amphora commited on
Commit
803fe4b
·
verified ·
1 Parent(s): 5b38284

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. 3b-mb_base/README.md +164 -0
  2. 3b-mb_base/added_tokens.json +24 -0
  3. 3b-mb_base/checkpoint-169/added_tokens.json +24 -0
  4. 3b-mb_base/checkpoint-169/config.json +28 -0
  5. 3b-mb_base/checkpoint-169/generation_config.json +14 -0
  6. 3b-mb_base/checkpoint-169/latest +1 -0
  7. 3b-mb_base/checkpoint-169/merges.txt +0 -0
  8. 3b-mb_base/checkpoint-169/model-00001-of-00002.safetensors +3 -0
  9. 3b-mb_base/checkpoint-169/model-00002-of-00002.safetensors +3 -0
  10. 3b-mb_base/checkpoint-169/model.safetensors.index.json +442 -0
  11. 3b-mb_base/checkpoint-169/rng_state_0.pth +3 -0
  12. 3b-mb_base/checkpoint-169/rng_state_1.pth +3 -0
  13. 3b-mb_base/checkpoint-169/scheduler.pt +3 -0
  14. 3b-mb_base/checkpoint-169/special_tokens_map.json +31 -0
  15. 3b-mb_base/checkpoint-169/tokenizer.json +3 -0
  16. 3b-mb_base/checkpoint-169/tokenizer_config.json +208 -0
  17. 3b-mb_base/checkpoint-169/trainer_state.json +1240 -0
  18. 3b-mb_base/checkpoint-169/training_args.bin +3 -0
  19. 3b-mb_base/checkpoint-169/vocab.json +0 -0
  20. 3b-mb_base/checkpoint-169/zero_to_fp32.py +760 -0
  21. 3b-mb_base/checkpoint-338/added_tokens.json +24 -0
  22. 3b-mb_base/checkpoint-338/config.json +28 -0
  23. 3b-mb_base/checkpoint-338/generation_config.json +14 -0
  24. 3b-mb_base/checkpoint-338/latest +1 -0
  25. 3b-mb_base/checkpoint-338/merges.txt +0 -0
  26. 3b-mb_base/checkpoint-338/model-00001-of-00002.safetensors +3 -0
  27. 3b-mb_base/checkpoint-338/model-00002-of-00002.safetensors +3 -0
  28. 3b-mb_base/checkpoint-338/model.safetensors.index.json +442 -0
  29. 3b-mb_base/checkpoint-338/rng_state_0.pth +3 -0
  30. 3b-mb_base/checkpoint-338/rng_state_1.pth +3 -0
  31. 3b-mb_base/checkpoint-338/scheduler.pt +3 -0
  32. 3b-mb_base/checkpoint-338/special_tokens_map.json +31 -0
  33. 3b-mb_base/checkpoint-338/tokenizer.json +3 -0
  34. 3b-mb_base/checkpoint-338/tokenizer_config.json +208 -0
  35. 3b-mb_base/checkpoint-338/trainer_state.json +2447 -0
  36. 3b-mb_base/checkpoint-338/training_args.bin +3 -0
  37. 3b-mb_base/checkpoint-338/vocab.json +0 -0
  38. 3b-mb_base/checkpoint-338/zero_to_fp32.py +760 -0
  39. 3b-mb_base/checkpoint-507/added_tokens.json +24 -0
  40. 3b-mb_base/checkpoint-507/config.json +28 -0
  41. 3b-mb_base/checkpoint-507/generation_config.json +14 -0
  42. 3b-mb_base/checkpoint-507/latest +1 -0
  43. 3b-mb_base/checkpoint-507/merges.txt +0 -0
  44. 3b-mb_base/checkpoint-507/model-00001-of-00002.safetensors +3 -0
  45. 3b-mb_base/checkpoint-507/model-00002-of-00002.safetensors +3 -0
  46. 3b-mb_base/checkpoint-507/model.safetensors.index.json +442 -0
  47. 3b-mb_base/checkpoint-507/rng_state_0.pth +3 -0
  48. 3b-mb_base/checkpoint-507/rng_state_1.pth +3 -0
  49. 3b-mb_base/checkpoint-507/scheduler.pt +3 -0
  50. 3b-mb_base/checkpoint-507/special_tokens_map.json +31 -0
3b-mb_base/README.md ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: Qwen/Qwen2.5-3B-Instruct
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - mb_base.jsonl
9
+ model-index:
10
+ - name: outputs/out
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
18
+ <details><summary>See axolotl config</summary>
19
+
20
+ axolotl version: `0.6.0`
21
+ ```yaml
22
+ base_model: Qwen/Qwen2.5-3B-Instruct
23
+ model_type: AutoModelForCausalLM
24
+ tokenizer_type: AutoTokenizer
25
+ trust_remote_code: false
26
+
27
+ load_in_8bit: false
28
+ load_in_4bit: false
29
+ strict: false
30
+
31
+ output_dir: ./outputs/out
32
+ chat_template: qwen_25
33
+ datasets:
34
+ - path: mb_base.jsonl
35
+ type: chat_template
36
+ field_messages: messages
37
+ message_field_role: role
38
+ message_field_content: content
39
+ roles:
40
+ system:
41
+ - system
42
+ user:
43
+ - user
44
+ assistant:
45
+ - assistant
46
+
47
+ dataset_prepared_path: last_run_prepared
48
+ val_set_size: 0.005
49
+ output_dir: ./outputs/out
50
+ eval_sample_packing: False
51
+
52
+ sequence_len: 8192
53
+ sample_packing: False
54
+ pad_to_sequence_len: False
55
+
56
+ wandb_project: mergedbench
57
+ wandb_entity:
58
+ wandb_watch:
59
+ wandb_name:
60
+ wandb_log_model:
61
+
62
+ plugins:
63
+ - axolotl.integrations.liger.LigerPlugin
64
+ liger_rope: true
65
+ liger_rms_norm: true
66
+ liger_swiglu: true
67
+ liger_fused_linear_cross_entropy: true
68
+
69
+ gradient_accumulation_steps: 4
70
+ micro_batch_size: 8
71
+ eval_batch_size: 4
72
+ num_epochs: 3
73
+ optimizer: paged_adamw_8bit
74
+ lr_scheduler: cosine
75
+ learning_rate: 2e-5
76
+
77
+ train_on_inputs: false
78
+ group_by_length: false
79
+ bf16: auto
80
+ fp16:
81
+ tf32: false
82
+
83
+ gradient_checkpointing: true
84
+ gradient_checkpointing_kwargs:
85
+ use_reentrant: false
86
+ early_stopping_patience:
87
+ resume_from_checkpoint:
88
+ logging_steps: 1
89
+ xformers_attention:
90
+ flash_attention: true
91
+
92
+ warmup_steps: 30
93
+ evals_per_epoch: 3
94
+ eval_max_new_tokens: 128
95
+ eval_table_size:
96
+ saves_per_epoch: 1
97
+ debug:
98
+ deepspeed: deepspeed_configs/zero1.json
99
+ weight_decay: 0.01
100
+ fsdp:
101
+ fsdp_config:
102
+ special_tokens:
103
+ ```
104
+
105
+ </details><br>
106
+
107
+ # outputs/out
108
+
109
+ This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the mb_base.jsonl dataset.
