666666666666667e-07,
|
15 |
+
"loss": 1.062,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.005908419497784343,
|
20 |
+
"eval_loss": 1.0835397243499756,
|
21 |
+
"eval_runtime": 4.3539,
|
22 |
+
"eval_samples_per_second": 12.632,
|
23 |
+
"eval_steps_per_second": 1.608,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.011816838995568686,
|
28 |
+
"grad_norm": 4.469114303588867,
|
29 |
+
"learning_rate": 1.3333333333333334e-06,
|
30 |
+
"loss": 1.0268,
|
31 |
+
"step": 2
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.01772525849335303,
|
35 |
+
"grad_norm": 4.554893970489502,
|
36 |
+
"learning_rate": 2.0000000000000003e-06,
|
37 |
+
"loss": 1.0401,
|
38 |
+
"step": 3
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.023633677991137372,
|
42 |
+
"grad_norm": 4.374792575836182,
|
43 |
+
"learning_rate": 2.666666666666667e-06,
|
44 |
+
"loss": 1.0423,
|
45 |
+
"step": 4
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.029542097488921712,
|
49 |
+
"grad_norm": 3.4377498626708984,
|
50 |
+
"learning_rate": 3.3333333333333333e-06,
|
51 |
+
"loss": 0.9965,
|
52 |
+
"step": 5
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.03545051698670606,
|
56 |
+
"grad_norm": 3.1242499351501465,
|
57 |
+
"learning_rate": 4.000000000000001e-06,
|
58 |
+
"loss": 0.9479,
|
59 |
+
"step": 6
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.0413589364844904,
|
63 |
+
"grad_norm": 1.8368685245513916,
|
64 |
+
"learning_rate": 4.666666666666667e-06,
|
65 |
+
"loss": 0.8296,
|
66 |
+
"step": 7
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.047267355982274745,
|
70 |
+
"grad_norm": 1.7457680702209473,
|
71 |
+
"learning_rate": 5.333333333333334e-06,
|
72 |
+
"loss": 0.8159,
|
73 |
+
"step": 8
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.053175775480059084,
|
77 |
+
"grad_norm": 1.2953853607177734,
|
78 |
+
"learning_rate": 6e-06,
|
79 |
+
"loss": 0.664,
|
80 |
+
"step": 9
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.059084194977843424,
|
84 |
+
"grad_norm": 1.1054794788360596,
|
85 |
+
"learning_rate": 6.666666666666667e-06,
|
86 |
+
"loss": 0.6486,
|
87 |
+
"step": 10
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.06499261447562776,
|
91 |
+
"grad_norm": 0.8712942004203796,
|
92 |
+
"learning_rate": 7.333333333333333e-06,
|
93 |
+
"loss": 0.6415,
|
94 |
+
"step": 11
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.07090103397341212,
|
98 |
+
"grad_norm": 1.4441039562225342,
|
99 |
+
"learning_rate": 8.000000000000001e-06,
|
100 |
+
"loss": 0.6255,
|
101 |
+
"step": 12
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.07680945347119646,
|
105 |
+
"grad_norm": 1.4984484910964966,
|
106 |
+
"learning_rate": 8.666666666666668e-06,
|
107 |
+
"loss": 0.5561,
|
108 |
+
"step": 13
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.0827178729689808,
|
112 |
+
"grad_norm": 0.8376960754394531,
|
113 |
+
"learning_rate": 9.333333333333334e-06,
|
114 |
+
"loss": 0.5534,
|
115 |
+
"step": 14
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.08862629246676514,
|
119 |
+
"grad_norm": 0.7184750437736511,
|
120 |
+
"learning_rate": 1e-05,
|
121 |
+
"loss": 0.5062,
|
122 |
+
"step": 15
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.09453471196454949,
|
126 |
+
"grad_norm": 0.8381787538528442,
|
127 |
+
"learning_rate": 1.0666666666666667e-05,
|
128 |
+
"loss": 0.5531,
|
129 |
+
"step": 16
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.10044313146233383,
|
133 |
+
"grad_norm": 0.7621350288391113,
|
134 |
+
"learning_rate": 1.1333333333333334e-05,
|
135 |
+
"loss": 0.4876,
|
136 |
+
"step": 17
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.10635155096011817,
|
140 |
+
"grad_norm": 0.6955872178077698,
|
141 |
+
"learning_rate": 1.2e-05,
|
142 |
+
"loss": 0.5019,
|
143 |
+
"step": 18
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.11225997045790251,
|
147 |
+
"grad_norm": 0.5844917297363281,
|
148 |
+
"learning_rate": 1.2666666666666667e-05,
|
149 |
+
"loss": 0.4368,
|
150 |
+
"step": 19
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.11816838995568685,
|
154 |
+
"grad_norm": 0.5807573795318604,
|
155 |
+
"learning_rate": 1.3333333333333333e-05,
|
156 |
+
"loss": 0.4965,
|
157 |
+
"step": 20
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.1240768094534712,
|
161 |
+
"grad_norm": 0.5376399755477905,
|
162 |
+
"learning_rate": 1.4e-05,
|
163 |
+
"loss": 0.4841,
|
164 |
+
"step": 21
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.12998522895125553,
|
168 |
+
"grad_norm": 0.5053263902664185,
|
169 |
+
"learning_rate": 1.4666666666666666e-05,
|
170 |
+
"loss": 0.4573,
|
171 |
+
"step": 22
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.1358936484490399,
|
175 |
+
"grad_norm": 0.5155225396156311,
|
176 |
+
"learning_rate": 1.5333333333333334e-05,
|
177 |
+
"loss": 0.451,
|
178 |
+
"step": 23
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.14180206794682423,
|
182 |
+
"grad_norm": 0.52030348777771,
|
183 |
+
"learning_rate": 1.6000000000000003e-05,
|
184 |
+
"loss": 0.4199,
|
185 |
+
"step": 24
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.14771048744460857,
|
189 |
+
"grad_norm": 0.5321907997131348,
|
190 |
+
"learning_rate": 1.6666666666666667e-05,
|
191 |
+
"loss": 0.4532,
|
192 |
+
"step": 25
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.1536189069423929,
|
196 |
+
"grad_norm": 0.5318155288696289,
|
197 |
+
"learning_rate": 1.7333333333333336e-05,
|
198 |
+
"loss": 0.4813,
|
199 |
+
"step": 26
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.15952732644017725,
|
203 |
+
"grad_norm": 0.5176340937614441,
|
204 |
+
"learning_rate": 1.8e-05,
|
205 |
+
"loss": 0.4288,
|
206 |
+
"step": 27
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.1654357459379616,
|
210 |
+
"grad_norm": 0.43893975019454956,
|
211 |
+
"learning_rate": 1.866666666666667e-05,
|
212 |
+
"loss": 0.3766,
|
213 |
+
"step": 28
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.17134416543574593,
|
217 |
+
"grad_norm": 0.43830162286758423,
|
218 |
+
"learning_rate": 1.9333333333333333e-05,
|
219 |
+
"loss": 0.4159,
|
220 |
+
"step": 29
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 0.17725258493353027,
|
224 |
+
"grad_norm": 0.45950719714164734,
|
225 |
+
"learning_rate": 2e-05,
|
226 |
+
"loss": 0.4505,
|
227 |
+
"step": 30
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 0.1831610044313146,
|
231 |
+
"grad_norm": 0.40500667691230774,
|
232 |
+
"learning_rate": 1.9999783114048658e-05,
|
233 |
+
"loss": 0.3726,
|
234 |
+
"step": 31
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.18906942392909898,
|
238 |
+
"grad_norm": 0.43435147404670715,
|
239 |
+
"learning_rate": 1.9999132465602526e-05,
|
240 |
+
"loss": 0.442,
|
241 |
+
"step": 32
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 0.19497784342688332,
|
245 |
+
"grad_norm": 0.44813328981399536,
|
246 |
+
"learning_rate": 1.999804808288491e-05,
|
247 |
+
"loss": 0.437,
|
248 |
+
"step": 33
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.20088626292466766,
|
252 |
+
"grad_norm": 0.48166996240615845,
|
253 |
+
"learning_rate": 1.9996530012933285e-05,
|
254 |
+
"loss": 0.4107,
|
255 |
+
"step": 34
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.206794682422452,
|
259 |
+
"grad_norm": 0.398764044046402,
|
260 |
+
"learning_rate": 1.9994578321597258e-05,
|
261 |
+
"loss": 0.3882,
|
262 |
+
"step": 35
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"epoch": 0.21270310192023634,
|
266 |
+
"grad_norm": 0.44229164719581604,
|
267 |
+
"learning_rate": 1.999219309353572e-05,
|
268 |
+
"loss": 0.4154,
|
269 |
+
"step": 36
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.21861152141802068,
|
273 |
+
"grad_norm": 0.44369620084762573,
|
274 |
+
"learning_rate": 1.998937443221316e-05,
|
275 |
+
"loss": 0.3863,
|
276 |
+
"step": 37
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 0.22451994091580502,
|
280 |
+
"grad_norm": 0.44270017743110657,
|
281 |
+
"learning_rate": 1.9986122459895182e-05,
|
282 |
+
"loss": 0.3945,
|
283 |
+
"step": 38
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"epoch": 0.23042836041358936,
|
287 |
+
"grad_norm": 0.42152372002601624,
|
288 |
+
"learning_rate": 1.9982437317643218e-05,
|
289 |
+
"loss": 0.4094,
|
290 |
+
"step": 39
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.2363367799113737,
|
294 |
+
"grad_norm": 0.4120837450027466,
|
295 |
+
"learning_rate": 1.9978319165308373e-05,
|
296 |
+
"loss": 0.4411,
|
297 |
+
"step": 40
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.24224519940915806,
|
301 |
+
"grad_norm": 0.4064903259277344,
|
302 |
+
"learning_rate": 1.997376818152453e-05,
|
303 |
+
"loss": 0.3818,
|
304 |
+
"step": 41
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 0.2481536189069424,
|
308 |
+
"grad_norm": 0.3692624270915985,
|
309 |
+
"learning_rate": 1.9968784563700586e-05,
|
310 |
+
"loss": 0.3874,
|
311 |
+
"step": 42
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 0.25406203840472674,
|
315 |
+
"grad_norm": 0.4399218261241913,
|
316 |
+
"learning_rate": 1.9963368528011867e-05,
|
317 |
+
"loss": 0.3749,
|
318 |
+
"step": 43
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 0.25997045790251105,
|
322 |
+
"grad_norm": 0.3779003620147705,
|
323 |
+
"learning_rate": 1.9957520309390786e-05,
|
324 |
+
"loss": 0.3656,
|
325 |
+
"step": 44
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"epoch": 0.2658788774002954,
|
329 |
+
"grad_norm": 0.3946981132030487,
|
330 |
+
"learning_rate": 1.9951240161516643e-05,
|
331 |
+
"loss": 0.3612,
|
332 |
+
"step": 45
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.2717872968980798,
|
336 |
+
"grad_norm": 0.3969726264476776,
|
337 |
+
"learning_rate": 1.99445283568046e-05,
|
338 |
+
"loss": 0.3932,
|
339 |
+
"step": 46
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.2776957163958641,
|
343 |
+
"grad_norm": 0.4239075183868408,
|
344 |
+
"learning_rate": 1.9937385186393888e-05,
|
345 |
+
"loss": 0.387,
|
346 |
+
"step": 47
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 0.28360413589364847,
|
350 |
+
"grad_norm": 0.3688453733921051,
|
351 |
+
"learning_rate": 1.992981096013517e-05,
|
352 |
+
"loss": 0.3524,
|
353 |
+
"step": 48
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.2895125553914328,
|
357 |
+
"grad_norm": 0.4294806718826294,
|
358 |
+
"learning_rate": 1.9921806006577102e-05,
|
359 |
+
"loss": 0.3787,
|
360 |
+
"step": 49
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 0.29542097488921715,
|
364 |
+
"grad_norm": 0.3867166042327881,
|
365 |
+
"learning_rate": 1.9913370672952074e-05,
|
366 |
+
"loss": 0.3756,
|
367 |
+
"step": 50
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 0.30132939438700146,
|
371 |
+
"grad_norm": 0.43365901708602905,
|
372 |
+
"learning_rate": 1.990450532516116e-05,
|
373 |
+
"loss": 0.3896,
|
374 |
+
"step": 51
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.3072378138847858,