110
+ It achieves the following results on the evaluation set:
111
+ - Loss: 0.3531
112
+
113
+ ## Model description
114
+
115
+ More information needed
116
+
117
+ ## Intended uses & limitations
118
+
119
+ More information needed
120
+
121
+ ## Training and evaluation data
122
+
123
+ More information needed
124
+
125
+ ## Training procedure
126
+
127
+ ### Training hyperparameters
128
+
129
+ The following hyperparameters were used during training:
130
+ - learning_rate: 2e-05
131
+ - train_batch_size: 8
132
+ - eval_batch_size: 4
133
+ - seed: 42
134
+ - distributed_type: multi-GPU
135
+ - num_devices: 2
136
+ - gradient_accumulation_steps: 4
137
+ - total_train_batch_size: 64
138
+ - total_eval_batch_size: 8
139
+ - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
140
+ - lr_scheduler_type: cosine
141
+ - lr_scheduler_warmup_steps: 30
142
+ - num_epochs: 3.0
143
+
144
+ ### Training results
145
+
146
+ | Training Loss | Epoch | Step | Validation Loss |
147
+ |:-------------:|:------:|:----:|:---------------:|
148
+ | 1.062 | 0.0059 | 1 | 1.0835 |
149
+ | 0.3584 | 0.3368 | 57 | 0.3954 |
150
+ | 0.3372 | 0.6736 | 114 | 0.3638 |
151
+ | 0.2579 | 1.0059 | 171 | 0.3497 |
152
+ | 0.2359 | 1.3427 | 228 | 0.3520 |
153
+ | 0.2258 | 1.6795 | 285 | 0.3461 |
154
+ | 0.1673 | 2.0118 | 342 | 0.3411 |
155
+ | 0.1567 | 2.3486 | 399 | 0.3547 |
156
+ | 0.1571 | 2.6854 | 456 | 0.3531 |
157
+
158
+
159
+ ### Framework versions
160
+
161
+ - Transformers 4.48.1
162
+ - Pytorch 2.5.1+cu121
163
+ - Datasets 3.2.0
164
+ - Tokenizers 0.21.0
3b-mb_base/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
3b-mb_base/checkpoint-169/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
3b-mb_base/checkpoint-169/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-3B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "eos_token_id": 151645,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 2048,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_position_embeddings": 32768,
13
+ "max_window_layers": 70,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 16,
16
+ "num_hidden_layers": 36,
17
+ "num_key_value_heads": 2,
18
+ "rms_norm_eps": 1e-06,
19
+ "rope_scaling": null,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": true,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.48.1",
25
+ "use_cache": false,
26
+ "use_sliding_window": false,
27
+ "vocab_size": 151665
28
+ }
3b-mb_base/checkpoint-169/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.48.1"
14
+ }
3b-mb_base/checkpoint-169/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step169
3b-mb_base/checkpoint-169/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
3b-mb_base/checkpoint-169/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38bbb82b5eaddd2218ee91401271bd0a8f1feb8a88645a5a6a5d4f463a4db80e
3
+ size 4956450288
3b-mb_base/checkpoint-169/model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c34e9667355221493ef25c9b481baef41b9d892ed7f471f8e96dd2b8087a2ffd
3
+ size 1835586736
3b-mb_base/checkpoint-169/model.safetensors.index.json ADDED
@@ -0,0 +1,442 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 6791987200
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
368
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
369
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
370
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
371
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
372
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
373
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
374
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
376
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
377
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
378
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
379
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
380
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
382
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
384
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
385
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
386
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
387
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
388
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
389
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
390
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
391
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
394
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
395
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
396
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
397
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
398
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
399
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
400
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
401
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
402
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
403
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
404
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
405
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
406
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
407
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
408
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
409
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
410
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
411
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
412
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
413
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
414
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
415
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
416
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
417
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
418
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
419
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
420
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
421
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
422
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
423
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
424
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
425
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
426
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
427
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
428
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
429
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
430
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
431
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
432
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
433
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
434
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
435
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
436
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
437
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
438
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
439
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
440
+ "model.norm.weight": "model-00002-of-00002.safetensors"
441
+ }
442
+ }
3b-mb_base/checkpoint-169/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9affc1541e7e94c18354d5173bc55400c5f07faf3d080c6d453d48e7a8d6ac3
3
+ size 14512
3b-mb_base/checkpoint-169/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4748c3ebf0e4c051c58b92e4a8c5b87cdb39d55cfdc2aec81a1baef0f02fc113
3
+ size 14512
3b-mb_base/checkpoint-169/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:579fc25e0fa1981bf31c24488d0d7572584313555af920879f011e878787fee4
3
+ size 1064
3b-mb_base/checkpoint-169/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
3b-mb_base/checkpoint-169/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
3b-mb_base/checkpoint-169/tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
3b-mb_base/checkpoint-169/trainer_state.json ADDED
@@ -0,0 +1,1240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9985228951255539,
5
+ "eval_steps": 57,
6
+ "global_step": 169,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.005908419497784343,
13
+ "grad_norm": 4.501461029052734,
14
+ "learning_rate": 6.666666666666667e-07,
15
+ "loss": 1.062,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.005908419497784343,
20
+ "eval_loss": 1.0835397243499756,
21
+ "eval_runtime": 4.3539,
22
+ "eval_samples_per_second": 12.632,
23
+ "eval_steps_per_second": 1.608,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.011816838995568686,
28
+ "grad_norm": 4.469114303588867,
29
+ "learning_rate": 1.3333333333333334e-06,
30
+ "loss": 1.0268,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.01772525849335303,
35
+ "grad_norm": 4.554893970489502,
36
+ "learning_rate": 2.0000000000000003e-06,
37
+ "loss": 1.0401,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.023633677991137372,
42
+ "grad_norm": 4.374792575836182,
43
+ "learning_rate": 2.666666666666667e-06,
44
+ "loss": 1.0423,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.029542097488921712,
49
+ "grad_norm": 3.4377498626708984,
50
+ "learning_rate": 3.3333333333333333e-06,
51
+ "loss": 0.9965,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.03545051698670606,
56
+ "grad_norm": 3.1242499351501465,
57
+ "learning_rate": 4.000000000000001e-06,
58
+ "loss": 0.9479,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.0413589364844904,
63
+ "grad_norm": 1.8368685245513916,
64
+ "learning_rate": 4.666666666666667e-06,
65
+ "loss": 0.8296,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.047267355982274745,
70
+ "grad_norm": 1.7457680702209473,
71
+ "learning_rate": 5.333333333333334e-06,
72
+ "loss": 0.8159,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.053175775480059084,
77
+ "grad_norm": 1.2953853607177734,
78
+ "learning_rate": 6e-06,
79
+ "loss": 0.664,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.059084194977843424,
84
+ "grad_norm": 1.1054794788360596,
85
+ "learning_rate": 6.666666666666667e-06,
86
+ "loss": 0.6486,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.06499261447562776,
91
+ "grad_norm": 0.8712942004203796,
92
+ "learning_rate": 7.333333333333333e-06,
93
+ "loss": 0.6415,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.07090103397341212,
98
+ "grad_norm": 1.4441039562225342,
99
+ "learning_rate": 8.000000000000001e-06,
100
+ "loss": 0.6255,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.07680945347119646,
105
+ "grad_norm": 1.4984484910964966,
106
+ "learning_rate": 8.666666666666668e-06,
107
+ "loss": 0.5561,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.0827178729689808,
112
+ "grad_norm": 0.8376960754394531,
113
+ "learning_rate": 9.333333333333334e-06,
114
+ "loss": 0.5534,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.08862629246676514,
119
+ "grad_norm": 0.7184750437736511,
120
+ "learning_rate": 1e-05,
121
+ "loss": 0.5062,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.09453471196454949,
126
+ "grad_norm": 0.8381787538528442,
127
+ "learning_rate": 1.0666666666666667e-05,
128
+ "loss": 0.5531,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.10044313146233383,
133
+ "grad_norm": 0.7621350288391113,
134
+ "learning_rate": 1.1333333333333334e-05,
135
+ "loss": 0.4876,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.10635155096011817,
140
+ "grad_norm": 0.6955872178077698,
141
+ "learning_rate": 1.2e-05,
142
+ "loss": 0.5019,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.11225997045790251,
147
+ "grad_norm": 0.5844917297363281,
148
+ "learning_rate": 1.2666666666666667e-05,
149
+ "loss": 0.4368,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.11816838995568685,
154
+ "grad_norm": 0.5807573795318604,
155
+ "learning_rate": 1.3333333333333333e-05,
156
+ "loss": 0.4965,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.1240768094534712,
161
+ "grad_norm": 0.5376399755477905,
162
+ "learning_rate": 1.4e-05,
163
+ "loss": 0.4841,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.12998522895125553,
168
+ "grad_norm": 0.5053263902664185,
169
+ "learning_rate": 1.4666666666666666e-05,
170
+ "loss": 0.4573,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.1358936484490399,
175
+ "grad_norm": 0.5155225396156311,
176
+ "learning_rate": 1.5333333333333334e-05,
177
+ "loss": 0.451,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.14180206794682423,
182
+ "grad_norm": 0.52030348777771,
183
+ "learning_rate": 1.6000000000000003e-05,
184
+ "loss": 0.4199,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.14771048744460857,
189
+ "grad_norm": 0.5321907997131348,
190
+ "learning_rate": 1.6666666666666667e-05,
191
+ "loss": 0.4532,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.1536189069423929,
196
+ "grad_norm": 0.5318155288696289,
197
+ "learning_rate": 1.7333333333333336e-05,
198
+ "loss": 0.4813,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.15952732644017725,
203
+ "grad_norm": 0.5176340937614441,
204
+ "learning_rate": 1.8e-05,
205
+ "loss": 0.4288,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.1654357459379616,
210
+ "grad_norm": 0.43893975019454956,
211
+ "learning_rate": 1.866666666666667e-05,
212
+ "loss": 0.3766,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.17134416543574593,
217
+ "grad_norm": 0.43830162286758423,
218
+ "learning_rate": 1.9333333333333333e-05,
219
+ "loss": 0.4159,
220
+ "step": 29
221
+ },
222
+ {
223
+ "epoch": 0.17725258493353027,
224
+ "grad_norm": 0.45950719714164734,
225
+ "learning_rate": 2e-05,
226
+ "loss": 0.4505,
227
+ "step": 30
228
+ },
229
+ {
230
+ "epoch": 0.1831610044313146,
231
+ "grad_norm": 0.40500667691230774,
232
+ "learning_rate": 1.9999783114048658e-05,
233
+ "loss": 0.3726,
234
+ "step": 31
235
+ },
236
+ {
237
+ "epoch": 0.18906942392909898,
238
+ "grad_norm": 0.43435147404670715,
239
+ "learning_rate": 1.9999132465602526e-05,
240
+ "loss": 0.442,
241
+ "step": 32
242
+ },
243
+ {
244
+ "epoch": 0.19497784342688332,
245
+ "grad_norm": 0.44813328981399536,
246
+ "learning_rate": 1.999804808288491e-05,
247
+ "loss": 0.437,
248
+ "step": 33
249
+ },
250
+ {
251
+ "epoch": 0.20088626292466766,
252
+ "grad_norm": 0.48166996240615845,
253
+ "learning_rate": 1.9996530012933285e-05,
254
+ "loss": 0.4107,
255
+ "step": 34
256
+ },
257
+ {
258
+ "epoch": 0.206794682422452,
259
+ "grad_norm": 0.398764044046402,
260
+ "learning_rate": 1.9994578321597258e-05,
261
+ "loss": 0.3882,
262
+ "step": 35
263
+ },
264
+ {
265
+ "epoch": 0.21270310192023634,
266
+ "grad_norm": 0.44229164719581604,
267
+ "learning_rate": 1.999219309353572e-05,
268
+ "loss": 0.4154,
269
+ "step": 36
270
+ },
271
+ {
272
+ "epoch": 0.21861152141802068,
273
+ "grad_norm": 0.44369620084762573,
274
+ "learning_rate": 1.998937443221316e-05,
275
+ "loss": 0.3863,
276
+ "step": 37
277
+ },
278
+ {
279
+ "epoch": 0.22451994091580502,
280
+ "grad_norm": 0.44270017743110657,
281
+ "learning_rate": 1.9986122459895182e-05,
282
+ "loss": 0.3945,
283
+ "step": 38
284
+ },
285
+ {
286
+ "epoch": 0.23042836041358936,
287
+ "grad_norm": 0.42152372002601624,
288
+ "learning_rate": 1.9982437317643218e-05,
289
+ "loss": 0.4094,
290
+ "step": 39
291
+ },
292
+ {
293
+ "epoch": 0.2363367799113737,
294
+ "grad_norm": 0.4120837450027466,
295
+ "learning_rate": 1.9978319165308373e-05,
296
+ "loss": 0.4411,
297
+ "step": 40
298
+ },
299
+ {
300
+ "epoch": 0.24224519940915806,
301
+ "grad_norm": 0.4064903259277344,
302
+ "learning_rate": 1.997376818152453e-05,
303
+ "loss": 0.3818,
304
+ "step": 41
305
+ },
306
+ {
307
+ "epoch": 0.2481536189069424,
308
+ "grad_norm": 0.3692624270915985,
309
+ "learning_rate": 1.9968784563700586e-05,
310
+ "loss": 0.3874,
311
+ "step": 42
312
+ },
313
+ {
314
+ "epoch": 0.25406203840472674,
315
+ "grad_norm": 0.4399218261241913,
316
+ "learning_rate": 1.9963368528011867e-05,
317
+ "loss": 0.3749,
318
+ "step": 43
319
+ },
320
+ {
321
+ "epoch": 0.25997045790251105,
322
+ "grad_norm": 0.3779003620147705,
323
+ "learning_rate": 1.9957520309390786e-05,
324
+ "loss": 0.3656,
325
+ "step": 44
326
+ },
327
+ {
328
+ "epoch": 0.2658788774002954,
329
+ "grad_norm": 0.3946981132030487,
330
+ "learning_rate": 1.9951240161516643e-05,
331
+ "loss": 0.3612,
332
+ "step": 45
333
+ },
334
+ {
335
+ "epoch": 0.2717872968980798,
336
+ "grad_norm": 0.3969726264476776,
337
+ "learning_rate": 1.99445283568046e-05,
338
+ "loss": 0.3932,
339
+ "step": 46
340
+ },
341
+ {
342
+ "epoch": 0.2776957163958641,
343
+ "grad_norm": 0.4239075183868408,
344
+ "learning_rate": 1.9937385186393888e-05,