|
378 |
+
"grad_norm": 0.38658151030540466,
|
379 |
+
"learning_rate": 1.9895210347758233e-05,
|
380 |
+
"loss": 0.3703,
|
381 |
+
"step": 52
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.31314623338257014,
|
385 |
+
"grad_norm": 0.37093815207481384,
|
386 |
+
"learning_rate": 1.98854861439333e-05,
|
387 |
+
"loss": 0.3763,
|
388 |
+
"step": 53
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 0.3190546528803545,
|
392 |
+
"grad_norm": 0.40044137835502625,
|
393 |
+
"learning_rate": 1.9875333135495e-05,
|
394 |
+
"loss": 0.3752,
|
395 |
+
"step": 54
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.3249630723781389,
|
399 |
+
"grad_norm": 0.39133360981941223,
|
400 |
+
"learning_rate": 1.986475176285232e-05,
|
401 |
+
"loss": 0.3589,
|
402 |
+
"step": 55
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 0.3308714918759232,
|
406 |
+
"grad_norm": 0.38397374749183655,
|
407 |
+
"learning_rate": 1.985374248499546e-05,
|
408 |
+
"loss": 0.3701,
|
409 |
+
"step": 56
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 0.33677991137370755,
|
413 |
+
"grad_norm": 0.3795414865016937,
|
414 |
+
"learning_rate": 1.984230577947597e-05,
|
415 |
+
"loss": 0.3584,
|
416 |
+
"step": 57
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.33677991137370755,
|
420 |
+
"eval_loss": 0.3953791558742523,
|
421 |
+
"eval_runtime": 4.6385,
|
422 |
+
"eval_samples_per_second": 11.857,
|
423 |
+
"eval_steps_per_second": 1.509,
|
424 |
+
"step": 57
|
425 |
+
},
|
426 |
+
{
|
427 |
+
"epoch": 0.34268833087149186,
|
428 |
+
"grad_norm": 0.3709493577480316,
|
429 |
+
"learning_rate": 1.9830442142386e-05,
|
430 |
+
"loss": 0.3647,
|
431 |
+
"step": 58
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"epoch": 0.34859675036927623,
|
435 |
+
"grad_norm": 0.35005033016204834,
|
436 |
+
"learning_rate": 1.9818152088336786e-05,
|
437 |
+
"loss": 0.3317,
|
438 |
+
"step": 59
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"epoch": 0.35450516986706054,
|
442 |
+
"grad_norm": 0.3652004599571228,
|
443 |
+
"learning_rate": 1.9805436150436352e-05,
|
444 |
+
"loss": 0.3394,
|
445 |
+
"step": 60
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"epoch": 0.3604135893648449,
|
449 |
+
"grad_norm": 0.3940984904766083,
|
450 |
+
"learning_rate": 1.9792294880266346e-05,
|
451 |
+
"loss": 0.3711,
|
452 |
+
"step": 61
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 0.3663220088626292,
|
456 |
+
"grad_norm": 0.35634928941726685,
|
457 |
+
"learning_rate": 1.977872884785815e-05,
|
458 |
+
"loss": 0.3455,
|
459 |
+
"step": 62
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.3722304283604136,
|
463 |
+
"grad_norm": 0.3972924053668976,
|
464 |
+
"learning_rate": 1.9764738641668137e-05,
|
465 |
+
"loss": 0.3652,
|
466 |
+
"step": 63
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 0.37813884785819796,
|
470 |
+
"grad_norm": 0.40372708439826965,
|
471 |
+
"learning_rate": 1.9750324868552133e-05,
|
472 |
+
"loss": 0.3662,
|
473 |
+
"step": 64
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"epoch": 0.38404726735598227,
|
477 |
+
"grad_norm": 0.396133691072464,
|
478 |
+
"learning_rate": 1.9735488153739128e-05,
|
479 |
+
"loss": 0.3726,
|
480 |
+
"step": 65
|
481 |
+
},
|
482 |
+
{
|
483 |
+
"epoch": 0.38995568685376664,
|
484 |
+
"grad_norm": 0.398989737033844,
|
485 |
+
"learning_rate": 1.972022914080411e-05,
|
486 |
+
"loss": 0.3595,
|
487 |
+
"step": 66
|
488 |
+
},
|
489 |
+
{
|
490 |
+
"epoch": 0.39586410635155095,
|
491 |
+
"grad_norm": 0.4102807939052582,
|
492 |
+
"learning_rate": 1.9704548491640195e-05,
|
493 |
+
"loss": 0.3308,
|
494 |
+
"step": 67
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 0.4017725258493353,
|
498 |
+
"grad_norm": 0.344397634267807,
|
499 |
+
"learning_rate": 1.9688446886429885e-05,
|
500 |
+
"loss": 0.3653,
|
501 |
+
"step": 68
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 0.4076809453471196,
|
505 |
+
"grad_norm": 0.3550814390182495,
|
506 |
+
"learning_rate": 1.9671925023615572e-05,
|
507 |
+
"loss": 0.3412,
|
508 |
+
"step": 69
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"epoch": 0.413589364844904,
|
512 |
+
"grad_norm": 0.4047009348869324,
|
513 |
+
"learning_rate": 1.9654983619869242e-05,
|
514 |
+
"loss": 0.3578,
|
515 |
+
"step": 70
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"epoch": 0.4194977843426883,
|
519 |
+
"grad_norm": 0.41112563014030457,
|
520 |
+
"learning_rate": 1.9637623410061392e-05,
|
521 |
+
"loss": 0.3694,
|
522 |
+
"step": 71
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"epoch": 0.4254062038404727,
|
526 |
+
"grad_norm": 0.3775319755077362,
|
527 |
+
"learning_rate": 1.961984514722914e-05,
|
528 |
+
"loss": 0.3571,
|
529 |
+
"step": 72
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"epoch": 0.43131462333825704,
|
533 |
+
"grad_norm": 0.3610381782054901,
|
534 |
+
"learning_rate": 1.960164960254358e-05,
|
535 |
+
"loss": 0.3713,
|
536 |
+
"step": 73
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 0.43722304283604135,
|
540 |
+
"grad_norm": 0.38662371039390564,
|
541 |
+
"learning_rate": 1.9583037565276314e-05,
|
542 |
+
"loss": 0.311,
|
543 |
+
"step": 74
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 0.4431314623338257,
|
547 |
+
"grad_norm": 0.3574771285057068,
|
548 |
+
"learning_rate": 1.9564009842765225e-05,
|
549 |
+
"loss": 0.3353,
|
550 |
+
"step": 75
|
551 |
+
},
|
552 |
+
{
|
553 |
+
"epoch": 0.44903988183161003,
|
554 |
+
"grad_norm": 0.3932562470436096,
|
555 |
+
"learning_rate": 1.9544567260379455e-05,
|
556 |
+
"loss": 0.3536,
|
557 |
+
"step": 76
|
558 |
+
},
|
559 |
+
{
|
560 |
+
"epoch": 0.4549483013293944,
|
561 |
+
"grad_norm": 0.3974682092666626,
|
562 |
+
"learning_rate": 1.9524710661483594e-05,
|
563 |
+
"loss": 0.3556,
|
564 |
+
"step": 77
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 0.4608567208271787,
|
568 |
+
"grad_norm": 0.37172290682792664,
|
569 |
+
"learning_rate": 1.9504440907401113e-05,
|
570 |
+
"loss": 0.3568,
|
571 |
+
"step": 78
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 0.4667651403249631,
|
575 |
+
"grad_norm": 0.37170422077178955,
|
576 |
+
"learning_rate": 1.948375887737699e-05,
|
577 |
+
"loss": 0.3556,
|
578 |
+
"step": 79
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 0.4726735598227474,
|
582 |
+
"grad_norm": 0.3596966862678528,
|
583 |
+
"learning_rate": 1.9462665468539582e-05,
|
584 |
+
"loss": 0.332,
|
585 |
+
"step": 80
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 0.47858197932053176,
|
589 |
+
"grad_norm": 0.35934680700302124,
|
590 |
+
"learning_rate": 1.944116159586169e-05,
|
591 |
+
"loss": 0.3276,
|
592 |
+
"step": 81
|
593 |
+
},
|
594 |
+
{
|
595 |
+
"epoch": 0.4844903988183161,
|
596 |
+
"grad_norm": 0.40984946489334106,
|
597 |
+
"learning_rate": 1.94192481921209e-05,
|
598 |
+
"loss": 0.3685,
|
599 |
+
"step": 82
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"epoch": 0.49039881831610044,
|
603 |
+
"grad_norm": 0.3622114658355713,
|
604 |
+
"learning_rate": 1.9396926207859085e-05,
|
605 |
+
"loss": 0.3336,
|
606 |
+
"step": 83
|
607 |
+
},
|
608 |
+
{
|
609 |
+
"epoch": 0.4963072378138848,
|
610 |
+
"grad_norm": 0.34888842701911926,
|
611 |
+
"learning_rate": 1.9374196611341212e-05,
|
612 |
+
"loss": 0.3625,
|
613 |
+
"step": 84
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"epoch": 0.5022156573116692,
|
617 |
+
"grad_norm": 0.37125518918037415,
|
618 |
+
"learning_rate": 1.9351060388513304e-05,
|
619 |
+
"loss": 0.3304,
|
620 |
+
"step": 85
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 0.5081240768094535,
|
624 |
+
"grad_norm": 0.4107120931148529,
|
625 |
+
"learning_rate": 1.9327518542959717e-05,
|
626 |
+
"loss": 0.3755,
|
627 |
+
"step": 86
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 0.5140324963072378,
|
631 |
+
"grad_norm": 0.3420109748840332,
|
632 |
+
"learning_rate": 1.9303572095859545e-05,
|
633 |
+
"loss": 0.3457,
|
634 |
+
"step": 87
|
635 |
+
},
|
636 |
+
{
|
637 |
+
"epoch": 0.5199409158050221,
|
638 |
+
"grad_norm": 0.35079535841941833,
|
639 |
+
"learning_rate": 1.9279222085942396e-05,
|
640 |
+
"loss": 0.3454,
|
641 |
+
"step": 88
|
642 |
+
},
|
643 |
+
{
|
644 |
+
"epoch": 0.5258493353028065,
|
645 |
+
"grad_norm": 0.3775666058063507,
|
646 |
+
"learning_rate": 1.9254469569443274e-05,
|
647 |
+
"loss": 0.3501,
|
648 |
+
"step": 89
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"epoch": 0.5317577548005908,
|
652 |
+
"grad_norm": 0.3327409625053406,
|
653 |
+
"learning_rate": 1.9229315620056805e-05,
|
654 |
+
"loss": 0.3507,
|
655 |
+
"step": 90
|
656 |
+
},
|
657 |
+
{
|
658 |
+
"epoch": 0.5376661742983752,
|
659 |
+
"grad_norm": 0.37142789363861084,
|
660 |
+
"learning_rate": 1.9203761328890626e-05,
|
661 |
+
"loss": 0.3453,
|
662 |
+
"step": 91
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 0.5435745937961596,
|
666 |
+
"grad_norm": 0.36256077885627747,
|
667 |
+
"learning_rate": 1.91778078044181e-05,
|
668 |
+
"loss": 0.3588,
|
669 |
+
"step": 92
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 0.5494830132939439,
|
673 |
+
"grad_norm": 0.3861102759838104,
|
674 |
+
"learning_rate": 1.9151456172430186e-05,
|
675 |
+
"loss": 0.3479,
|
676 |
+
"step": 93
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 0.5553914327917282,
|
680 |
+
"grad_norm": 0.3359353542327881,
|
681 |
+
"learning_rate": 1.9124707575986642e-05,
|
682 |
+
"loss": 0.318,
|
683 |
+
"step": 94
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"epoch": 0.5612998522895125,
|
687 |
+
"grad_norm": 0.33662593364715576,
|
688 |
+
"learning_rate": 1.909756317536643e-05,
|
689 |
+
"loss": 0.3421,
|
690 |
+
"step": 95
|
691 |
+
},
|
692 |
+
{
|
693 |
+
"epoch": 0.5672082717872969,
|
694 |
+
"grad_norm": 0.35831600427627563,
|
695 |
+
"learning_rate": 1.9070024148017375e-05,
|
696 |
+
"loss": 0.3409,
|
697 |
+
"step": 96
|
698 |
+
},
|
699 |
+
{
|
700 |
+
"epoch": 0.5731166912850812,
|
701 |
+
"grad_norm": 0.39858701825141907,
|
702 |
+
"learning_rate": 1.9042091688505104e-05,
|
703 |
+
"loss": 0.3319,
|
704 |
+
"step": 97
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 0.5790251107828656,
|
708 |
+
"grad_norm": 0.3343643546104431,
|
709 |
+
"learning_rate": 1.9013767008461236e-05,
|
710 |
+
"loss": 0.3352,
|
711 |
+
"step": 98
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 0.5849335302806499,
|
715 |
+
"grad_norm": 0.3519919216632843,
|
716 |
+
"learning_rate": 1.89850513365308e-05,
|
717 |
+
"loss": 0.3634,
|
718 |
+
"step": 99
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"epoch": 0.5908419497784343,
|
722 |
+
"grad_norm": 0.32900717854499817,
|
723 |
+
"learning_rate": 1.895594591831896e-05,
|
724 |
+
"loss": 0.3415,
|
725 |
+
"step": 100
|
726 |
+
},
|
727 |
+
{
|
728 |
+
"epoch": 0.5967503692762186,
|
729 |
+
"grad_norm": 0.34432175755500793,
|
730 |
+
"learning_rate": 1.8926452016336987e-05,
|
731 |
+
"loss": 0.3169,
|
732 |
+
"step": 101
|
733 |
+
},
|
734 |
+
{
|
735 |
+
"epoch": 0.6026587887740029,
|
736 |
+
"grad_norm": 0.33144107460975647,
|
737 |
+
"learning_rate": 1.8896570909947477e-05,
|
738 |
+
"loss": 0.3431,
|
739 |
+
"step": 102
|
740 |
+
},
|
741 |
+
{
|
742 |
+
"epoch": 0.6085672082717873,
|
743 |
+
"grad_norm": 0.3299802839756012,
|
744 |
+
"learning_rate": 1.8866303895308856e-05,
|
745 |
+
"loss": 0.3411,
|
746 |
+
"step": 103
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 0.6144756277695717,
|
750 |
+
"grad_norm": 0.30740225315093994,
|
751 |
+
"learning_rate": 1.883565228531919e-05,
|
752 |
+
"loss": 0.3355,
|
753 |
+
"step": 104
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 0.620384047267356,
|
757 |
+
"grad_norm": 0.34325993061065674,
|
758 |
+
"learning_rate": 1.88046174095592e-05,
|
759 |
+
"loss": 0.3188,
|
760 |
+
"step": 105
|
761 |
+
},
|
762 |
+
{
|
763 |
+
"epoch": 0.6262924667651403,
|
764 |
+
"grad_norm": 0.3394065797328949,
|
765 |
+
"learning_rate": 1.8773200614234587e-05,
|
766 |
+
"loss": 0.3153,
|
767 |
+
"step": 106
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"epoch": 0.6322008862629247,
|
771 |
+
"grad_norm": 0.35468512773513794,
|
772 |
+
"learning_rate": 1.874140326211766e-05,
|
773 |
+
"loss": 0.3387,
|
774 |
+
"step": 107
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 0.638109305760709,
|
778 |
+
"grad_norm": 0.36726799607276917,
|
779 |
+
"learning_rate": 1.8709226732488216e-05,
|
780 |
+
"loss": 0.3457,
|
781 |
+
"step": 108
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 0.6440177252584933,
|
785 |
+
"grad_norm": 0.3223711848258972,
|
786 |
+
"learning_rate": 1.86766724210737e-05,
|
787 |
+
"loss": 0.3588,
|
788 |
+
"step": 109
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 0.6499261447562777,
|
792 |
+
"grad_norm": 0.3537541925907135,
|
793 |
+
"learning_rate": 1.8643741739988672e-05,
|
794 |
+
"loss": 0.3506,
|
795 |
+
"step": 110
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 0.6558345642540621,
|
799 |
+
"grad_norm": 0.3755073845386505,
|
800 |
+
"learning_rate": 1.8610436117673557e-05,
|
801 |
+
"loss": 0.3221,
|
802 |
+
"step": 111
|
803 |
+
},
|
804 |
+
{
|
805 |
+
"epoch": 0.6617429837518464,
|
806 |
+
"grad_norm": 0.31778833270072937,
|
807 |
+
"learning_rate": 1.8576756998832667e-05,
|
808 |
+
"loss": 0.3161,
|
809 |
+
"step": 112
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"epoch": 0.6676514032496307,
|
813 |
+
"grad_norm": 0.3517738878726959,
|
814 |
+
"learning_rate": 1.8542705844371544e-05,
|
815 |
+
"loss": 0.3442,
|
816 |
+
"step": 113
|
817 |
+
},
|
818 |
+
{
|
819 |
+
"epoch": 0.6735598227474151,
|
820 |
+
"grad_norm": 0.3254755139350891,
|
821 |
+
"learning_rate": 1.8508284131333604e-05,
|
822 |
+
"loss": 0.3372,
|
823 |
+
"step": 114
|
824 |
+
},
|
825 |
+
{
|
826 |
+
"epoch": 0.6735598227474151,
|
827 |
+
"eval_loss": 0.363791823387146,
|
828 |
+
"eval_runtime": 4.0908,
|
829 |
+
"eval_samples_per_second": 13.445,
|
830 |
+
"eval_steps_per_second": 1.711,
|
831 |
+
"step": 114
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"epoch": 0.6794682422451994,
|
835 |
+
"grad_norm": 0.3458060622215271,
|
836 |
+
"learning_rate": 1.8473493352836032e-05,
|
837 |
+
"loss": 0.3329,
|
838 |
+
"step": 115
|
839 |
+
},
|
840 |
+
{
|
841 |
+
"epoch": 0.6853766617429837,
|
842 |
+
"grad_norm": 0.33962881565093994,
|
843 |
+
"learning_rate": 1.8438335018005052e-05,
|
844 |
+
"loss": 0.3478,
|
845 |
+
"step": 116
|
846 |
+
},
|
847 |
+
{
|
848 |
+
"epoch": 0.691285081240768,
|
849 |
+
"grad_norm": 0.33980926871299744,
|
850 |
+
"learning_rate": 1.8402810651910444e-05,
|
851 |
+
"loss": 0.3484,
|
852 |
+
"step": 117
|
853 |
+
},
|
854 |
+
{
|
855 |
+
"epoch": 0.6971935007385525,
|
856 |
+
"grad_norm": 0.355694979429245,
|
857 |
+
"learning_rate": 1.8366921795499394e-05,
|
858 |
+
"loss": 0.3686,
|
859 |
+
"step": 118
|
860 |
+
},
|
861 |
+
{
|
862 |
+
"epoch": 0.7031019202363368,
|
863 |
+
"grad_norm": 0.3415476083755493,
|
864 |
+
"learning_rate": 1.8330670005529657e-05,
|
865 |
+
"loss": 0.3204,
|
866 |
+
"step": 119
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 0.7090103397341211,
|
870 |
+
"grad_norm": 0.3336890935897827,
|
871 |
+
"learning_rate": 1.829405685450202e-05,
|
872 |
+
"loss": 0.3323,
|
873 |
+
"step": 120
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 0.7149187592319055,
|
877 |
+
"grad_norm": 0.34337785840034485,
|
878 |
+
"learning_rate": 1.8257083930592102e-05,
|
879 |
+
"loss": 0.3283,
|
880 |
+
"step": 121
|
881 |
+
},
|
882 |
+
{
|
883 |
+
"epoch": 0.7208271787296898,
|
884 |
+
"grad_norm": 0.3578524887561798,
|
885 |
+
"learning_rate": 1.8219752837581466e-05,
|
886 |
+
"loss": 0.3326,
|
887 |
+
"step": 122
|
888 |
+
},
|
889 |
+
{
|
890 |
+
"epoch": 0.7267355982274741,
|
891 |
+
"grad_norm": 0.32392922043800354,
|
892 |
+
"learning_rate": 1.8182065194788024e-05,
|
893 |
+
"loss": 0.3141,
|
894 |
+
"step": 123
|
895 |
+
},
|
896 |
+
{
|
897 |
+
"epoch": 0.7326440177252584,
|
898 |
+
"grad_norm": 0.36127492785453796,
|
899 |
+
"learning_rate": 1.814402263699584e-05,
|
900 |
+
"loss": 0.3461,
|
901 |
+
"step": 124
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"epoch": 0.7385524372230429,
|
905 |
+
"grad_norm": 0.33812931180000305,
|
906 |
+
"learning_rate": 1.8105626814384173e-05,
|
907 |
+
"loss": 0.3404,
|
908 |
+
"step": 125
|
909 |
+
},
|
910 |
+
{
|
911 |
+
"epoch": 0.7444608567208272,
|
912 |
+
"grad_norm": 0.3138431906700134,
|
913 |
+
"learning_rate": 1.8066879392455932e-05,
|
914 |
+
"loss": 0.3237,
|
915 |
+
"step": 126
|
916 |
+
},
|
917 |
+
{
|
918 |
+
"epoch": 0.7503692762186115,
|
919 |
+
"grad_norm": 0.33033978939056396,
|
920 |
+
"learning_rate": 1.8027782051965408e-05,
|
921 |
+
"loss": 0.3416,
|
922 |
+
"step": 127
|
923 |
+
},
|
924 |
+
{
|
925 |
+
"epoch": 0.7562776957163959,
|
926 |
+
"grad_norm": 0.3907163143157959,
|
927 |
+
"learning_rate": 1.7988336488845374e-05,
|
928 |
+
"loss": 0.3352,
|
929 |
+
"step": 128
|
930 |
+
},
|
931 |
+
{
|
932 |
+
"epoch": 0.7621861152141802,
|
933 |
+
"grad_norm": 0.315248042345047,
|
934 |
+
"learning_rate": 1.7948544414133534e-05,
|
935 |
+
"loss": 0.3225,
|
936 |
+
"step": 129
|
937 |
+
},
|
938 |
+
{
|
939 |
+
"epoch": 0.7680945347119645,
|
940 |
+
"grad_norm": 0.3284492790699005,
|
941 |
+
"learning_rate": 1.7908407553898282e-05,
|
942 |
+
"loss": 0.3217,
|
943 |
+
"step": 130
|
944 |
+
},
|
945 |
+
{
|
946 |
+
"epoch": 0.7740029542097489,
|
947 |
+
"grad_norm": 0.3439176082611084,
|
948 |
+
"learning_rate": 1.7867927649163838e-05,
|
949 |
+
"loss": 0.3367,
|
950 |
+
"step": 131
|
951 |
+
},
|
952 |
+
{
|
953 |
+
"epoch": 0.7799113737075333,
|
954 |
+
"grad_norm": 0.31954073905944824,
|
955 |
+
"learning_rate": 1.782710645583473e-05,
|
956 |
+
"loss": 0.3133,
|
957 |
+
"step": 132
|
958 |
+
},
|
959 |
+
{
|
960 |
+
"epoch": 0.7858197932053176,
|
961 |
+
"grad_norm": 0.38416293263435364,
|
962 |
+
"learning_rate": 1.7785945744619642e-05,
|
963 |
+
"loss": 0.3484,
|
964 |
+
"step": 133
|
965 |
+
},
|
966 |
+
{
|
967 |
+
"epoch": 0.7917282127031019,
|
968 |
+
"grad_norm": 0.34139737486839294,
|
969 |
+
"learning_rate": 1.774444730095456e-05,
|
970 |
+
"loss": 0.3042,
|
971 |
+
"step": 134
|
972 |
+
},
|
973 |
+
{
|
974 |
+
"epoch": 0.7976366322008862,
|
975 |
+
"grad_norm": 0.3623535931110382,
|
976 |
+
"learning_rate": 1.7702612924925377e-05,
|
977 |
+
"loss": 0.3318,
|
978 |
+
"step": 135
|
979 |
+
},
|
980 |
+
{
|
981 |
+
"epoch": 0.8035450516986706,
|
982 |
+
"grad_norm": 0.32973209023475647,
|
983 |
+
"learning_rate": 1.766044443118978e-05,
|
984 |
+
"loss": 0.3092,
|
985 |
+
"step": 136
|
986 |
+
},
|
987 |
+
{
|
988 |
+
"epoch": 0.8094534711964549,
|
989 |
+
"grad_norm": 0.30704402923583984,
|
990 |
+
"learning_rate": 1.761794364889855e-05,
|
991 |
+
"loss": 0.321,
|
992 |
+
"step": 137
|
993 |
+
},
|
994 |
+
{
|
995 |
+
"epoch": 0.8153618906942393,
|
996 |
+
"grad_norm": 0.34877485036849976,
|
997 |
+
"learning_rate": 1.7575112421616203e-05,
|
998 |
+
"loss": 0.3266,
|
999 |
+
"step": 138
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 0.8212703101920237,
|
1003 |
+
"grad_norm": 0.3538282811641693,
|
1004 |
+
"learning_rate": 1.7531952607241033e-05,
|
1005 |
+
"loss": 0.3703,
|
1006 |
+
"step": 139
|
1007 |
+
},
|
1008 |
+
{
|
1009 |
+
"epoch": 0.827178729689808,
|
1010 |
+
"grad_norm": 0.35590365529060364,
|
1011 |
+
"learning_rate": 1.7488466077924525e-05,
|
1012 |
+
"loss": 0.3506,
|
1013 |
+
"step": 140
|
1014 |
+
},
|
1015 |
+
{
|
1016 |
+
"epoch": 0.8330871491875923,
|
1017 |
+
"grad_norm": 0.33215418457984924,
|
1018 |
+
"learning_rate": 1.7444654719990128e-05,
|
1019 |
+
"loss": 0.3207,
|
1020 |
+
"step": 141
|
1021 |
+
},
|
1022 |
+
{
|
1023 |
+
"epoch": 0.8389955686853766,
|
1024 |
+
"grad_norm": 0.3381923735141754,
|
1025 |
+
"learning_rate": 1.7400520433851457e-05,
|
1026 |
+
"loss": 0.3237,
|
1027 |
+
"step": 142
|
1028 |
+
},
|
1029 |
+
{
|
1030 |
+
"epoch": 0.844903988183161,
|
1031 |
+
"grad_norm": 0.3371356129646301,
|
1032 |
+
"learning_rate": 1.735606513392984e-05,
|
1033 |
+
"loss": 0.3394,
|
1034 |
+
"step": 143
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 0.8508124076809453,
|
1038 |
+
"grad_norm": 0.344291627407074,
|
1039 |
+
"learning_rate": 1.7311290748571273e-05,
|
1040 |
+
"loss": 0.3604,
|
1041 |
+
"step": 144
|
1042 |
+
},
|
1043 |
+
{
|
1044 |
+
"epoch": 0.8567208271787297,
|
1045 |
+
"grad_norm": 0.3567575216293335,
|
1046 |
+
"learning_rate": 1.72661992199628e-05,
|
1047 |
+
"loss": 0.3518,
|
1048 |
+
"step": 145
|
1049 |
+
},
|
1050 |
+
{
|
1051 |
+
"epoch": 0.8626292466765141,
|
1052 |
+
"grad_norm": 0.33762165904045105,
|
1053 |
+
"learning_rate": 1.7220792504048227e-05,
|
1054 |
+
"loss": 0.3146,
|
1055 |
+
"step": 146
|
1056 |
+
},
|
1057 |
+
{
|
1058 |
+
"epoch": 0.8685376661742984,
|
1059 |
+
"grad_norm": 0.3404117822647095,
|
1060 |
+
"learning_rate": 1.717507257044331e-05,
|
1061 |
+
"loss": 0.3192,
|
1062 |
+
"step": 147
|
1063 |
+
},
|
1064 |
+
{
|
1065 |
+
"epoch": 0.8744460856720827,
|
1066 |
+
"grad_norm": 0.3535095751285553,
|
1067 |
+
"learning_rate": 1.7129041402350317e-05,
|
1068 |
+
"loss": 0.3364,
|
1069 |
+
"step": 148
|
1070 |
+
},
|
1071 |
+
{
|
1072 |
+
"epoch": 0.880354505169867,
|
1073 |
+
"grad_norm": 0.3418992757797241,
|
1074 |
+
"learning_rate": 1.708270099647198e-05,
|
1075 |
+
"loss": 0.3327,
|
1076 |
+
"step": 149
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 0.8862629246676514,
|
1080 |
+
"grad_norm": 0.3172495663166046,
|
1081 |
+
"learning_rate": 1.7036053362924896e-05,
|
1082 |
+
"loss": 0.3404,
|
1083 |
+
"step": 150
|
1084 |
+
},
|
1085 |
+
{
|
1086 |
+
"epoch": 0.8921713441654358,
|
1087 |
+
"grad_norm": 0.3307952284812927,
|
1088 |
+
"learning_rate": 1.6989100525152346e-05,
|
1089 |
+
"loss": 0.3279,
|
1090 |
+
"step": 151
|
1091 |
+
},
|
1092 |
+
{
|
1093 |
+
"epoch": 0.8980797636632201,
|
1094 |
+
"grad_norm": 0.29014381766319275,
|
1095 |
+