345
+ "loss": 0.387,
346
+ "step": 47
347
+ },
348
+ {
349
+ "epoch": 0.28360413589364847,
350
+ "grad_norm": 0.3688453733921051,
351
+ "learning_rate": 1.992981096013517e-05,
352
+ "loss": 0.3524,
353
+ "step": 48
354
+ },
355
+ {
356
+ "epoch": 0.2895125553914328,
357
+ "grad_norm": 0.4294806718826294,
358
+ "learning_rate": 1.9921806006577102e-05,
359
+ "loss": 0.3787,
360
+ "step": 49
361
+ },
362
+ {
363
+ "epoch": 0.29542097488921715,
364
+ "grad_norm": 0.3867166042327881,
365
+ "learning_rate": 1.9913370672952074e-05,
366
+ "loss": 0.3756,
367
+ "step": 50
368
+ },
369
+ {
370
+ "epoch": 0.30132939438700146,
371
+ "grad_norm": 0.43365901708602905,
372
+ "learning_rate": 1.990450532516116e-05,
373
+ "loss": 0.3896,
374
+ "step": 51
375
+ },
376
+ {
377
+ "epoch": 0.3072378138847858,
378
+ "grad_norm": 0.38658151030540466,
379
+ "learning_rate": 1.9895210347758233e-05,
380
+ "loss": 0.3703,
381
+ "step": 52
382
+ },
383
+ {
384
+ "epoch": 0.31314623338257014,
385
+ "grad_norm": 0.37093815207481384,
386
+ "learning_rate": 1.98854861439333e-05,
387
+ "loss": 0.3763,
388
+ "step": 53
389
+ },
390
+ {
391
+ "epoch": 0.3190546528803545,
392
+ "grad_norm": 0.40044137835502625,
393
+ "learning_rate": 1.9875333135495e-05,
394
+ "loss": 0.3752,
395
+ "step": 54
396
+ },
397
+ {
398
+ "epoch": 0.3249630723781389,
399
+ "grad_norm": 0.39133360981941223,
400
+ "learning_rate": 1.986475176285232e-05,
401
+ "loss": 0.3589,
402
+ "step": 55
403
+ },
404
+ {
405
+ "epoch": 0.3308714918759232,
406
+ "grad_norm": 0.38397374749183655,
407
+ "learning_rate": 1.985374248499546e-05,
408
+ "loss": 0.3701,
409
+ "step": 56
410
+ },
411
+ {
412
+ "epoch": 0.33677991137370755,
413
+ "grad_norm": 0.3795414865016937,
414
+ "learning_rate": 1.984230577947597e-05,
415
+ "loss": 0.3584,
416
+ "step": 57
417
+ },
418
+ {
419
+ "epoch": 0.33677991137370755,
420
+ "eval_loss": 0.3953791558742523,
421
+ "eval_runtime": 4.6385,
422
+ "eval_samples_per_second": 11.857,
423
+ "eval_steps_per_second": 1.509,
424
+ "step": 57
425
+ },
426
+ {
427
+ "epoch": 0.34268833087149186,
428
+ "grad_norm": 0.3709493577480316,
429
+ "learning_rate": 1.9830442142386e-05,
430
+ "loss": 0.3647,
431
+ "step": 58
432
+ },
433
+ {
434
+ "epoch": 0.34859675036927623,
435
+ "grad_norm": 0.35005033016204834,
436
+ "learning_rate": 1.9818152088336786e-05,
437
+ "loss": 0.3317,
438
+ "step": 59
439
+ },
440
+ {
441
+ "epoch": 0.35450516986706054,
442
+ "grad_norm": 0.3652004599571228,
443
+ "learning_rate": 1.9805436150436352e-05,
444
+ "loss": 0.3394,
445
+ "step": 60
446
+ },
447
+ {
448
+ "epoch": 0.3604135893648449,
449
+ "grad_norm": 0.3940984904766083,
450
+ "learning_rate": 1.9792294880266346e-05,
451
+ "loss": 0.3711,
452
+ "step": 61
453
+ },
454
+ {
455
+ "epoch": 0.3663220088626292,
456
+ "grad_norm": 0.35634928941726685,
457
+ "learning_rate": 1.977872884785815e-05,
458
+ "loss": 0.3455,
459
+ "step": 62
460
+ },
461
+ {
462
+ "epoch": 0.3722304283604136,
463
+ "grad_norm": 0.3972924053668976,
464
+ "learning_rate": 1.9764738641668137e-05,
465
+ "loss": 0.3652,
466
+ "step": 63
467
+ },
468
+ {
469
+ "epoch": 0.37813884785819796,
470
+ "grad_norm": 0.40372708439826965,
471
+ "learning_rate": 1.9750324868552133e-05,
472
+ "loss": 0.3662,
473
+ "step": 64
474
+ },
475
+ {
476
+ "epoch": 0.38404726735598227,
477
+ "grad_norm": 0.396133691072464,
478
+ "learning_rate": 1.9735488153739128e-05,
479
+ "loss": 0.3726,
480
+ "step": 65
481
+ },
482
+ {
483
+ "epoch": 0.38995568685376664,
484
+ "grad_norm": 0.398989737033844,
485
+ "learning_rate": 1.972022914080411e-05,
486
+ "loss": 0.3595,
487
+ "step": 66
488
+ },
489
+ {
490
+ "epoch": 0.39586410635155095,
491
+ "grad_norm": 0.4102807939052582,
492
+ "learning_rate": 1.9704548491640195e-05,
493
+ "loss": 0.3308,
494
+ "step": 67
495
+ },
496
+ {
497
+ "epoch": 0.4017725258493353,
498
+ "grad_norm": 0.344397634267807,
499
+ "learning_rate": 1.9688446886429885e-05,
500
+ "loss": 0.3653,
501
+ "step": 68
502
+ },
503
+ {
504
+ "epoch": 0.4076809453471196,
505
+ "grad_norm": 0.3550814390182495,
506
+ "learning_rate": 1.9671925023615572e-05,
507
+ "loss": 0.3412,
508
+ "step": 69
509
+ },
510
+ {
511
+ "epoch": 0.413589364844904,
512
+ "grad_norm": 0.4047009348869324,
513
+ "learning_rate": 1.9654983619869242e-05,
514
+ "loss": 0.3578,
515
+ "step": 70
516
+ },
517
+ {
518
+ "epoch": 0.4194977843426883,
519
+ "grad_norm": 0.41112563014030457,
520
+ "learning_rate": 1.9637623410061392e-05,
521
+ "loss": 0.3694,
522
+ "step": 71
523
+ },
524
+ {
525
+ "epoch": 0.4254062038404727,
526
+ "grad_norm": 0.3775319755077362,
527
+ "learning_rate": 1.961984514722914e-05,
528
+ "loss": 0.3571,
529
+ "step": 72
530
+ },
531
+ {
532
+ "epoch": 0.43131462333825704,
533
+ "grad_norm": 0.3610381782054901,
534
+ "learning_rate": 1.960164960254358e-05,
535
+ "loss": 0.3713,
536
+ "step": 73
537
+ },
538
+ {
539
+ "epoch": 0.43722304283604135,
540
+ "grad_norm": 0.38662371039390564,
541
+ "learning_rate": 1.9583037565276314e-05,
542
+ "loss": 0.311,
543
+ "step": 74
544
+ },
545
+ {
546
+ "epoch": 0.4431314623338257,
547
+ "grad_norm": 0.3574771285057068,
548
+ "learning_rate": 1.9564009842765225e-05,
549
+ "loss": 0.3353,
550
+ "step": 75
551
+ },
552
+ {
553
+ "epoch": 0.44903988183161003,
554
+ "grad_norm": 0.3932562470436096,
555
+ "learning_rate": 1.9544567260379455e-05,
556
+ "loss": 0.3536,
557
+ "step": 76
558
+ },
559
+ {
560
+ "epoch": 0.4549483013293944,
561
+ "grad_norm": 0.3974682092666626,
562
+ "learning_rate": 1.9524710661483594e-05,
563
+ "loss": 0.3556,
564
+ "step": 77
565
+ },
566
+ {
567
+ "epoch": 0.4608567208271787,
568
+ "grad_norm": 0.37172290682792664,
569
+ "learning_rate": 1.9504440907401113e-05,
570
+ "loss": 0.3568,
571
+ "step": 78
572
+ },
573
+ {
574
+ "epoch": 0.4667651403249631,
575
+ "grad_norm": 0.37170422077178955,
576
+ "learning_rate": 1.948375887737699e-05,
577
+ "loss": 0.3556,
578
+ "step": 79
579
+ },
580
+ {
581
+ "epoch": 0.4726735598227474,
582
+ "grad_norm": 0.3596966862678528,
583
+ "learning_rate": 1.9462665468539582e-05,
584
+ "loss": 0.332,
585
+ "step": 80
586
+ },
587
+ {
588
+ "epoch": 0.47858197932053176,
589
+ "grad_norm": 0.35934680700302124,
590
+ "learning_rate": 1.944116159586169e-05,
591
+ "loss": 0.3276,
592
+ "step": 81
593
+ },
594
+ {
595
+ "epoch": 0.4844903988183161,
596
+ "grad_norm": 0.40984946489334106,
597
+ "learning_rate": 1.94192481921209e-05,
598
+ "loss": 0.3685,
599
+ "step": 82
600
+ },
601
+ {
602
+ "epoch": 0.49039881831610044,
603
+ "grad_norm": 0.3622114658355713,
604
+ "learning_rate": 1.9396926207859085e-05,
605
+ "loss": 0.3336,
606
+ "step": 83
607
+ },
608
+ {
609
+ "epoch": 0.4963072378138848,
610
+ "grad_norm": 0.34888842701911926,
611
+ "learning_rate": 1.9374196611341212e-05,
612
+ "loss": 0.3625,
613
+ "step": 84
614
+ },
615
+ {
616
+ "epoch": 0.5022156573116692,
617
+ "grad_norm": 0.37125518918037415,
618
+ "learning_rate": 1.9351060388513304e-05,
619
+ "loss": 0.3304,
620
+ "step": 85
621
+ },
622
+ {
623
+ "epoch": 0.5081240768094535,
624
+ "grad_norm": 0.4107120931148529,
625
+ "learning_rate": 1.9327518542959717e-05,
626
+ "loss": 0.3755,
627
+ "step": 86
628
+ },
629
+ {
630
+ "epoch": 0.5140324963072378,
631
+ "grad_norm": 0.3420109748840332,
632
+ "learning_rate": 1.9303572095859545e-05,
633
+ "loss": 0.3457,
634
+ "step": 87
635
+ },
636
+ {
637
+ "epoch": 0.5199409158050221,
638
+ "grad_norm": 0.35079535841941833,
639
+ "learning_rate": 1.9279222085942396e-05,
640
+ "loss": 0.3454,
641
+ "step": 88
642
+ },
643
+ {
644
+ "epoch": 0.5258493353028065,
645
+ "grad_norm": 0.3775666058063507,
646
+ "learning_rate": 1.9254469569443274e-05,
647
+ "loss": 0.3501,
648
+ "step": 89
649
+ },
650
+ {
651
+ "epoch": 0.5317577548005908,
652
+ "grad_norm": 0.3327409625053406,
653
+ "learning_rate": 1.9229315620056805e-05,
654
+ "loss": 0.3507,
655
+ "step": 90
656
+ },
657
+ {
658
+ "epoch": 0.5376661742983752,
659
+ "grad_norm": 0.37142789363861084,
660
+ "learning_rate": 1.9203761328890626e-05,
661
+ "loss": 0.3453,
662
+ "step": 91
663
+ },
664
+ {
665
+ "epoch": 0.5435745937961596,
666
+ "grad_norm": 0.36256077885627747,
667
+ "learning_rate": 1.91778078044181e-05,
668
+ "loss": 0.3588,
669
+ "step": 92
670
+ },
671