"learning_rate": 1.694184451983651e-05,
|
1096 |
+
"loss": 0.3027,
|
1097 |
+
"step": 152
|
1098 |
+
},
|
1099 |
+
{
|
1100 |
+
"epoch": 0.9039881831610044,
|
1101 |
+
"grad_norm": 0.3290538191795349,
|
1102 |
+
"learning_rate": 1.689428739681012e-05,
|
1103 |
+
"loss": 0.3297,
|
1104 |
+
"step": 153
|
1105 |
+
},
|
1106 |
+
{
|
1107 |
+
"epoch": 0.9098966026587888,
|
1108 |
+
"grad_norm": 0.3165034353733063,
|
1109 |
+
"learning_rate": 1.684643121896755e-05,
|
1110 |
+
"loss": 0.3225,
|
1111 |
+
"step": 154
|
1112 |
+
},
|
1113 |
+
{
|
1114 |
+
"epoch": 0.9158050221565731,
|
1115 |
+
"grad_norm": 0.3677435517311096,
|
1116 |
+
"learning_rate": 1.679827806217533e-05,
|
1117 |
+
"loss": 0.328,
|
1118 |
+
"step": 155
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 0.9217134416543574,
|
1122 |
+
"grad_norm": 0.3617594242095947,
|
1123 |
+
"learning_rate": 1.6749830015182106e-05,
|
1124 |
+
"loss": 0.3299,
|
1125 |
+
"step": 156
|
1126 |
+
},
|
1127 |
+
{
|
1128 |
+
"epoch": 0.9276218611521418,
|
1129 |
+
"grad_norm": 0.31069889664649963,
|
1130 |
+
"learning_rate": 1.6701089179528032e-05,
|
1131 |
+
"loss": 0.3146,
|
1132 |
+
"step": 157
|
1133 |
+
},
|
1134 |
+
{
|
1135 |
+
"epoch": 0.9335302806499262,
|
1136 |
+
"grad_norm": 0.3610530197620392,
|
1137 |
+
"learning_rate": 1.6652057669453606e-05,
|
1138 |
+
"loss": 0.3223,
|
1139 |
+
"step": 158
|
1140 |
+
},
|
1141 |
+
{
|
1142 |
+
"epoch": 0.9394387001477105,
|
1143 |
+
"grad_norm": 0.3169001638889313,
|
1144 |
+
"learning_rate": 1.6602737611807975e-05,
|
1145 |
+
"loss": 0.3194,
|
1146 |
+
"step": 159
|
1147 |
+
},
|
1148 |
+
{
|
1149 |
+
"epoch": 0.9453471196454948,
|
1150 |
+
"grad_norm": 0.33033737540245056,
|
1151 |
+
"learning_rate": 1.655313114595666e-05,
|
1152 |
+
"loss": 0.3317,
|
1153 |
+
"step": 160
|
1154 |
+
},
|
1155 |
+
{
|
1156 |
+
"epoch": 0.9512555391432792,
|
1157 |
+
"grad_norm": 0.35510334372520447,
|
1158 |
+
"learning_rate": 1.6503240423688768e-05,
|
1159 |
+
"loss": 0.3249,
|
1160 |
+
"step": 161
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 0.9571639586410635,
|
1164 |
+
"grad_norm": 0.356079638004303,
|
1165 |
+
"learning_rate": 1.6453067609123656e-05,
|
1166 |
+
"loss": 0.3274,
|
1167 |
+
"step": 162
|
1168 |
+
},
|
1169 |
+
{
|
1170 |
+
"epoch": 0.9630723781388478,
|
1171 |
+
"grad_norm": 0.36350899934768677,
|
1172 |
+
"learning_rate": 1.6402614878617037e-05,
|
1173 |
+
"loss": 0.3553,
|
1174 |
+
"step": 163
|
1175 |
+
},
|
1176 |
+
{
|
1177 |
+
"epoch": 0.9689807976366323,
|
1178 |
+
"grad_norm": 0.3371831476688385,
|
1179 |
+
"learning_rate": 1.6351884420666616e-05,
|
1180 |
+
"loss": 0.3245,
|
1181 |
+
"step": 164
|
1182 |
+
},
|
1183 |
+
{
|
1184 |
+
"epoch": 0.9748892171344166,
|
1185 |
+
"grad_norm": 0.3398657739162445,
|
1186 |
+
"learning_rate": 1.6300878435817115e-05,
|
1187 |
+
"loss": 0.3043,
|
1188 |
+
"step": 165
|
1189 |
+
},
|
1190 |
+
{
|
1191 |
+
"epoch": 0.9807976366322009,
|
1192 |
+
"grad_norm": 0.34537115693092346,
|
1193 |
+
"learning_rate": 1.6249599136564837e-05,
|
1194 |
+
"loss": 0.349,
|
1195 |
+
"step": 166
|
1196 |
+
},
|
1197 |
+
{
|
1198 |
+
"epoch": 0.9867060561299852,
|
1199 |
+
"grad_norm": 0.31506776809692383,
|
1200 |
+
"learning_rate": 1.619804874726171e-05,
|
1201 |
+
"loss": 0.315,
|
1202 |
+
"step": 167
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 0.9926144756277696,
|
1206 |
+
"grad_norm": 0.32844215631484985,
|
1207 |
+
"learning_rate": 1.6146229504018777e-05,
|
1208 |
+
"loss": 0.3247,
|
1209 |
+
"step": 168
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 0.9985228951255539,
|
1213 |
+
"grad_norm": 0.3447742760181427,
|
1214 |
+
"learning_rate": 1.609414365460921e-05,
|
1215 |
+
"loss": 0.3193,
|
1216 |
+
"step": 169
|
1217 |
+
},
|
1218 |
+
{
|
1219 |
+
"epoch": 1.0,
|
1220 |
+
"grad_norm": 0.3447742760181427,
|
1221 |
+
"learning_rate": 1.6041793458370812e-05,
|
1222 |
+
"loss": 0.3359,
|
1223 |
+
"step": 170
|
1224 |
+
},
|
1225 |
+
{
|
1226 |
+
"epoch": 1.0059084194977843,
|
1227 |
+
"grad_norm": 0.27635836601257324,
|
1228 |
+
"learning_rate": 1.5989181186108003e-05,
|
1229 |
+
"loss": 0.2579,
|
1230 |
+
"step": 171
|
1231 |
+
},
|
1232 |
+
{
|
1233 |
+
"epoch": 1.0059084194977843,
|
1234 |
+
"eval_loss": 0.3496532440185547,
|
1235 |
+
"eval_runtime": 4.0258,
|
1236 |
+
"eval_samples_per_second": 13.662,
|
1237 |
+
"eval_steps_per_second": 1.739,
|
1238 |
+
"step": 171
|
1239 |
+
},
|
1240 |
+
{
|
1241 |
+
"epoch": 1.0118168389955686,
|
1242 |
+
"grad_norm": 0.27547529339790344,
|
1243 |
+
"learning_rate": 1.5936309119993333e-05,
|
1244 |
+
"loss": 0.2532,
|
1245 |
+
"step": 172
|
1246 |
+
},
|
1247 |
+
{
|
1248 |
+
"epoch": 1.017725258493353,
|
1249 |
+
"grad_norm": 0.2674752473831177,
|
1250 |
+
"learning_rate": 1.5883179553468465e-05,
|
1251 |
+
"loss": 0.2413,
|
1252 |
+
"step": 173
|
1253 |
+
},
|
1254 |
+
{
|
1255 |
+
"epoch": 1.0236336779911375,
|
1256 |
+
"grad_norm": 0.3056715428829193,
|
1257 |
+
"learning_rate": 1.5829794791144723e-05,
|
1258 |
+
"loss": 0.2418,
|
1259 |
+
"step": 174
|
1260 |
+
},
|
1261 |
+
{
|
1262 |
+
"epoch": 1.0295420974889218,
|
1263 |
+
"grad_norm": 0.27895164489746094,
|
1264 |
+
"learning_rate": 1.5776157148703094e-05,
|
1265 |
+
"loss": 0.2516,
|
1266 |
+
"step": 175
|
1267 |
+
},
|
1268 |
+
{
|
1269 |
+
"epoch": 1.035450516986706,
|
1270 |
+
"grad_norm": 0.2935872972011566,
|
1271 |
+
"learning_rate": 1.5722268952793806e-05,
|
1272 |
+
"loss": 0.254,
|
1273 |
+
"step": 176
|
1274 |
+
},
|
1275 |
+
{
|
1276 |
+
"epoch": 1.0413589364844904,
|
1277 |
+
"grad_norm": 0.28329288959503174,
|
1278 |
+
"learning_rate": 1.566813254093538e-05,
|
1279 |
+
"loss": 0.2356,
|
1280 |
+
"step": 177
|
1281 |
+
},
|
1282 |
+
{
|
1283 |
+
"epoch": 1.0472673559822747,
|
1284 |
+
"grad_norm": 0.29026728868484497,
|
1285 |
+
"learning_rate": 1.5613750261413256e-05,
|
1286 |
+
"loss": 0.2404,
|
1287 |
+
"step": 178
|
1288 |
+
},
|
1289 |
+
{
|
1290 |
+
"epoch": 1.053175775480059,
|
1291 |
+
"grad_norm": 0.3126751780509949,
|
1292 |
+
"learning_rate": 1.555912447317792e-05,
|
1293 |
+
"loss": 0.2303,
|
1294 |
+
"step": 179
|
1295 |
+
},
|
1296 |
+
{
|
1297 |
+
"epoch": 1.0590841949778433,
|
1298 |
+
"grad_norm": 0.26517724990844727,
|
1299 |
+
"learning_rate": 1.5504257545742585e-05,
|
1300 |
+
"loss": 0.2175,
|
1301 |
+
"step": 180
|
1302 |
+
},
|
1303 |
+
{
|
1304 |
+
"epoch": 1.0649926144756279,
|
1305 |
+
"grad_norm": 0.26433265209198,
|
1306 |
+
"learning_rate": 1.5449151859080395e-05,
|
1307 |
+
"loss": 0.2169,
|
1308 |
+
"step": 181
|
1309 |
+
},
|
1310 |
+
{
|
1311 |
+
"epoch": 1.0709010339734122,
|
1312 |
+
"grad_norm": 0.2908313274383545,
|
1313 |
+
"learning_rate": 1.5393809803521213e-05,
|
1314 |
+
"loss": 0.2236,
|
1315 |
+
"step": 182
|
1316 |
+
},
|
1317 |
+
{
|
1318 |
+
"epoch": 1.0768094534711965,
|
1319 |
+
"grad_norm": 0.2951337397098541,
|
1320 |
+
"learning_rate": 1.533823377964791e-05,
|
1321 |
+
"loss": 0.2305,
|
1322 |
+
"step": 183
|
1323 |
+
},
|
1324 |
+
{
|
1325 |
+
"epoch": 1.0827178729689808,
|
1326 |
+
"grad_norm": 0.29755067825317383,
|
1327 |
+
"learning_rate": 1.528242619819224e-05,
|
1328 |
+
"loss": 0.2385,
|
1329 |
+
"step": 184
|
1330 |
+
},
|
1331 |
+
{
|
1332 |
+
"epoch": 1.0886262924667651,
|
1333 |
+
"grad_norm": 0.2879098355770111,
|
1334 |
+
"learning_rate": 1.5226389479930296e-05,
|
1335 |
+
"loss": 0.2377,
|
1336 |
+
"step": 185
|
1337 |
+
},
|
1338 |
+
{
|
1339 |
+
"epoch": 1.0945347119645494,
|
1340 |
+
"grad_norm": 0.2590835392475128,
|
1341 |
+
"learning_rate": 1.517012605557746e-05,
|
1342 |
+
"loss": 0.2312,
|
1343 |
+
"step": 186
|
1344 |
+
},
|
1345 |
+
{
|
1346 |
+
"epoch": 1.1004431314623337,
|
1347 |
+
"grad_norm": 0.2694130837917328,
|
1348 |
+
"learning_rate": 1.5113638365682996e-05,
|
1349 |
+
"loss": 0.2347,
|
1350 |
+
"step": 187
|
1351 |
+
},
|
1352 |
+
{
|
1353 |
+
"epoch": 1.106351550960118,
|
1354 |
+
"grad_norm": 0.29442402720451355,
|
1355 |
+
"learning_rate": 1.5056928860524181e-05,
|
1356 |
+
"loss": 0.2428,
|
1357 |
+
"step": 188
|
1358 |
+
},
|
1359 |
+
{
|
1360 |
+
"epoch": 1.1122599704579026,
|
1361 |
+
"grad_norm": 0.29042768478393555,
|
1362 |
+
"learning_rate": 1.5000000000000002e-05,
|
1363 |
+
"loss": 0.2501,
|
1364 |
+
"step": 189
|
1365 |
+
},
|
1366 |
+
{
|
1367 |
+
"epoch": 1.118168389955687,
|
1368 |
+
"grad_norm": 0.2620311975479126,
|
1369 |
+
"learning_rate": 1.4942854253524479e-05,
|
1370 |
+
"loss": 0.2395,
|
1371 |
+
"step": 190
|
1372 |
+
},
|
1373 |
+
{
|
1374 |
+
"epoch": 1.1240768094534712,
|
1375 |
+
"grad_norm": 0.26113441586494446,
|
1376 |
+
"learning_rate": 1.488549409991953e-05,
|
1377 |
+
"loss": 0.2532,
|
1378 |
+
"step": 191
|
1379 |
+
},
|
1380 |
+
{
|
1381 |
+
"epoch": 1.1299852289512555,
|
1382 |
+
"grad_norm": 0.2995262145996094,
|
1383 |
+
"learning_rate": 1.482792202730745e-05,
|
1384 |
+
"loss": 0.2319,
|
1385 |
+
"step": 192
|
1386 |
+
},
|
1387 |
+
{
|
1388 |
+
"epoch": 1.1358936484490398,
|
1389 |
+
"grad_norm": 0.27327674627304077,
|
1390 |
+
"learning_rate": 1.477014053300299e-05,
|
1391 |
+
"loss": 0.2348,
|
1392 |
+
"step": 193
|
1393 |
+
},
|
1394 |
+
{
|
1395 |
+
"epoch": 1.1418020679468242,
|
1396 |
+
"grad_norm": 0.26245003938674927,
|
1397 |
+
"learning_rate": 1.4712152123405018e-05,
|
1398 |
+
"loss": 0.228,
|
1399 |
+
"step": 194
|
1400 |
+
},
|
1401 |
+
{
|
1402 |
+
"epoch": 1.1477104874446087,
|
1403 |
+
"grad_norm": 0.28888335824012756,
|
1404 |
+
"learning_rate": 1.4653959313887813e-05,
|
1405 |
+
"loss": 0.2436,
|
1406 |
+
"step": 195
|
1407 |
+
},
|
1408 |
+
{
|
1409 |
+
"epoch": 1.153618906942393,
|
1410 |
+
"grad_norm": 0.2724781632423401,
|
1411 |
+
"learning_rate": 1.4595564628691944e-05,
|
1412 |
+
"loss": 0.2442,
|
1413 |
+
"step": 196
|
1414 |
+
},
|
1415 |
+
{
|
1416 |
+
"epoch": 1.1595273264401773,
|
1417 |
+
"grad_norm": 0.2921780049800873,
|
1418 |
+
"learning_rate": 1.4536970600814789e-05,
|
1419 |
+
"loss": 0.2412,
|
1420 |
+
"step": 197
|
1421 |
+
},
|
1422 |
+
{
|
1423 |
+
"epoch": 1.1654357459379616,
|
1424 |
+
"grad_norm": 0.27938568592071533,
|
1425 |
+
"learning_rate": 1.4478179771900634e-05,
|
1426 |
+
"loss": 0.2465,
|
1427 |
+
"step": 198
|
1428 |
+
},
|
1429 |
+
{
|
1430 |
+
"epoch": 1.171344165435746,
|
1431 |
+
"grad_norm": 0.29516273736953735,
|
1432 |
+
"learning_rate": 1.4419194692130453e-05,
|
1433 |
+
"loss": 0.2415,
|
1434 |
+
"step": 199
|
1435 |
+
},
|
1436 |
+
{
|
1437 |
+
"epoch": 1.1772525849335302,
|
1438 |
+
"grad_norm": 0.27947136759757996,
|
1439 |
+
"learning_rate": 1.436001792011128e-05,
|
1440 |
+
"loss": 0.2295,
|
1441 |
+
"step": 200
|
1442 |
+
},
|
1443 |
+
{
|
1444 |
+
"epoch": 1.1831610044313146,
|
1445 |
+
"grad_norm": 0.26482367515563965,
|
1446 |
+
"learning_rate": 1.4300652022765207e-05,
|
1447 |
+
"loss": 0.2273,
|
1448 |
+
"step": 201
|
1449 |
+
},
|
1450 |
+
{
|
1451 |
+
"epoch": 1.1890694239290989,
|
1452 |
+
"grad_norm": 0.2728091776371002,
|
1453 |
+
"learning_rate": 1.424109957521806e-05,
|
1454 |
+
"loss": 0.2227,
|
1455 |
+
"step": 202
|
1456 |
+
},
|
1457 |
+
{
|
1458 |
+
"epoch": 1.1949778434268834,
|
1459 |
+
"grad_norm": 0.28748828172683716,
|
1460 |
+
"learning_rate": 1.4181363160687693e-05,
|
1461 |
+
"loss": 0.2402,
|
1462 |
+
"step": 203
|
1463 |
+
},
|
1464 |
+
{
|
1465 |
+
"epoch": 1.2008862629246677,
|
1466 |
+
"grad_norm": 0.2891993820667267,
|
1467 |
+
"learning_rate": 1.4121445370371922e-05,
|
1468 |
+
"loss": 0.224,
|
1469 |
+
"step": 204
|
1470 |
+
},
|
1471 |
+
{
|
1472 |
+
"epoch": 1.206794682422452,
|
1473 |
+
"grad_norm": 0.24767152965068817,
|
1474 |
+
"learning_rate": 1.4061348803336135e-05,
|
1475 |
+
"loss": 0.221,
|
1476 |
+
"step": 205
|
1477 |
+
},
|
1478 |
+
{
|
1479 |
+
"epoch": 1.2127031019202363,
|
1480 |
+
"grad_norm": 0.2819165885448456,
|
1481 |
+
"learning_rate": 1.400107606640056e-05,
|
1482 |
+
"loss": 0.2231,
|
1483 |
+
"step": 206
|
1484 |
+
},
|
1485 |
+
{
|
1486 |
+
"epoch": 1.2186115214180206,
|
1487 |
+
"grad_norm": 0.27328819036483765,
|
1488 |
+
"learning_rate": 1.394062977402717e-05,
|
1489 |
+
"loss": 0.229,
|
1490 |
+
"step": 207
|
1491 |
+
},
|
1492 |
+
{
|
1493 |
+
"epoch": 1.224519940915805,
|
1494 |
+
"grad_norm": 0.2674582302570343,
|
1495 |
+
"learning_rate": 1.3880012548206292e-05,
|
1496 |
+
"loss": 0.2155,
|
1497 |
+
"step": 208
|
1498 |
+
},
|
1499 |
+
{
|
1500 |
+
"epoch": 1.2304283604135893,
|
1501 |
+
"grad_norm": 0.2989075481891632,
|
1502 |
+
"learning_rate": 1.3819227018342865e-05,
|
1503 |
+
"loss": 0.2184,
|
1504 |
+
"step": 209
|
1505 |
+
},
|
1506 |
+
{
|
1507 |
+
"epoch": 1.2363367799113738,
|
1508 |
+
"grad_norm": 0.30796098709106445,
|
1509 |
+
"learning_rate": 1.3758275821142382e-05,
|
1510 |
+
"loss": 0.2288,
|
1511 |
+
"step": 210
|
1512 |
+
},
|
1513 |
+
{
|
1514 |
+
"epoch": 1.2422451994091581,
|
1515 |
+
"grad_norm": 0.29833805561065674,
|
1516 |
+
"learning_rate": 1.3697161600496525e-05,
|
1517 |
+
"loss": 0.2368,
|
1518 |
+
"step": 211
|
1519 |
+
},
|
1520 |
+
{
|
1521 |
+
"epoch": 1.2481536189069424,
|
1522 |
+
"grad_norm": 0.26458829641342163,
|
1523 |
+
"learning_rate": 1.3635887007368467e-05,
|
1524 |
+
"loss": 0.2376,
|
1525 |
+
"step": 212
|
1526 |
+
},
|
1527 |
+
{
|
1528 |
+
"epoch": 1.2540620384047267,
|
1529 |
+
"grad_norm": 0.2781698703765869,
|
1530 |
+
"learning_rate": 1.3574454699677893e-05,
|
1531 |
+
"loss": 0.2167,
|
1532 |
+
"step": 213
|
1533 |
+
},
|
1534 |
+
{
|
1535 |
+
"epoch": 1.259970457902511,
|
1536 |
+
"grad_norm": 0.268433153629303,
|
1537 |
+
"learning_rate": 1.3512867342185705e-05,
|
1538 |
+
"loss": 0.2229,
|
1539 |
+
"step": 214
|
1540 |
+
},
|
1541 |
+
{
|
1542 |
+
"epoch": 1.2658788774002954,
|
1543 |
+
"grad_norm": 0.2726047933101654,
|
1544 |
+
"learning_rate": 1.3451127606378425e-05,
|
1545 |
+
"loss": 0.223,
|
1546 |
+
"step": 215
|
1547 |
+
},
|
1548 |
+
{
|
1549 |
+
"epoch": 1.2717872968980797,
|
1550 |
+
"grad_norm": 0.29567429423332214,
|
1551 |
+
"learning_rate": 1.3389238170352318e-05,
|
1552 |
+
"loss": 0.2105,
|
1553 |
+
"step": 216
|
1554 |
+
},
|
1555 |
+
{
|
1556 |
+
"epoch": 1.277695716395864,
|
1557 |
+
"grad_norm": 0.30303359031677246,
|
1558 |
+
"learning_rate": 1.3327201718697232e-05,
|
1559 |
+
"loss": 0.2602,
|
1560 |
+
"step": 217
|
1561 |
+
},
|
1562 |
+
{
|
1563 |
+
"epoch": 1.2836041358936485,
|
1564 |
+
"grad_norm": 0.27332380414009094,
|
1565 |
+
"learning_rate": 1.326502094238013e-05,
|
1566 |
+
"loss": 0.2288,
|
1567 |
+
"step": 218
|
1568 |
+
},
|
1569 |
+
{
|
1570 |
+
"epoch": 1.2895125553914328,
|
1571 |
+
"grad_norm": 0.2703614830970764,
|
1572 |
+
"learning_rate": 1.3202698538628376e-05,
|
1573 |
+
"loss": 0.2308,
|
1574 |
+
"step": 219
|
1575 |
+
},
|
1576 |
+
{
|
1577 |
+
"epoch": 1.2954209748892171,
|
1578 |
+
"grad_norm": 0.2788908779621124,
|
1579 |
+
"learning_rate": 1.3140237210812741e-05,
|
1580 |
+
"loss": 0.2254,
|
1581 |
+
"step": 220
|
1582 |
+
},
|
1583 |
+
{
|
1584 |
+
"epoch": 1.3013293943870015,
|
1585 |
+
"grad_norm": 0.27442580461502075,
|
1586 |
+
"learning_rate": 1.3077639668330124e-05,
|
1587 |
+
"loss": 0.2158,
|
1588 |
+
"step": 221
|
1589 |
+
},
|
1590 |
+
{
|
1591 |
+
"epoch": 1.3072378138847858,
|
1592 |
+
"grad_norm": 0.28895896673202515,
|
1593 |
+
"learning_rate": 1.3014908626486032e-05,
|
1594 |
+
"loss": 0.2404,
|
1595 |
+
"step": 222
|
1596 |
+
},
|
1597 |
+
{
|
1598 |
+
"epoch": 1.31314623338257,
|
1599 |
+
"grad_norm": 0.24982582032680511,
|
1600 |
+
"learning_rate": 1.2952046806376806e-05,
|
1601 |
+
"loss": 0.2201,
|
1602 |
+
"step": 223
|
1603 |
+
},
|
1604 |
+
{
|
1605 |
+
"epoch": 1.3190546528803546,
|
1606 |
+
"grad_norm": 0.28909650444984436,
|
1607 |
+
"learning_rate": 1.2889056934771577e-05,
|
1608 |
+
"loss": 0.2384,
|
1609 |
+
"step": 224
|
1610 |
+
},
|
1611 |
+
{
|
1612 |
+
"epoch": 1.324963072378139,
|
1613 |
+
"grad_norm": 0.28018954396247864,
|
1614 |
+
"learning_rate": 1.282594174399399e-05,
|
1615 |
+
"loss": 0.2324,
|
1616 |
+
"step": 225
|
1617 |
+
},
|
1618 |
+
{
|
1619 |
+
"epoch": 1.3308714918759232,
|
1620 |
+
"grad_norm": 0.29922735691070557,
|
1621 |
+
"learning_rate": 1.2762703971803684e-05,
|
1622 |
+
"loss": 0.2457,
|
1623 |
+
"step": 226
|
1624 |
+
},
|
1625 |
+
{
|
1626 |
+
"epoch": 1.3367799113737076,
|
1627 |
+
"grad_norm": 0.289288729429245,
|
1628 |
+
"learning_rate": 1.2699346361277538e-05,
|
1629 |
+
"loss": 0.2366,
|
1630 |
+
"step": 227
|
1631 |
+
},
|
1632 |
+
{
|
1633 |
+
"epoch": 1.3426883308714919,
|
1634 |
+
"grad_norm": 0.2790012061595917,
|
1635 |
+
"learning_rate": 1.2635871660690677e-05,
|
1636 |
+
"loss": 0.2359,
|
1637 |
+
"step": 228
|
1638 |
+
},
|
1639 |
+
{
|
1640 |
+
"epoch": 1.3426883308714919,
|
1641 |
+
"eval_loss": 0.35204342007637024,
|
1642 |
+
"eval_runtime": 4.4578,
|
1643 |
+
"eval_samples_per_second": 12.338,
|
1644 |
+
"eval_steps_per_second": 1.57,
|
1645 |
+
"step": 228
|
1646 |
+
},
|
1647 |
+
{
|
1648 |
+
"epoch": 1.3485967503692762,
|
1649 |
+
"grad_norm": 0.36030444502830505,
|
1650 |
+
"learning_rate": 1.2572282623397268e-05,
|
1651 |
+
"loss": 0.2405,
|
1652 |
+
"step": 229
|
1653 |
+
},
|
1654 |
+
{
|
1655 |
+
"epoch": 1.3545051698670605,
|
1656 |
+
"grad_norm": 0.24079382419586182,
|
1657 |
+
"learning_rate": 1.2508582007711074e-05,
|
1658 |
+
"loss": 0.2148,
|
1659 |
+
"step": 230
|
1660 |
+
},
|
1661 |
+
{
|
1662 |
+
"epoch": 1.3604135893648448,
|
1663 |
+
"grad_norm": 0.26674559712409973,
|
1664 |
+
"learning_rate": 1.2444772576785828e-05,
|
1665 |
+
"loss": 0.2457,
|
1666 |
+
"step": 231
|
1667 |
+
},
|
1668 |
+
{
|
1669 |
+
"epoch": 1.3663220088626291,
|
1670 |
+
"grad_norm": 0.25345727801322937,
|
1671 |
+
"learning_rate": 1.2380857098495355e-05,
|
1672 |
+
"loss": 0.2229,
|
1673 |
+
"step": 232
|
1674 |
+
},
|
1675 |
+
{
|
1676 |
+
"epoch": 1.3722304283604136,
|
1677 |
+
"grad_norm": 0.2623337507247925,
|
1678 |
+
"learning_rate": 1.2316838345313517e-05,
|
1679 |
+
"loss": 0.231,
|
1680 |
+
"step": 233
|
1681 |
+
},
|
1682 |
+
{
|
1683 |
+
"epoch": 1.378138847858198,
|
1684 |
+
"grad_norm": 0.27783095836639404,
|
1685 |
+
"learning_rate": 1.225271909419395e-05,
|
1686 |
+
"loss": 0.2251,
|
1687 |
+
"step": 234
|
1688 |
+
},
|
1689 |
+
{
|
1690 |
+
"epoch": 1.3840472673559823,
|
1691 |
+
"grad_norm": 0.25021976232528687,
|
1692 |
+
"learning_rate": 1.2188502126449616e-05,
|
1693 |
+
"loss": 0.226,
|
1694 |
+
"step": 235
|
1695 |
+
},
|
1696 |
+
{
|
1697 |
+
"epoch": 1.3899556868537666,
|
1698 |
+
"grad_norm": 0.2695038318634033,
|
1699 |
+
"learning_rate": 1.2124190227632138e-05,
|
1700 |
+
"loss": 0.2438,
|
1701 |
+
"step": 236
|
1702 |
+
},
|
1703 |
+
{
|
1704 |
+
"epoch": 1.395864106351551,
|
1705 |
+
"grad_norm": 0.24312005937099457,
|
1706 |
+
"learning_rate": 1.2059786187410984e-05,
|
1707 |
+
"loss": 0.2138,
|
1708 |
+
"step": 237
|
1709 |
+
},
|
1710 |
+
{
|
1711 |
+
"epoch": 1.4017725258493354,
|
1712 |
+
"grad_norm": 0.2761548161506653,
|
1713 |
+
"learning_rate": 1.1995292799452472e-05,
|
1714 |
+
"loss": 0.244,
|
1715 |
+
"step": 238
|
1716 |
+
},
|
1717 |
+
{
|
1718 |
+
"epoch": 1.4076809453471197,
|
1719 |
+
"grad_norm": 0.2740529477596283,
|
1720 |
+
"learning_rate": 1.1930712861298553e-05,
|
1721 |
+
"loss": 0.2416,
|
1722 |
+
"step": 239
|
1723 |
+
},
|
1724 |
+
{
|
1725 |
+
"epoch": 1.413589364844904,
|
1726 |
+
"grad_norm": 0.2605426013469696,
|
1727 |
+
"learning_rate": 1.186604917424549e-05,
|
1728 |
+
"loss": 0.2515,
|
1729 |
+
"step": 240
|
1730 |
+
},
|
1731 |
+
{
|
1732 |
+
"epoch": 1.4194977843426884,
|
1733 |
+
"grad_norm": 0.27557292580604553,
|
1734 |
+
"learning_rate": 1.1801304543222349e-05,
|
1735 |
+
"loss": 0.232,
|
1736 |
+
"step": 241
|
1737 |
+
},
|
1738 |
+
{
|
1739 |
+
"epoch": 1.4254062038404727,
|
1740 |
+
"grad_norm": 0.2512328624725342,
|
1741 |
+
"learning_rate": 1.1736481776669307e-05,
|
1742 |
+
"loss": 0.2311,
|
1743 |
+
"step": 242
|
1744 |
+
},
|
1745 |
+
{
|
1746 |
+
"epoch": 1.431314623338257,
|
1747 |
+
"grad_norm": 0.2634104788303375,
|
1748 |
+
"learning_rate": 1.1671583686415833e-05,
|
1749 |
+
"loss": 0.2207,
|
1750 |
+
"step": 243
|
1751 |
+
},
|
1752 |
+
{
|
1753 |
+
"epoch": 1.4372230428360413,
|
1754 |
+
"grad_norm": 0.2541881203651428,
|
1755 |
+
"learning_rate": 1.1606613087558748e-05,
|
1756 |
+
"loss": 0.2207,
|
1757 |
+
"step": 244
|
1758 |
+
},
|
1759 |
+
{
|
1760 |
+
"epoch": 1.4431314623338256,
|
1761 |
+
"grad_norm": 0.24408863484859467,
|
1762 |
+
"learning_rate": 1.1541572798340076e-05,
|
1763 |
+
"loss": 0.2155,
|
1764 |
+
"step": 245
|
1765 |
+
},
|
1766 |
+
{
|
1767 |
+
"epoch": 1.44903988183161,
|
1768 |
+
"grad_norm": 0.25305289030075073,
|
1769 |
+
"learning_rate": 1.1476465640024814e-05,
|
1770 |
+
"loss": 0.2245,
|
1771 |
+
"step": 246
|
1772 |
+
},
|
1773 |
+
{
|
1774 |
+
"epoch": 1.4549483013293945,
|
1775 |
+
"grad_norm": 0.26579606533050537,
|
1776 |
+
"learning_rate": 1.1411294436778562e-05,
|
1777 |
+
"loss": 0.2295,
|
1778 |
+
"step": 247
|
1779 |
+
},
|
1780 |
+
{
|
1781 |
+
"epoch": 1.4608567208271788,
|
1782 |
+
"grad_norm": 0.26332345604896545,
|
1783 |
+
"learning_rate": 1.1346062015544997e-05,
|
1784 |
+
"loss": 0.2363,
|
1785 |
+
"step": 248
|
1786 |
+
},
|
1787 |
+
{
|
1788 |
+
"epoch": 1.466765140324963,
|
1789 |
+
"grad_norm": 0.2519514262676239,
|
1790 |
+
"learning_rate": 1.1280771205923269e-05,
|
1791 |
+
"loss": 0.2215,
|
1792 |
+
"step": 249
|
1793 |
+
},
|
1794 |
+
{
|
1795 |
+
"epoch": 1.4726735598227474,
|
1796 |
+
"grad_norm": 0.2569345533847809,
|
1797 |
+
"learning_rate": 1.1215424840045254e-05,
|
1798 |
+
"loss": 0.223,
|
1799 |
+
"step": 250
|
1800 |
+
},
|
1801 |
+
{
|
1802 |
+
"epoch": 1.4785819793205317,
|
1803 |
+
"grad_norm": 0.25557035207748413,
|
1804 |
+
"learning_rate": 1.1150025752452693e-05,
|
1805 |
+
"loss": 0.2511,
|
1806 |
+
"step": 251
|
1807 |
+
},
|
1808 |
+
{
|
1809 |
+
"epoch": 1.4844903988183162,
|
1810 |
+
"grad_norm": 0.26646342873573303,
|
1811 |
+
"learning_rate": 1.1084576779974257e-05,
|