+ {
672
+ "epoch": 0.5494830132939439,
673
+ "grad_norm": 0.3861102759838104,
674
+ "learning_rate": 1.9151456172430186e-05,
675
+ "loss": 0.3479,
676
+ "step": 93
677
+ },
678
+ {
679
+ "epoch": 0.5553914327917282,
680
+ "grad_norm": 0.3359353542327881,
681
+ "learning_rate": 1.9124707575986642e-05,
682
+ "loss": 0.318,
683
+ "step": 94
684
+ },
685
+ {
686
+ "epoch": 0.5612998522895125,
687
+ "grad_norm": 0.33662593364715576,
688
+ "learning_rate": 1.909756317536643e-05,
689
+ "loss": 0.3421,
690
+ "step": 95
691
+ },
692
+ {
693
+ "epoch": 0.5672082717872969,
694
+ "grad_norm": 0.35831600427627563,
695
+ "learning_rate": 1.9070024148017375e-05,
696
+ "loss": 0.3409,
697
+ "step": 96
698
+ },
699
+ {
700
+ "epoch": 0.5731166912850812,
701
+ "grad_norm": 0.39858701825141907,
702
+ "learning_rate": 1.9042091688505104e-05,
703
+ "loss": 0.3319,
704
+ "step": 97
705
+ },
706
+ {
707
+ "epoch": 0.5790251107828656,
708
+ "grad_norm": 0.3343643546104431,
709
+ "learning_rate": 1.9013767008461236e-05,
710
+ "loss": 0.3352,
711
+ "step": 98
712
+ },
713
+ {
714
+ "epoch": 0.5849335302806499,
715
+ "grad_norm": 0.3519919216632843,
716
+ "learning_rate": 1.89850513365308e-05,
717
+ "loss": 0.3634,
718
+ "step": 99
719
+ },
720
+ {
721
+ "epoch": 0.5908419497784343,
722
+ "grad_norm": 0.32900717854499817,
723
+ "learning_rate": 1.895594591831896e-05,
724
+ "loss": 0.3415,
725
+ "step": 100
726
+ },
727
+ {
728
+ "epoch": 0.5967503692762186,
729
+ "grad_norm": 0.34432175755500793,
730
+ "learning_rate": 1.8926452016336987e-05,
731
+ "loss": 0.3169,
732
+ "step": 101
733
+ },
734
+ {
735
+ "epoch": 0.6026587887740029,
736
+ "grad_norm": 0.33144107460975647,
737
+ "learning_rate": 1.8896570909947477e-05,
738
+ "loss": 0.3431,
739
+ "step": 102
740
+ },
741
+ {
742
+ "epoch": 0.6085672082717873,
743
+ "grad_norm": 0.3299802839756012,
744
+ "learning_rate": 1.8866303895308856e-05,
745
+ "loss": 0.3411,
746
+ "step": 103
747
+ },
748
+ {
749
+ "epoch": 0.6144756277695717,
750
+ "grad_norm": 0.30740225315093994,
751
+ "learning_rate": 1.883565228531919e-05,
752
+ "loss": 0.3355,
753
+ "step": 104
754
+ },
755
+ {
756
+ "epoch": 0.620384047267356,
757
+ "grad_norm": 0.34325993061065674,
758
+ "learning_rate": 1.88046174095592e-05,
759
+ "loss": 0.3188,
760
+ "step": 105
761
+ },
762
+ {
763
+ "epoch": 0.6262924667651403,
764
+ "grad_norm": 0.3394065797328949,
765
+ "learning_rate": 1.8773200614234587e-05,
766
+ "loss": 0.3153,
767
+ "step": 106
768
+ },
769
+ {
770
+ "epoch": 0.6322008862629247,
771
+ "grad_norm": 0.35468512773513794,
772
+ "learning_rate": 1.874140326211766e-05,
773
+ "loss": 0.3387,
774
+ "step": 107
775
+ },
776
+ {
777
+ "epoch": 0.638109305760709,
778
+ "grad_norm": 0.36726799607276917,
779
+ "learning_rate": 1.8709226732488216e-05,
780
+ "loss": 0.3457,
781
+ "step": 108
782
+ },
783
+ {
784
+ "epoch": 0.6440177252584933,
785
+ "grad_norm": 0.3223711848258972,
786
+ "learning_rate": 1.86766724210737e-05,
787
+ "loss": 0.3588,
788
+ "step": 109
789
+ },
790
+ {
791
+ "epoch": 0.6499261447562777,
792
+ "grad_norm": 0.3537541925907135,
793
+ "learning_rate": 1.8643741739988672e-05,
794
+ "loss": 0.3506,
795
+ "step": 110
796
+ },
797
+ {
798
+ "epoch": 0.6558345642540621,
799
+ "grad_norm": 0.3755073845386505,
800
+ "learning_rate": 1.8610436117673557e-05,
801
+ "loss": 0.3221,
802
+ "step": 111
803
+ },
804
+ {
805
+ "epoch": 0.6617429837518464,
806
+ "grad_norm": 0.31778833270072937,
807
+ "learning_rate": 1.8576756998832667e-05,
808
+ "loss": 0.3161,
809
+ "step": 112
810
+ },
811
+ {
812
+ "epoch": 0.6676514032496307,
813
+ "grad_norm": 0.3517738878726959,
814
+ "learning_rate": 1.8542705844371544e-05,
815
+ "loss": 0.3442,
816
+ "step": 113
817
+ },
818
+ {
819
+ "epoch": 0.6735598227474151,
820
+ "grad_norm": 0.3254755139350891,
821
+ "learning_rate": 1.8508284131333604e-05,
822
+ "loss": 0.3372,
823
+ "step": 114
824
+ },
825
+ {
826
+ "epoch": 0.6735598227474151,
827
+ "eval_loss": 0.363791823387146,
828
+ "eval_runtime": 4.0908,
829
+ "eval_samples_per_second": 13.445,
830
+ "eval_steps_per_second": 1.711,
831
+ "step": 114
832
+ },
833
+ {
834
+ "epoch": 0.6794682422451994,
835
+ "grad_norm": 0.3458060622215271,
836
+ "learning_rate": 1.8473493352836032e-05,
837
+ "loss": 0.3329,
838
+ "step": 115
839
+ },
840
+ {
841
+ "epoch": 0.6853766617429837,
842
+ "grad_norm": 0.33962881565093994,
843
+ "learning_rate": 1.8438335018005052e-05,
844
+ "loss": 0.3478,
845
+ "step": 116
846
+ },
847
+ {
848
+ "epoch": 0.691285081240768,
849
+ "grad_norm": 0.33980926871299744,
850
+ "learning_rate": 1.8402810651910444e-05,
851
+ "loss": 0.3484,
852
+ "step": 117
853
+ },
854
+ {
855
+ "epoch": 0.6971935007385525,
856
+ "grad_norm": 0.355694979429245,
857
+ "learning_rate": 1.8366921795499394e-05,
858
+ "loss": 0.3686,
859
+ "step": 118
860
+ },
861
+ {
862
+ "epoch": 0.7031019202363368,
863
+ "grad_norm": 0.3415476083755493,
864
+ "learning_rate": 1.8330670005529657e-05,
865
+ "loss": 0.3204,
866
+ "step": 119
867
+ },
868
+ {
869
+ "epoch": 0.7090103397341211,
870
+ "grad_norm": 0.3336890935897827,
871
+ "learning_rate": 1.829405685450202e-05,
872
+ "loss": 0.3323,
873
+ "step": 120
874
+ },
875
+ {
876
+ "epoch": 0.7149187592319055,
877
+ "grad_norm": 0.34337785840034485,
878
+ "learning_rate": 1.8257083930592102e-05,
879
+ "loss": 0.3283,
880
+ "step": 121
881
+ },
882
+ {
883
+ "epoch": 0.7208271787296898,
884
+ "grad_norm": 0.3578524887561798,
885
+ "learning_rate": 1.8219752837581466e-05,
886
+ "loss": 0.3326,
887
+ "step": 122
888
+ },
889
+ {
890
+ "epoch": 0.7267355982274741,
891
+ "grad_norm": 0.32392922043800354,
892
+ "learning_rate": 1.8182065194788024e-05,
893
+ "loss": 0.3141,
894
+ "step": 123
895
+ },
896
+ {
897
+ "epoch": 0.7326440177252584,
898
+ "grad_norm": 0.36127492785453796,
899
+ "learning_rate": 1.814402263699584e-05,
900
+ "loss": 0.3461,
901
+ "step": 124
902
+ },
903
+ {
904
+ "epoch": 0.7385524372230429,
905
+ "grad_norm": 0.33812931180000305,
906
+ "learning_rate": 1.8105626814384173e-05,
907
+ "loss": 0.3404,
908
+ "step": 125
909
+ },
910
+ {
911
+ "epoch": 0.7444608567208272,
912
+ "grad_norm": 0.3138431906700134,
913
+ "learning_rate": 1.8066879392455932e-05,
914
+ "loss": 0.3237,
915
+ "step": 126
916
+ },
917
+ {
918
+ "epoch": 0.7503692762186115,
919
+ "grad_norm": 0.33033978939056396,
920
+ "learning_rate": 1.8027782051965408e-05,
921
+ "loss": 0.3416,
922
+ "step": 127
923
+ },
924
+ {
925
+ "epoch": 0.7562776957163959,
926
+ "grad_norm": 0.3907163143157959,
927
+ "learning_rate": 1.7988336488845374e-05,
928
+ "loss": 0.3352,
929
+ "step": 128
930
+ },
931
+ {
932
+ "epoch": 0.7621861152141802,
933
+ "grad_norm": 0.315248042345047,
934
+ "learning_rate": 1.7948544414133534e-05,
935
+ "loss": 0.3225,
936
+ "step": 129
937
+ },
938
+ {
939
+ "epoch": 0.7680945347119645,
940
+ "grad_norm": 0.3284492790699005,
941
+ "learning_rate": 1.7908407553898282e-05,
942
+ "loss": 0.3217,
943
+ "step": 130
944
+ },
945
+ {
946
+ "epoch": 0.7740029542097489,
947
+ "grad_norm": 0.3439176082611084,
948
+ "learning_rate": 1.7867927649163838e-05,
949
+ "loss": 0.3367,
950
+ "step": 131
951
+ },
952
+ {
953
+ "epoch": 0.7799113737075333,
954
+ "grad_norm": 0.31954073905944824,
955
+ "learning_rate": 1.782710645583473e-05,
956
+ "loss": 0.3133,
957
+ "step": 132
958
+ },
959
+ {
960
+ "epoch": 0.7858197932053176,
961
+ "grad_norm": 0.38416293263435364,
962
+ "learning_rate": 1.7785945744619642e-05,
963
+ "loss": 0.3484,
964
+ "step": 133
965
+ },
966
+ {
967
+ "epoch": 0.7917282127031019,
968
+ "grad_norm": 0.34139737486839294,
969
+ "learning_rate": 1.774444730095456e-05,
970
+ "loss": 0.3042,
971
+ "step": 134
972
+ },
973
+ {
974
+ "epoch": 0.7976366322008862,
975
+ "grad_norm": 0.3623535931110382,
976
+ "learning_rate": 1.7702612924925377e-05,
977
+ "loss": 0.3318,
978
+ "step": 135
979
+ },
980
+ {
981
+ "epoch": 0.8035450516986706,
982
+ "grad_norm": 0.32973209023475647,
983
+ "learning_rate": 1.766044443118978e-05,
984
+ "loss": 0.3092,
985
+ "step": 136
986
+ },
987
+ {
988
+ "epoch": 0.8094534711964549,
989
+ "grad_norm": 0.30704402923583984,
990
+ "learning_rate": 1.761794364889855e-05,
991
+ "loss": 0.321,
992
+ "step": 137
993
+ },
994
+ {
995
+ "epoch": 0.8153618906942393,
996
+ "grad_norm": 0.34877485036849976,
997
+ "learning_rate": 1.7575112421616203e-05,
998
+ "loss": 0.3266,
999
+ "step": 138
1000
+ },
1001
+ {
1002
+ "epoch": 0.8212703101920237,
1003
+ "grad_norm": 0.3538282811641693,
1004
+ "learning_rate": 1.7531952607241033e-05,
1005
+ "loss": 0.3703,
1006
+ "step": 139
1007
+ },
1008
+ {
1009
+ "epoch": 0.827178729689808,
1010
+ "grad_norm": 0.35590365529060364,
1011
+ "learning_rate": 1.7488466077924525e-05,
1012
+ "loss": 0.3506,
1013
+ "step": 140
1014
+ },
1015
+ {
1016
+ "epoch": 0.8330871491875923,
1017
+ "grad_norm": 0.33215418457984924,
1018
+ "learning_rate": 1.7444654719990128e-05,
1019
+ "loss": 0.3207,
1020
+ "step": 141
1021
+ },
1022
+ {
1023
+ "epoch": 0.8389955686853766,
1024
+ "grad_norm": 0.3381923735141754,
1025
+ "learning_rate": 1.7400520433851457e-05,
1026
+ "loss": 0.3237,
1027
+ "step": 142
1028
+ },
1029
+ {
1030
+ "epoch": 0.844903988183161,
1031
+ "grad_norm": 0.3371356129646301,
1032
+ "learning_rate": 1.735606513392984e-05,
1033
+ "loss": 0.3394,
1034
+ "step": 143
1035
+ },
1036
+ {
1037
+ "epoch": 0.8508124076809453,
1038
+ "grad_norm": 0.344291627407074,
1039
+ "learning_rate": 1.7311290748571273e-05,
1040
+ "loss": 0.3604,
1041
+ "step": 144
1042
+ },
1043
+ {
1044
+ "epoch": 0.8567208271787297,
1045
+ "grad_norm": 0.3567575216293335,
1046
+ "learning_rate": 1.72661992199628e-05,
1047
+ "loss": 0.3518,
1048
+ "step": 145
1049
+ },
1050
+ {
1051
+ "epoch": 0.8626292466765141,
1052
+ "grad_norm": 0.33762165904045105,
1053
+ "learning_rate": 1.7220792504048227e-05,
1054
+ "loss": 0.3146,
1055
+ "step": 146
1056
+ },
1057
+ {
1058
+ "epoch": 0.8685376661742984,
1059
+ "grad_norm": 0.3404117822647095,
1060
+ "learning_rate": 1.717507257044331e-05,
1061
+ "loss": 0.3192,
1062
+ "step": 147
1063
+ },
1064
+ {
1065
+ "epoch": 0.8744460856720827,
1066
+ "grad_norm": 0.3535095751285553,
1067
+ "learning_rate": 1.7129041402350317e-05,
1068
+ "loss": 0.3364,
1069
+ "step": 148
1070
+ },
1071
+ {
1072
+ "epoch": 0.880354505169867,
1073
+ "grad_norm": 0.3418992757797241,
1074
+ "learning_rate": 1.708270099647198e-05,
1075
+ "loss": 0.3327,
1076
+ "step": 149
1077
+ },
1078
+ {
1079
+ "epoch": 0.8862629246676514,
1080
+ "grad_norm": 0.3172495663166046,
1081
+ "learning_rate": 1.7036053362924896e-05,
1082
+ "loss": 0.3404,
1083
+ "step": 150
1084
+ },
1085
+ {
1086
+ "epoch": 0.8921713441654358,
1087
+ "grad_norm": 0.3307952284812927,
1088
+ "learning_rate": 1.6989100525152346e-05,
1089
+ "loss": 0.3279,
1090
+ "step": 151
1091
+ },
1092
+ {
1093
+ "epoch": 0.8980797636632201,
1094
+ "grad_norm": 0.29014381766319275,
1095
+ "learning_rate": 1.694184451983651e-05,
1096
+ "loss": 0.3027,
1097
+ "step": 152
1098
+ },
1099
+ {
1100
+ "epoch": 0.9039881831610044,
1101
+ "grad_norm": 0.3290538191795349,
1102
+ "learning_rate": 1.689428739681012e-05,
1103
+ "loss": 0.3297,
1104
+ "step": 153
1105
+ },
1106
+ {
1107
+ "epoch": 0.9098966026587888,
1108
+ "grad_norm": 0.3165034353733063,
1109
+ "learning_rate": 1.684643121896755e-05,
1110
+ "loss": 0.3225,
1111
+ "step": 154
1112
+ },
1113
+ {
1114
+ "epoch": 0.9158050221565731,
1115
+ "grad_norm": 0.3677435517311096,
1116
+ "learning_rate": 1.679827806217533e-05,
1117
+ "loss": 0.328,
1118
+ "step": 155
1119
+ },
1120
+ {
1121
+ "epoch": 0.9217134416543574,
1122
+ "grad_norm": 0.3617594242095947,
1123
+ "learning_rate": 1.6749830015182106e-05,
1124
+ "loss": 0.3299,
1125
+ "step": 156
1126
+ },
1127
+ {
1128
+ "epoch": 0.9276218611521418,
1129
+ "grad_norm": 0.31069889664649963,
1130
+ "learning_rate": 1.6701089179528032e-05,
1131
+ "loss": 0.3146,
1132
+ "step": 157
1133
+ },
1134
+ {
1135
+ "epoch": 0.9335302806499262,
1136
+ "grad_norm": 0.3610530197620392,
1137
+ "learning_rate": 1.6652057669453606e-05,
1138
+ "loss": 0.3223,
1139
+ "step": 158
1140
+ },
1141
+ {
1142
+ "epoch": 0.9394387001477105,
1143
+ "grad_norm": 0.3169001638889313,
1144
+ "learning_rate": 1.6602737611807975e-05,
1145
+ "loss": 0.3194,
1146
+ "step": 159
1147
+ },
1148
+ {
1149
+ "epoch": 0.9453471196454948,
1150
+ "grad_norm": 0.33033737540245056,
1151
+ "learning_rate": 1.655313114595666e-05,
1152
+ "loss": 0.3317,
1153
+ "step": 160
1154
+ },
1155
+ {
1156
+ "epoch": 0.9512555391432792,
1157
+ "grad_norm": 0.35510334372520447,
1158
+ "learning_rate": 1.6503240423688768e-05,
1159
+ "loss": 0.3249,
1160
+ "step": 161
1161
+ },
1162
+ {
1163
+ "epoch": 0.9571639586410635,
1164
+ "grad_norm": 0.356079638004303,
1165
+ "learning_rate": 1.6453067609123656e-05,
1166
+ "loss": 0.3274,
1167
+ "step": 162
1168
+ },
1169
+ {
1170
+ "epoch": 0.9630723781388478,
1171
+ "grad_norm": 0.36350899934768677,
1172
+ "learning_rate": 1.6402614878617037e-05,
1173
+ "loss": 0.3553,
1174
+ "step": 163
1175
+ },
1176
+ {
1177
+ "epoch": 0.9689807976366323,
1178
+ "grad_norm": 0.3371831476688385,
1179
+ "learning_rate": 1.6351884420666616e-05,
1180
+ "loss": 0.3245,
1181
+ "step": 164
1182
+ },
1183
+ {
1184
+ "epoch": 0.9748892171344166,
1185
+ "grad_norm": 0.3398657739162445,
1186
+ "learning_rate": 1.6300878435817115e-05,
1187
+ "loss": 0.3043,
1188
+ "step": 165
1189
+ },
1190
+ {
1191
+ "epoch": 0.9807976366322009,
1192
+ "grad_norm": 0.34537115693092346,
1193
+ "learning_rate": 1.6249599136564837e-05,
1194
+ "loss": 0.349,
1195
+ "step": 166
1196
+ },
1197
+ {
1198
+ "epoch": 0.9867060561299852,
1199
+ "grad_norm": 0.31506776809692383,
1200
+ "learning_rate": 1.619804874726171e-05,
1201
+ "loss": 0.315,
1202
+ "step": 167
1203
+ },
1204
+ {
1205
+ "epoch": 0.9926144756277696,
1206
+ "grad_norm": 0.32844215631484985,
1207
+ "learning_rate": 1.6146229504018777e-05,
1208
+ "loss": 0.3247,
1209
+ "step": 168
1210
+ },
1211
+ {
1212
+ "epoch": 0.9985228951255539,
1213
+ "grad_norm": 0.3447742760181427,
1214
+ "learning_rate": 1.609414365460921e-05,
1215
+ "loss": 0.3193,
1216
+ "step": 169
1217
+ }
1218
+ ],
1219
+ "logging_steps": 1,
1220
+ "max_steps": 507,
1221
+ "num_input_tokens_seen": 0,
1222
+ "num_train_epochs": 3,
1223
+ "save_steps": 169,
1224
+ "stateful_callbacks": {
1225
+ "TrainerControl": {
1226
+ "args": {
1227
+ "should_epoch_stop": false,
1228
+ "should_evaluate": false,
1229
+ "should_log": false,
1230
+ "should_save": true,
1231
+ "should_training_stop": false
1232
+ },
1233
+ "attributes": {}
1234
+ }
1235
+ },
1236
+ "total_flos": 2.892740285085778e+17,
1237
+ "train_batch_size": 8,
1238
+ "trial_name": null,
1239
+ "trial_params": null
1240
+ }
3b-mb_base/checkpoint-169/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d657c9786dc6c8c08c64e914a96a01397e0a80c1d965337767408bc8f80e5cf
3
+ size 10744
3b-mb_base/checkpoint-169/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
3b-mb_base/checkpoint-169/zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
3b-mb_base/checkpoint-338/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
3b-mb_base/checkpoint-338/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-3B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "eos_token_id": 151645,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 2048,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_position_embeddings": 32768,
13
+ "max_window_layers": 70,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 16,
16
+ "num_hidden_layers": 36,
17
+ "num_key_value_heads": 2,
18
+ "rms_norm_eps": 1e-06,
19
+ "rope_scaling": null,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": true,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.48.1",
25
+ "use_cache": false,
26
+ "use_sliding_window": false,
27
+ "vocab_size": 151665
28
+ }
3b-mb_base/checkpoint-338/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.48.1"
14
+ }
3b-mb_base/checkpoint-338/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step337
3b-mb_base/checkpoint-338/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
3b-mb_base/checkpoint-338/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec1dcaf6f5430f06caba435ab343745ffde124cf70490a36f66d78187bf075e4
3
+ size 4956450288
3b-mb_base/checkpoint-338/model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3981a3a9d6b4e220344b35a25a971d7825c700fbd96ff52859b234be31da7df
3
+ size 1835586736
3b-mb_base/checkpoint-338/model.safetensors.index.json ADDED
@@ -0,0 +1,442 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 6791987200