1812 |
+
"loss": 0.2476,
|
1813 |
+
"step": 252
|
1814 |
+
},
|
1815 |
+
{
|
1816 |
+
"epoch": 1.4903988183161005,
|
1817 |
+
"grad_norm": 0.27917614579200745,
|
1818 |
+
"learning_rate": 1.1019080761602473e-05,
|
1819 |
+
"loss": 0.2284,
|
1820 |
+
"step": 253
|
1821 |
+
},
|
1822 |
+
{
|
1823 |
+
"epoch": 1.4963072378138849,
|
1824 |
+
"grad_norm": 0.2594425082206726,
|
1825 |
+
"learning_rate": 1.0953540538370591e-05,
|
1826 |
+
"loss": 0.2319,
|
1827 |
+
"step": 254
|
1828 |
+
},
|
1829 |
+
{
|
1830 |
+
"epoch": 1.5022156573116692,
|
1831 |
+
"grad_norm": 0.23648317158222198,
|
1832 |
+
"learning_rate": 1.0887958953229349e-05,
|
1833 |
+
"loss": 0.225,
|
1834 |
+
"step": 255
|
1835 |
+
},
|
1836 |
+
{
|
1837 |
+
"epoch": 1.5081240768094535,
|
1838 |
+
"grad_norm": 0.24810343980789185,
|
1839 |
+
"learning_rate": 1.0822338850923644e-05,
|
1840 |
+
"loss": 0.2222,
|
1841 |
+
"step": 256
|
1842 |
+
},
|
1843 |
+
{
|
1844 |
+
"epoch": 1.5140324963072378,
|
1845 |
+
"grad_norm": 0.25305667519569397,
|
1846 |
+
"learning_rate": 1.0756683077869133e-05,
|
1847 |
+
"loss": 0.2178,
|
1848 |
+
"step": 257
|
1849 |
+
},
|
1850 |
+
{
|
1851 |
+
"epoch": 1.519940915805022,
|
1852 |
+
"grad_norm": 0.23994190990924835,
|
1853 |
+
"learning_rate": 1.069099448202878e-05,
|
1854 |
+
"loss": 0.2274,
|
1855 |
+
"step": 258
|
1856 |
+
},
|
1857 |
+
{
|
1858 |
+
"epoch": 1.5258493353028064,
|
1859 |
+
"grad_norm": 0.28112536668777466,
|
1860 |
+
"learning_rate": 1.0625275912789307e-05,
|
1861 |
+
"loss": 0.2157,
|
1862 |
+
"step": 259
|
1863 |
+
},
|
1864 |
+
{
|
1865 |
+
"epoch": 1.5317577548005907,
|
1866 |
+
"grad_norm": 0.2910768687725067,
|
1867 |
+
"learning_rate": 1.0559530220837593e-05,
|
1868 |
+
"loss": 0.2337,
|
1869 |
+
"step": 260
|
1870 |
+
},
|
1871 |
+
{
|
1872 |
+
"epoch": 1.537666174298375,
|
1873 |
+
"grad_norm": 0.26320862770080566,
|
1874 |
+
"learning_rate": 1.049376025803703e-05,
|
1875 |
+
"loss": 0.2156,
|
1876 |
+
"step": 261
|
1877 |
+
},
|
1878 |
+
{
|
1879 |
+
"epoch": 1.5435745937961596,
|
1880 |
+
"grad_norm": 0.2653874456882477,
|
1881 |
+
"learning_rate": 1.0427968877303809e-05,
|
1882 |
+
"loss": 0.2269,
|
1883 |
+
"step": 262
|
1884 |
+
},
|
1885 |
+
{
|
1886 |
+
"epoch": 1.549483013293944,
|
1887 |
+
"grad_norm": 0.24998469650745392,
|
1888 |
+
"learning_rate": 1.0362158932483165e-05,
|
1889 |
+
"loss": 0.2252,
|
1890 |
+
"step": 263
|
1891 |
+
},
|
1892 |
+
{
|
1893 |
+
"epoch": 1.5553914327917282,
|
1894 |
+
"grad_norm": 0.25920990109443665,
|
1895 |
+
"learning_rate": 1.0296333278225599e-05,
|
1896 |
+
"loss": 0.2274,
|
1897 |
+
"step": 264
|
1898 |
+
},
|
1899 |
+
{
|
1900 |
+
"epoch": 1.5612998522895125,
|
1901 |
+
"grad_norm": 0.2827723026275635,
|
1902 |
+
"learning_rate": 1.023049476986304e-05,
|
1903 |
+
"loss": 0.248,
|
1904 |
+
"step": 265
|
1905 |
+
},
|
1906 |
+
{
|
1907 |
+
"epoch": 1.567208271787297,
|
1908 |
+
"grad_norm": 0.27848076820373535,
|
1909 |
+
"learning_rate": 1.0164646263284993e-05,
|
1910 |
+
"loss": 0.2372,
|
1911 |
+
"step": 266
|
1912 |
+
},
|
1913 |
+
{
|
1914 |
+
"epoch": 1.5731166912850814,
|
1915 |
+
"grad_norm": 0.2601296305656433,
|
1916 |
+
"learning_rate": 1.0098790614814658e-05,
|
1917 |
+
"loss": 0.212,
|
1918 |
+
"step": 267
|
1919 |
+
},
|
1920 |
+
{
|
1921 |
+
"epoch": 1.5790251107828657,
|
1922 |
+
"grad_norm": 0.24360589683055878,
|
1923 |
+
"learning_rate": 1.0032930681085028e-05,
|
1924 |
+
"loss": 0.2152,
|
1925 |
+
"step": 268
|
1926 |
+
},
|
1927 |
+
{
|
1928 |
+
"epoch": 1.58493353028065,
|
1929 |
+
"grad_norm": 0.3080978989601135,
|
1930 |
+
"learning_rate": 9.967069318914977e-06,
|
1931 |
+
"loss": 0.2218,
|
1932 |
+
"step": 269
|
1933 |
+
},
|
1934 |
+
{
|
1935 |
+
"epoch": 1.5908419497784343,
|
1936 |
+
"grad_norm": 0.26208099722862244,
|
1937 |
+
"learning_rate": 9.901209385185345e-06,
|
1938 |
+
"loss": 0.2184,
|
1939 |
+
"step": 270
|
1940 |
+
},
|
1941 |
+
{
|
1942 |
+
"epoch": 1.5967503692762186,
|
1943 |
+
"grad_norm": 0.2984671890735626,
|
1944 |
+
"learning_rate": 9.835353736715007e-06,
|
1945 |
+
"loss": 0.2432,
|
1946 |
+
"step": 271
|
1947 |
+
},
|
1948 |
+
{
|
1949 |
+
"epoch": 1.602658788774003,
|
1950 |
+
"grad_norm": 0.26782581210136414,
|
1951 |
+
"learning_rate": 9.769505230136962e-06,
|
1952 |
+
"loss": 0.2126,
|
1953 |
+
"step": 272
|
1954 |
+
},
|
1955 |
+
{
|
1956 |
+
"epoch": 1.6085672082717872,
|
1957 |
+
"grad_norm": 0.28440967202186584,
|
1958 |
+
"learning_rate": 9.703666721774403e-06,
|
1959 |
+
"loss": 0.2214,
|
1960 |
+
"step": 273
|
1961 |
+
},
|
1962 |
+
{
|
1963 |
+
"epoch": 1.6144756277695715,
|
1964 |
+
"grad_norm": 0.2926226854324341,
|
1965 |
+
"learning_rate": 9.637841067516837e-06,
|
1966 |
+
"loss": 0.2256,
|
1967 |
+
"step": 274
|
1968 |
+
},
|
1969 |
+
{
|
1970 |
+
"epoch": 1.6203840472673559,
|
1971 |
+
"grad_norm": 0.25548121333122253,
|
1972 |
+
"learning_rate": 9.572031122696196e-06,
|
1973 |
+
"loss": 0.2304,
|
1974 |
+
"step": 275
|
1975 |
+
},
|
1976 |
+
{
|
1977 |
+
"epoch": 1.6262924667651402,
|
1978 |
+
"grad_norm": 0.28455373644828796,
|
1979 |
+
"learning_rate": 9.506239741962971e-06,
|
1980 |
+
"loss": 0.2299,
|
1981 |
+
"step": 276
|
1982 |
+
},
|
1983 |
+
{
|
1984 |
+
"epoch": 1.6322008862629247,
|
1985 |
+
"grad_norm": 0.262614369392395,
|
1986 |
+
"learning_rate": 9.440469779162407e-06,
|
1987 |
+
"loss": 0.2251,
|
1988 |
+
"step": 277
|
1989 |
+
},
|
1990 |
+
{
|
1991 |
+
"epoch": 1.638109305760709,
|
1992 |
+
"grad_norm": 0.27394819259643555,
|
1993 |
+
"learning_rate": 9.374724087210698e-06,
|
1994 |
+
"loss": 0.2117,
|
1995 |
+
"step": 278
|
1996 |
+
},
|
1997 |
+
{
|
1998 |
+
"epoch": 1.6440177252584933,
|
1999 |
+
"grad_norm": 0.2843812108039856,
|
2000 |
+
"learning_rate": 9.309005517971222e-06,
|
2001 |
+
"loss": 0.2268,
|
2002 |
+
"step": 279
|
2003 |
+
},
|
2004 |
+
{
|
2005 |
+
"epoch": 1.6499261447562779,
|
2006 |
+
"grad_norm": 0.25647154450416565,
|
2007 |
+
"learning_rate": 9.24331692213087e-06,
|
2008 |
+
"loss": 0.2187,
|
2009 |
+
"step": 280
|
2010 |
+
},
|
2011 |
+
{
|
2012 |
+
"epoch": 1.6558345642540622,
|
2013 |
+
"grad_norm": 0.27861371636390686,
|
2014 |
+
"learning_rate": 9.17766114907636e-06,
|
2015 |
+
"loss": 0.2311,
|
2016 |
+
"step": 281
|
2017 |
+
},
|
2018 |
+
{
|
2019 |
+
"epoch": 1.6617429837518465,
|
2020 |
+
"grad_norm": 0.270049512386322,
|
2021 |
+
"learning_rate": 9.112041046770653e-06,
|
2022 |
+
"loss": 0.2265,
|
2023 |
+
"step": 282
|
2024 |
+
},
|
2025 |
+
{
|
2026 |
+
"epoch": 1.6676514032496308,
|
2027 |
+
"grad_norm": 0.2750328779220581,
|
2028 |
+
"learning_rate": 9.04645946162941e-06,
|
2029 |
+
"loss": 0.2253,
|
2030 |
+
"step": 283
|
2031 |
+
},
|
2032 |
+
{
|
2033 |
+
"epoch": 1.673559822747415,
|
2034 |
+
"grad_norm": 0.2412230521440506,
|
2035 |
+
"learning_rate": 8.980919238397532e-06,
|
2036 |
+
"loss": 0.2394,
|
2037 |
+
"step": 284
|
2038 |
+
},
|
2039 |
+
{
|
2040 |
+
"epoch": 1.6794682422451994,
|
2041 |
+
"grad_norm": 0.2524693012237549,
|
2042 |
+
"learning_rate": 8.915423220025747e-06,
|
2043 |
+
"loss": 0.2258,
|
2044 |
+
"step": 285
|
2045 |
+
},
|
2046 |
+
{
|
2047 |
+
"epoch": 1.6794682422451994,
|
2048 |
+
"eval_loss": 0.3460842967033386,
|
2049 |
+
"eval_runtime": 4.0784,
|
2050 |
+
"eval_samples_per_second": 13.486,
|
2051 |
+
"eval_steps_per_second": 1.716,
|
2052 |
+
"step": 285
|
2053 |
+
},
|
2054 |
+
{
|
2055 |
+
"epoch": 1.6853766617429837,
|
2056 |
+
"grad_norm": 0.25439098477363586,
|
2057 |
+
"learning_rate": 8.849974247547307e-06,
|
2058 |
+
"loss": 0.2266,
|
2059 |
+
"step": 286
|
2060 |
+
},
|
2061 |
+
{
|
2062 |
+
"epoch": 1.691285081240768,
|
2063 |
+
"grad_norm": 0.257929265499115,
|
2064 |
+
"learning_rate": 8.784575159954748e-06,
|
2065 |
+
"loss": 0.2133,
|
2066 |
+
"step": 287
|
2067 |
+
},
|
2068 |
+
{
|
2069 |
+
"epoch": 1.6971935007385524,
|
2070 |
+
"grad_norm": 0.24912972748279572,
|
2071 |
+
"learning_rate": 8.719228794076733e-06,
|
2072 |
+
"loss": 0.2129,
|
2073 |
+
"step": 288
|
2074 |
+
},
|
2075 |
+
{
|
2076 |
+
"epoch": 1.7031019202363367,
|
2077 |
+
"grad_norm": 0.27103564143180847,
|
2078 |
+
"learning_rate": 8.653937984455007e-06,
|
2079 |
+
"loss": 0.2276,
|
2080 |
+
"step": 289
|
2081 |
+
},
|
2082 |
+
{
|
2083 |
+
"epoch": 1.709010339734121,
|
2084 |
+
"grad_norm": 0.2718878984451294,
|
2085 |
+
"learning_rate": 8.588705563221444e-06,
|
2086 |
+
"loss": 0.2276,
|
2087 |
+
"step": 290
|
2088 |
+
},
|
2089 |
+
{
|
2090 |
+
"epoch": 1.7149187592319055,
|
2091 |
+
"grad_norm": 0.26431816816329956,
|
2092 |
+
"learning_rate": 8.52353435997519e-06,
|
2093 |
+
"loss": 0.2328,
|
2094 |
+
"step": 291
|
2095 |
+
},
|
2096 |
+
{
|
2097 |
+
"epoch": 1.7208271787296898,
|
2098 |
+
"grad_norm": 0.2725984752178192,
|
2099 |
+
"learning_rate": 8.458427201659926e-06,
|
2100 |
+
"loss": 0.2292,
|
2101 |
+
"step": 292
|
2102 |
+
},
|
2103 |
+
{
|
2104 |
+
"epoch": 1.7267355982274741,
|
2105 |
+
"grad_norm": 0.2515108585357666,
|
2106 |
+
"learning_rate": 8.393386912441257e-06,
|
2107 |
+
"loss": 0.226,
|
2108 |
+
"step": 293
|
2109 |
+
},
|
2110 |
+
{
|
2111 |
+
"epoch": 1.7326440177252584,
|
2112 |
+
"grad_norm": 0.2476361244916916,
|
2113 |
+
"learning_rate": 8.328416313584169e-06,
|
2114 |
+
"loss": 0.2277,
|
2115 |
+
"step": 294
|
2116 |
+
},
|
2117 |
+
{
|
2118 |
+
"epoch": 1.738552437223043,
|
2119 |
+
"grad_norm": 0.25414201617240906,
|
2120 |
+
"learning_rate": 8.263518223330698e-06,
|
2121 |
+
"loss": 0.2268,
|
2122 |
+
"step": 295
|
2123 |
+
},
|
2124 |
+
{
|
2125 |
+
"epoch": 1.7444608567208273,
|
2126 |
+
"grad_norm": 0.26264503598213196,
|
2127 |
+
"learning_rate": 8.198695456777653e-06,
|
2128 |
+
"loss": 0.2193,
|
2129 |
+
"step": 296
|
2130 |
+
},
|
2131 |
+
{
|
2132 |
+
"epoch": 1.7503692762186116,
|
2133 |
+
"grad_norm": 0.26917147636413574,
|
2134 |
+
"learning_rate": 8.133950825754511e-06,
|
2135 |
+
"loss": 0.2251,
|
2136 |
+
"step": 297
|
2137 |
+
},
|
2138 |
+
{
|
2139 |
+
"epoch": 1.756277695716396,
|
2140 |
+
"grad_norm": 0.2692192792892456,
|
2141 |
+
"learning_rate": 8.069287138701452e-06,
|
2142 |
+
"loss": 0.232,
|
2143 |
+
"step": 298
|
2144 |
+
},
|
2145 |
+
{
|
2146 |
+
"epoch": 1.7621861152141802,
|
2147 |
+
"grad_norm": 0.27494263648986816,
|
2148 |
+
"learning_rate": 8.004707200547534e-06,
|
2149 |
+
"loss": 0.2461,
|
2150 |
+
"step": 299
|
2151 |
+
},
|
2152 |
+
{
|
2153 |
+
"epoch": 1.7680945347119645,
|
2154 |
+
"grad_norm": 0.28247448801994324,
|
2155 |
+
"learning_rate": 7.940213812589018e-06,
|
2156 |
+
"loss": 0.2226,
|
2157 |
+
"step": 300
|
2158 |
+
},
|
2159 |
+
{
|
2160 |
+
"epoch": 1.7740029542097489,
|
2161 |
+
"grad_norm": 0.2632560133934021,
|
2162 |
+
"learning_rate": 7.875809772367867e-06,
|
2163 |
+
"loss": 0.216,
|
2164 |
+
"step": 301
|
2165 |
+
},
|
2166 |
+
{
|
2167 |
+
"epoch": 1.7799113737075332,
|
2168 |
+
"grad_norm": 0.26561063528060913,
|
2169 |
+
"learning_rate": 7.81149787355039e-06,
|
2170 |
+
"loss": 0.2286,
|
2171 |
+
"step": 302
|
2172 |