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
368
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
369
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
370
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
371
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
372
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
373
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
374
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
376
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
377
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
378
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
379
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
380
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
382
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
384
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
385
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
386
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
387
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
388
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
389
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
390
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
391
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
394
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
395
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
396
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
397
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
398
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
399
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
400
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
401
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
402
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
403
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
404
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
405
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
406
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
407
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
408
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
409
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
410
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
411
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
412
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
413
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
414
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
415
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
416
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
417
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
418
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
419
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
420
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
421
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
422
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
423
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
424
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
425
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
426
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
427
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
428
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
429
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
430
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
431
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
432
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
433
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
434
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
435
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
436
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
437
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
438
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
439
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
440
+ "model.norm.weight": "model-00002-of-00002.safetensors"
441
+ }
442
+ }
3b-mb_base/checkpoint-338/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3dcb161b22b2558dbf7e3f8c871050cec383d11a40423fab11f18d5e630639bf
3
+ size 14512
3b-mb_base/checkpoint-338/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d50af6aef769414a6f28fa1b1bc51ce707dc8ecd15474e03f99a2f10fde086be
3
+ size 14512
3b-mb_base/checkpoint-338/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd0ff87d03adec7a7483b66c31fc3a08e9184f59f52667e0a62a335c052ee5c8
3
+ size 1064
3b-mb_base/checkpoint-338/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
3b-mb_base/checkpoint-338/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
3b-mb_base/checkpoint-338/tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
3b-mb_base/checkpoint-338/trainer_state.json ADDED
@@ -0,0 +1,2447 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.9926144756277697,
5
+ "eval_steps": 57,
6
+ "global_step": 338,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.005908419497784343,
13
+ "grad_norm": 4.501461029052734,
14
+ "learning_rate": 6.666666666666667e-07,
15
+ "loss": 1.062,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.005908419497784343,
20
+ "eval_loss": 1.0835397243499756,
21
+ "eval_runtime": 4.3539,
22
+ "eval_samples_per_second": 12.632,
23
+ "eval_steps_per_second": 1.608,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.011816838995568686,
28
+ "grad_norm": 4.469114303588867,
29
+ "learning_rate": 1.3333333333333334e-06,
30
+ "loss": 1.0268,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.01772525849335303,
35
+ "grad_norm": 4.554893970489502,
36
+ "learning_rate": 2.0000000000000003e-06,
37
+ "loss": 1.0401,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.023633677991137372,
42
+ "grad_norm": 4.374792575836182,
43
+ "learning_rate": 2.666666666666667e-06,
44
+ "loss": 1.0423,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.029542097488921712,
49
+ "grad_norm": 3.4377498626708984,
50
+ "learning_rate": 3.3333333333333333e-06,
51
+ "loss": 0.9965,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.03545051698670606,
56
+ "grad_norm": 3.1242499351501465,
57
+ "learning_rate": 4.000000000000001e-06,
58
+ "loss": 0.9479,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.0413589364844904,
63
+ "grad_norm": 1.8368685245513916,
64
+ "learning_rate": 4.666666666666667e-06,
65
+ "loss": 0.8296,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.047267355982274745,
70
+ "grad_norm": 1.7457680702209473,
71
+ "learning_rate": 5.333333333333334e-06,
72
+ "loss": 0.8159,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.053175775480059084,
77
+ "grad_norm": 1.2953853607177734,
78
+ "learning_rate": 6e-06,
79
+ "loss": 0.664,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.059084194977843424,
84
+ "grad_norm": 1.1054794788360596,
85
+ "learning_rate": 6.666666666666667e-06,
86
+ "loss": 0.6486,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.06499261447562776,
91
+ "grad_norm": 0.8712942004203796,
92
+ "learning_rate": 7.333333333333333e-06,
93
+ "loss": 0.6415,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.07090103397341212,
98
+ "grad_norm": 1.4441039562225342,
99
+ "learning_rate": 8.000000000000001e-06,
100
+ "loss": 0.6255,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.07680945347119646,
105
+ "grad_norm": 1.4984484910964966,
106
+ "learning_rate": 8.666666666666668e-06,
107
+ "loss": 0.5561,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.0827178729689808,
112
+ "grad_norm": 0.8376960754394531,
113
+ "learning_rate": 9.333333333333334e-06,
114
+ "loss": 0.5534,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.08862629246676514,
119
+ "grad_norm": 0.7184750437736511,
120
+ "learning_rate": 1e-05,
121
+ "loss": 0.5062,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.09453471196454949,
126
+ "grad_norm": 0.8381787538528442,
127
+ "learning_rate": 1.0666666666666667e-05,
128
+ "loss": 0.5531,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.10044313146233383,
133
+ "grad_norm": 0.7621350288391113,
134
+ "learning_rate": 1.1333333333333334e-05,
135
+ "loss": 0.4876,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.10635155096011817,
140
+ "grad_norm": 0.6955872178077698,