+
},
|
2173 |
+
{
|
2174 |
+
"epoch": 1.7858197932053175,
|
2175 |
+
"grad_norm": 0.24065916240215302,
|
2176 |
+
"learning_rate": 7.747280905806051e-06,
|
2177 |
+
"loss": 0.2201,
|
2178 |
+
"step": 303
|
2179 |
+
},
|
2180 |
+
{
|
2181 |
+
"epoch": 1.7917282127031018,
|
2182 |
+
"grad_norm": 0.288473904132843,
|
2183 |
+
"learning_rate": 7.683161654686486e-06,
|
2184 |
+
"loss": 0.2179,
|
2185 |
+
"step": 304
|
2186 |
+
},
|
2187 |
+
{
|
2188 |
+
"epoch": 1.797636632200886,
|
2189 |
+
"grad_norm": 0.27798035740852356,
|
2190 |
+
"learning_rate": 7.619142901504649e-06,
|
2191 |
+
"loss": 0.2341,
|
2192 |
+
"step": 305
|
2193 |
+
},
|
2194 |
+
{
|
2195 |
+
"epoch": 1.8035450516986706,
|
2196 |
+
"grad_norm": 0.28387168049812317,
|
2197 |
+
"learning_rate": 7.555227423214174e-06,
|
2198 |
+
"loss": 0.226,
|
2199 |
+
"step": 306
|
2200 |
+
},
|
2201 |
+
{
|
2202 |
+
"epoch": 1.809453471196455,
|
2203 |
+
"grad_norm": 0.28974682092666626,
|
2204 |
+
"learning_rate": 7.491417992288927e-06,
|
2205 |
+
"loss": 0.2296,
|
2206 |
+
"step": 307
|
2207 |
+
},
|
2208 |
+
{
|
2209 |
+
"epoch": 1.8153618906942393,
|
2210 |
+
"grad_norm": 0.26052042841911316,
|
2211 |
+
"learning_rate": 7.427717376602739e-06,
|
2212 |
+
"loss": 0.2002,
|
2213 |
+
"step": 308
|
2214 |
+
},
|
2215 |
+
{
|
2216 |
+
"epoch": 1.8212703101920238,
|
2217 |
+
"grad_norm": 0.29558730125427246,
|
2218 |
+
"learning_rate": 7.364128339309326e-06,
|
2219 |
+
"loss": 0.263,
|
2220 |
+
"step": 309
|
2221 |
+
},
|
2222 |
+
{
|
2223 |
+
"epoch": 1.827178729689808,
|
2224 |
+
"grad_norm": 0.24457122385501862,
|
2225 |
+
"learning_rate": 7.300653638722463e-06,
|
2226 |
+
"loss": 0.224,
|
2227 |
+
"step": 310
|
2228 |
+
},
|
2229 |
+
{
|
2230 |
+
"epoch": 1.8330871491875924,
|
2231 |
+
"grad_norm": 0.2517196834087372,
|
2232 |
+
"learning_rate": 7.2372960281963165e-06,
|
2233 |
+
"loss": 0.2134,
|
2234 |
+
"step": 311
|
2235 |
+
},
|
2236 |
+
{
|
2237 |
+
"epoch": 1.8389955686853767,
|
2238 |
+
"grad_norm": 0.27632561326026917,
|
2239 |
+
"learning_rate": 7.174058256006012e-06,
|
2240 |
+
"loss": 0.2229,
|
2241 |
+
"step": 312
|
2242 |
+
},
|
2243 |
+
{
|
2244 |
+
"epoch": 1.844903988183161,
|
2245 |
+
"grad_norm": 0.2603515684604645,
|
2246 |
+
"learning_rate": 7.110943065228425e-06,
|
2247 |
+
"loss": 0.2299,
|
2248 |
+
"step": 313
|
2249 |
+
},
|
2250 |
+
{
|
2251 |
+
"epoch": 1.8508124076809453,
|
2252 |
+
"grad_norm": 0.24517123401165009,
|
2253 |
+
"learning_rate": 7.047953193623195e-06,
|
2254 |
+
"loss": 0.2096,
|
2255 |
+
"step": 314
|
2256 |
+
},
|
2257 |
+
{
|
2258 |
+
"epoch": 1.8567208271787297,
|
2259 |
+
"grad_norm": 0.24135427176952362,
|
2260 |
+
"learning_rate": 6.985091373513972e-06,
|
2261 |
+
"loss": 0.2072,
|
2262 |
+
"step": 315
|
2263 |
+
},
|
2264 |
+
{
|
2265 |
+
"epoch": 1.862629246676514,
|
2266 |
+
"grad_norm": 0.2676647901535034,
|
2267 |
+
"learning_rate": 6.92236033166988e-06,
|
2268 |
+
"loss": 0.2173,
|
2269 |
+
"step": 316
|
2270 |
+
},
|
2271 |
+
{
|
2272 |
+
"epoch": 1.8685376661742983,
|
2273 |
+
"grad_norm": 0.2504200041294098,
|
2274 |
+
"learning_rate": 6.859762789187259e-06,
|
2275 |
+
"loss": 0.2192,
|
2276 |
+
"step": 317
|
2277 |
+
},
|
2278 |
+
{
|
2279 |
+
"epoch": 1.8744460856720826,
|
2280 |
+
"grad_norm": 0.26364269852638245,
|
2281 |
+
"learning_rate": 6.797301461371626e-06,
|
2282 |
+
"loss": 0.2193,
|
2283 |
+
"step": 318
|
2284 |
+
},
|
2285 |
+
{
|
2286 |
+
"epoch": 1.880354505169867,
|
2287 |
+
"grad_norm": 0.24448218941688538,
|
2288 |
+
"learning_rate": 6.734979057619873e-06,
|
2289 |
+
"loss": 0.2208,
|
2290 |
+
"step": 319
|
2291 |
+
},
|
2292 |
+
{
|
2293 |
+
"epoch": 1.8862629246676514,
|
2294 |
+
"grad_norm": 0.24706940352916718,
|
2295 |
+
"learning_rate": 6.67279828130277e-06,
|
2296 |
+
"loss": 0.2211,
|
2297 |
+
"step": 320
|
2298 |
+
},
|
2299 |
+
{
|
2300 |
+
"epoch": 1.8921713441654358,
|
2301 |
+
"grad_norm": 0.24761930108070374,
|
2302 |
+
"learning_rate": 6.610761829647685e-06,
|
2303 |
+
"loss": 0.2222,
|
2304 |
+
"step": 321
|
2305 |
+
},
|
2306 |
+
{
|
2307 |
+
"epoch": 1.89807976366322,
|
2308 |
+
"grad_norm": 0.2566414475440979,
|
2309 |
+
"learning_rate": 6.548872393621578e-06,
|
2310 |
+
"loss": 0.2136,
|
2311 |
+
"step": 322
|
2312 |
+
},
|
2313 |
+
{
|
2314 |
+
"epoch": 1.9039881831610044,
|
2315 |
+
"grad_norm": 0.2611066401004791,
|
2316 |
+
"learning_rate": 6.487132657814297e-06,
|
2317 |
+
"loss": 0.2146,
|
2318 |
+
"step": 323
|
2319 |
+
},
|
2320 |
+
{
|
2321 |
+
"epoch": 1.909896602658789,
|
2322 |
+
"grad_norm": 0.27130842208862305,
|
2323 |
+
"learning_rate": 6.4255453003221115e-06,
|
2324 |
+
"loss": 0.2184,
|
2325 |
+
"step": 324
|
2326 |
+
},
|
2327 |
+
{
|
2328 |
+
"epoch": 1.9158050221565732,
|
2329 |
+
"grad_norm": 0.2548243999481201,
|
2330 |
+
"learning_rate": 6.364112992631537e-06,
|
2331 |
+
"loss": 0.2299,
|
2332 |
+
"step": 325
|
2333 |
+
},
|
2334 |
+
{
|
2335 |
+
"epoch": 1.9217134416543575,
|
2336 |
+
"grad_norm": 0.2533697187900543,
|
2337 |
+
"learning_rate": 6.302838399503477e-06,
|
2338 |
+
"loss": 0.2043,
|
2339 |
+
"step": 326
|
2340 |
+
},
|
2341 |
+
{
|
2342 |
+
"epoch": 1.9276218611521418,
|
2343 |
+
"grad_norm": 0.2540424168109894,
|
2344 |
+
"learning_rate": 6.241724178857621e-06,
|
2345 |
+
"loss": 0.2039,
|
2346 |
+
"step": 327
|
2347 |
+
},
|
2348 |
+
{
|
2349 |
+
"epoch": 1.9335302806499262,
|
2350 |
+
"grad_norm": 0.2535569965839386,
|
2351 |
+
"learning_rate": 6.180772981657139e-06,
|
2352 |
+
"loss": 0.2019,
|
2353 |
+
"step": 328
|
2354 |
+
},
|
2355 |
+
{
|
2356 |
+
"epoch": 1.9394387001477105,
|
2357 |
+
"grad_norm": 0.29982754588127136,
|
2358 |
+
"learning_rate": 6.119987451793711e-06,
|
2359 |
+
"loss": 0.2228,
|
2360 |
+
"step": 329
|
2361 |
+
},
|
2362 |
+
{
|
2363 |
+
"epoch": 1.9453471196454948,
|
2364 |
+
"grad_norm": 0.23110415041446686,
|
2365 |
+
"learning_rate": 6.059370225972834e-06,
|
2366 |
+
"loss": 0.2188,
|
2367 |
+
"step": 330
|
2368 |
+
},
|
2369 |
+
{
|
2370 |
+
"epoch": 1.951255539143279,
|
2371 |
+
"grad_norm": 0.2608148753643036,
|
2372 |
+
"learning_rate": 5.998923933599443e-06,
|
2373 |
+
"loss": 0.2236,
|
2374 |
+
"step": 331
|
2375 |
+
},
|
2376 |
+
{
|
2377 |
+
"epoch": 1.9571639586410634,
|
2378 |
+
"grad_norm": 0.26010897755622864,
|
2379 |
+
"learning_rate": 5.938651196663865e-06,
|
2380 |
+
"loss": 0.2032,
|
2381 |
+
"step": 332
|
2382 |
+
},
|
2383 |
+
{
|
2384 |
+
"epoch": 1.9630723781388477,
|
2385 |
+
"grad_norm": 0.26297712326049805,
|
2386 |
+
"learning_rate": 5.878554629628081e-06,
|
2387 |
+
"loss": 0.2224,
|
2388 |
+
"step": 333
|
2389 |
+
},
|
2390 |
+
{
|
2391 |
+
"epoch": 1.9689807976366323,
|
2392 |
+
"grad_norm": 0.2658803164958954,
|
2393 |
+
"learning_rate": 5.818636839312309e-06,
|
2394 |
+
"loss": 0.2153,
|
2395 |
+
"step": 334
|
2396 |
+
},
|
2397 |
+
{
|
2398 |
+
"epoch": 1.9748892171344166,
|
2399 |
+
"grad_norm": 0.23885361850261688,
|
2400 |
+
"learning_rate": 5.758900424781939e-06,
|
2401 |
+
"loss": 0.2029,
|
2402 |
+
"step": 335
|
2403 |
+
},
|
2404 |
+
{
|
2405 |
+
"epoch": 1.9807976366322009,
|
2406 |
+
"grad_norm": 0.2604767978191376,
|
2407 |
+
"learning_rate": 5.699347977234799e-06,
|
2408 |
+
"loss": 0.2059,
|
2409 |
+
"step": 336
|
2410 |
+
},
|
2411 |
+
{
|
2412 |
+
"epoch": 1.9867060561299852,
|
2413 |
+
"grad_norm": 0.2535778284072876,
|
2414 |
+
"learning_rate": 5.6399820798887266e-06,
|
2415 |
+
"loss": 0.2204,
|
2416 |
+
"step": 337
|
2417 |
+
},
|
2418 |
+
{
|
2419 |
+
"epoch": 1.9926144756277697,
|
2420 |
+
"grad_norm": 0.2699243128299713,
|
2421 |
+
"learning_rate": 5.580805307869549e-06,
|
2422 |
+
"loss": 0.2158,
|
2423 |
+
"step": 338
|
2424 |
+
}
|
2425 |
+
],
|
2426 |
+
"logging_steps": 1,
|
2427 |
+
"max_steps": 507,
|
2428 |
+
"num_input_tokens_seen": 0,
|
2429 |
+
"num_train_epochs": 3,
|
2430 |
+
"save_steps": 169,
|
2431 |
+
"stateful_callbacks": {
|
2432 |
+
"TrainerControl": {
|
2433 |
+
"args": {
|
2434 |
+
"should_epoch_stop": false,
|
2435 |
+
"should_evaluate": false,
|
2436 |
+
"should_log": false,
|
2437 |
+
"should_save": true,
|
2438 |
+
"should_training_stop": false
|
2439 |
+
},
|
2440 |
+
"attributes": {}
|
2441 |
+
}
|
2442 |
+
},
|
2443 |
+
"total_flos": 5.797158580880671e+17,
|
2444 |
+
"train_batch_size": 8,
|
2445 |
+
"trial_name": null,
|
2446 |
+
"trial_params": null
|
2447 |
+
}
|
3b-mb_base/checkpoint-338/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d657c9786dc6c8c08c64e914a96a01397e0a80c1d965337767408bc8f80e5cf
|
3 |
+
size 10744
|
3b-mb_base/checkpoint-338/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
3b-mb_base/checkpoint-338/zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
3b-mb_base/checkpoint-507/added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
3b-mb_base/checkpoint-507/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen2.5-3B-Instruct",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"eos_token_id": 151645,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 2048,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 11008,
|
12 |
+
"max_position_embeddings": 32768,
|
13 |
+
"max_window_layers": 70,
|
14 |
+
"model_type": "qwen2",
|
15 |
+
"num_attention_heads": 16,
|
16 |
+
"num_hidden_layers": 36,
|
17 |
+
"num_key_value_heads": 2,
|
18 |
+
"rms_norm_eps": 1e-06,
|
19 |
+
"rope_scaling": null,
|
20 |
+
"rope_theta": 1000000.0,
|
21 |
+
"sliding_window": null,
|
22 |
+
"tie_word_embeddings": true,
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"transformers_version": "4.48.1",
|
25 |
+
"use_cache": false,
|
26 |
+
"use_sliding_window": false,
|
27 |
+
"vocab_size": 151665
|
28 |
+
}
|
3b-mb_base/checkpoint-507/generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.05,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.48.1"
|
14 |
+
}
|
3b-mb_base/checkpoint-507/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step505
|
3b-mb_base/checkpoint-507/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
3b-mb_base/checkpoint-507/model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c63c90852fa3fa4280db2cd535d3288d97103797c36bc01f6b86838774637395
|
3 |
+
size 4956450288
|
3b-mb_base/checkpoint-507/model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5abba5a27427c5628dcedab5d617b319036407f2fc964f81ba71cfb4a973b178
|
3 |
+
size 1835586736
|
3b-mb_base/checkpoint-507/model.safetensors.index.json
ADDED
@@ -0,0 +1,442 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 6791987200
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
260 |
+
"model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
261 |
+
"model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
262 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
263 |
+
"model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
264 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
265 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
266 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
268 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
269 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
270 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
271 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
272 |
+
"model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
273 |
+
"model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
274 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
275 |
+
"model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
276 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
277 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
278 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
279 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
280 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
281 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
282 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
283 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
284 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
285 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
286 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
287 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
288 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
289 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
290 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
291 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
292 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
293 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
294 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
295 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
296 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
297 |
+
"model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
298 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
299 |
+
"model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
300 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
301 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
302 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
303 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
304 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
305 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
306 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
307 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
308 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
309 |
+
"model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
310 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
311 |
+
"model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
312 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
313 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
314 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
315 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
316 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
317 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
318 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
319 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
320 |
+
"model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
321 |
+
"model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
322 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
323 |
+
"model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
324 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
325 |
+
"model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
326 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
327 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
328 |
+
"model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
329 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
330 |
+
"model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
331 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
332 |
+
"model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
333 |
+
"model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
334 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
335 |
+
"model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
336 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
337 |
+
"model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
338 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
339 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
340 |
+
"model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
341 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
342 |
+
"model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
343 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
344 |
+
"model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
345 |
+
"model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
346 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
347 |
+
"model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
348 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
349 |
+
"model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
350 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
351 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
352 |
+
"model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
353 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
354 |
+
"model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
355 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
356 |
+
"model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
357 |
+
"model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
358 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
359 |
+
"model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
360 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
361 |
+
"model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
362 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
363 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
364 |
+
"model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
365 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
366 |
+
"model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
367 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
368 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
369 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
370 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
371 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
372 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
373 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
374 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
375 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
376 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
377 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
378 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
379 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
380 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
381 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
382 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
383 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
384 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
385 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
386 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
387 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
388 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
389 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
390 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
391 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
392 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
393 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
394 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
395 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
396 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
397 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
398 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
399 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
400 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
401 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
402 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
403 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
404 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
405 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
406 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
407 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
408 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
409 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
410 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
411 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
412 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
413 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
414 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
415 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
416 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
417 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
418 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
419 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
420 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
421 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
422 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
423 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
424 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
425 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
426 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
427 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
428 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
429 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
430 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
431 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
432 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
433 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
434 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
435 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
436 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
437 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
438 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
439 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
440 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
441 |
+
}
|
442 |
+
}
|
3b-mb_base/checkpoint-507/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f3803bff3f596c03b55881de967a825b5734e4a581739164f9cb9e7fd1aee89
|
3 |
+
size 14512
|
3b-mb_base/checkpoint-507/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d768a04b798e2ca42effbe096b8e4481f32a402a9125a2ced390586dab8eb29e
|
3 |
+
size 14512
|
3b-mb_base/checkpoint-507/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7cc083c6282a60be998cf859b1a6c559bc7ea7e1edebd39819cd91f2b32e45e
|
3 |
+
size 1064
|
3b-mb_base/checkpoint-507/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|