141
+ "learning_rate": 1.2e-05,
142
+ "loss": 0.5019,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.11225997045790251,
147
+ "grad_norm": 0.5844917297363281,
148
+ "learning_rate": 1.2666666666666667e-05,
149
+ "loss": 0.4368,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.11816838995568685,
154
+ "grad_norm": 0.5807573795318604,
155
+ "learning_rate": 1.3333333333333333e-05,
156
+ "loss": 0.4965,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.1240768094534712,
161
+ "grad_norm": 0.5376399755477905,
162
+ "learning_rate": 1.4e-05,
163
+ "loss": 0.4841,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.12998522895125553,
168
+ "grad_norm": 0.5053263902664185,
169
+ "learning_rate": 1.4666666666666666e-05,
170
+ "loss": 0.4573,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.1358936484490399,
175
+ "grad_norm": 0.5155225396156311,
176
+ "learning_rate": 1.5333333333333334e-05,
177
+ "loss": 0.451,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.14180206794682423,
182
+ "grad_norm": 0.52030348777771,
183
+ "learning_rate": 1.6000000000000003e-05,
184
+ "loss": 0.4199,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.14771048744460857,
189
+ "grad_norm": 0.5321907997131348,
190
+ "learning_rate": 1.6666666666666667e-05,
191
+ "loss": 0.4532,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.1536189069423929,
196
+ "grad_norm": 0.5318155288696289,
197
+ "learning_rate": 1.7333333333333336e-05,
198
+ "loss": 0.4813,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.15952732644017725,
203
+ "grad_norm": 0.5176340937614441,
204
+ "learning_rate": 1.8e-05,
205
+ "loss": 0.4288,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.1654357459379616,
210
+ "grad_norm": 0.43893975019454956,
211
+ "learning_rate": 1.866666666666667e-05,
212
+ "loss": 0.3766,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.17134416543574593,
217
+ "grad_norm": 0.43830162286758423,
218
+ "learning_rate": 1.9333333333333333e-05,
219
+ "loss": 0.4159,
220
+ "step": 29
221
+ },
222
+ {
223
+ "epoch": 0.17725258493353027,
224
+ "grad_norm": 0.45950719714164734,
225
+ "learning_rate": 2e-05,
226
+ "loss": 0.4505,
227
+ "step": 30
228
+ },
229
+ {
230
+ "epoch": 0.1831610044313146,
231
+ "grad_norm": 0.40500667691230774,
232
+ "learning_rate": 1.9999783114048658e-05,
233
+ "loss": 0.3726,
234
+ "step": 31
235
+ },
236
+ {
237
+ "epoch": 0.18906942392909898,
238
+ "grad_norm": 0.43435147404670715,
239
+ "learning_rate": 1.9999132465602526e-05,
240
+ "loss": 0.442,
241
+ "step": 32
242
+ },
243
+ {
244
+ "epoch": 0.19497784342688332,
245
+ "grad_norm": 0.44813328981399536,
246
+ "learning_rate": 1.999804808288491e-05,
247
+ "loss": 0.437,
248
+ "step": 33
249
+ },
250
+ {
251
+ "epoch": 0.20088626292466766,
252
+ "grad_norm": 0.48166996240615845,
253
+ "learning_rate": 1.9996530012933285e-05,
254
+ "loss": 0.4107,
255
+ "step": 34
256
+ },
257
+ {
258
+ "epoch": 0.206794682422452,
259
+ "grad_norm": 0.398764044046402,
260
+ "learning_rate": 1.9994578321597258e-05,
261
+ "loss": 0.3882,
262
+ "step": 35
263
+ },
264
+ {
265
+ "epoch": 0.21270310192023634,
266
+ "grad_norm": 0.44229164719581604,
267
+ "learning_rate": 1.999219309353572e-05,
268
+ "loss": 0.4154,
269
+ "step": 36
270
+ },
271
+ {
272
+ "epoch": 0.21861152141802068,
273
+ "grad_norm": 0.44369620084762573,
274
+ "learning_rate": 1.998937443221316e-05,
275
+ "loss": 0.3863,
276
+ "step": 37
277
+ },
278
+ {
279
+ "epoch": 0.22451994091580502,
280
+ "grad_norm": 0.44270017743110657,
281
+ "learning_rate": 1.9986122459895182e-05,
282
+ "loss": 0.3945,
283
+ "step": 38
284
+ },
285
+ {
286
+ "epoch": 0.23042836041358936,
287
+ "grad_norm": 0.42152372002601624,
288
+ "learning_rate": 1.9982437317643218e-05,
289
+ "loss": 0.4094,
290
+ "step": 39
291
+ },
292
+ {
293
+ "epoch": 0.2363367799113737,
294
+ "grad_norm": 0.4120837450027466,
295
+ "learning_rate": 1.9978319165308373e-05,
296
+ "loss": 0.4411,
297
+ "step": 40
298
+ },
299
+ {
300
+ "epoch": 0.24224519940915806,
301
+ "grad_norm": 0.4064903259277344,
302
+ "learning_rate": 1.997376818152453e-05,
303
+ "loss": 0.3818,
304
+ "step": 41
305
+ },
306
+ {
307
+ "epoch": 0.2481536189069424,
308
+ "grad_norm": 0.3692624270915985,
309
+ "learning_rate": 1.9968784563700586e-05,
310
+ "loss": 0.3874,
311
+ "step": 42
312
+ },
313
+ {
314
+ "epoch": 0.25406203840472674,
315
+ "grad_norm": 0.4399218261241913,
316
+ "learning_rate": 1.9963368528011867e-05,
317
+ "loss": 0.3749,
318
+ "step": 43
319
+ },
320
+ {
321
+ "epoch": 0.25997045790251105,
322
+ "grad_norm": 0.3779003620147705,
323
+ "learning_rate": 1.9957520309390786e-05,
324
+ "loss": 0.3656,
325
+ "step": 44
326
+ },
327
+ {
328
+ "epoch": 0.2658788774002954,
329
+ "grad_norm": 0.3946981132030487,
330
+ "learning_rate": 1.9951240161516643e-05,
331
+ "loss": 0.3612,
332
+ "step": 45
333
+ },
334
+ {
335
+ "epoch": 0.2717872968980798,
336
+ "grad_norm": 0.3969726264476776,
337
+ "learning_rate": 1.99445283568046e-05,
338
+ "loss": 0.3932,
339
+ "step": 46
340
+ },
341
+ {
342
+ "epoch": 0.2776957163958641,
343
+ "grad_norm": 0.4239075183868408,
344
+ "learning_rate": 1.9937385186393888e-05,
345
+ "loss": 0.387,
346
+ "step": 47
347
+ },
348
+ {
349
+ "epoch": 0.28360413589364847,
350
+ "grad_norm": 0.3688453733921051,
351
+ "learning_rate": 1.992981096013517e-05,
352
+ "loss": 0.3524,
353
+ "step": 48
354
+ },
355
+ {
356
+ "epoch": 0.2895125553914328,
357
+ "grad_norm": 0.4294806718826294,
358
+ "learning_rate": 1.9921806006577102e-05,
359
+ "loss": 0.3787,
360
+ "step": 49
361
+ },
362
+ {
363
+ "epoch": 0.29542097488921715,
364
+ "grad_norm": 0.3867166042327881,
365
+ "learning_rate": 1.9913370672952074e-05,
366
+ "loss": 0.3756,
367
+ "step": 50
368
+ },
369
+ {
370
+ "epoch": 0.30132939438700146,
371
+ "grad_norm": 0.43365901708602905,
372
+ "learning_rate": 1.990450532516116e-05,
373
+ "loss": 0.3896,
374
+ "step": 51
375
+ },
376
+ {
377
+ "epoch": 0.3072378138847858,
378
+ "grad_norm": 0.38658151030540466,
379
+ "learning_rate": 1.9895210347758233e-05,
380
+ "loss": 0.3703,
381
+ "step": 52
382
+ },
383
+ {
384
+ "epoch": 0.31314623338257014,
385
+ "grad_norm": 0.37093815207481384,
386
+ "learning_rate": 1.98854861439333e-05,
387
+ "loss": 0.3763,
388
+ "step": 53
389
+ },
390
+ {
391
+ "epoch": 0.3190546528803545,
392
+ "grad_norm": 0.40044137835502625,
393
+ "learning_rate": 1.9875333135495e-05,
394
+ "loss": 0.3752,
395
+ "step": 54
396
+ },
397
+ {
398
+ "epoch": 0.3249630723781389,
399
+ "grad_norm": 0.39133360981941223,
400
+ "learning_rate": 1.986475176285232e-05,
401
+ "loss": 0.3589,
402
+ "step": 55
403
+ },
404
+ {
405
+ "epoch": 0.3308714918759232,
406
+ "grad_norm": 0.38397374749183655,
407
+ "learning_rate": 1.985374248499546e-05,
408
+ "loss": 0.3701,
409
+ "step": 56
410
+ },
411
+ {
412
+ "epoch": 0.33677991137370755,
413
+ "grad_norm": 0.3795414865016937,
414
+ "learning_rate": 1.984230577947597e-05,
415
+ "loss": 0.3584,
416
+ "step": 57
417
+ },
418
+ {
419
+ "epoch": 0.33677991137370755,
420
+ "eval_loss": 0.3953791558742523,
421
+ "eval_runtime": 4.6385,
422
+ "eval_samples_per_second": 11.857,
423
+ "eval_steps_per_second": 1.509,
424
+ "step": 57
425
+ },
426
+ {
427
+ "epoch": 0.34268833087149186,
428
+ "grad_norm": 0.3709493577480316,
429
+ "learning_rate": 1.9830442142386e-05,
430
+ "loss": 0.3647,
431
+ "step": 58
432
+ },
433
+ {
434
+ "epoch": 0.34859675036927623,
435
+ "grad_norm": 0.35005033016204834,
436
+ "learning_rate": 1.9818152088336786e-05,
437
+ "loss": 0.3317,
438
+ "step": 59
439
+ },
440
+ {
441
+ "epoch": 0.35450516986706054,
442
+ "grad_norm": 0.3652004599571228,
443
+ "learning_rate": 1.9805436150436352e-05,
444
+ "loss": 0.3394,
445
+ "step": 60
446
+ },
447
+ {
448
+ "epoch": 0.3604135893648449,
449
+ "grad_norm": 0.3940984904766083,
450
+ "learning_rate": 1.9792294880266346e-05,
451
+ "loss": 0.3711,
452
+ "step": 61
453
+ },
454
+ {
455
+ "epoch": 0.3663220088626292,
456
+ "grad_norm": 0.35634928941726685,
457
+ "learning_rate": 1.977872884785815e-05,
458
+ "loss": 0.3455,
459
+ "step": 62
460
+ },
461
+ {
462
+ "epoch": 0.3722304283604136,
463
+ "grad_norm": 0.3972924053668976,
464
+ "learning_rate": 1.9764738641668137e-05,
465
+ "loss": 0.3652,
466
+ "step": 63
467
+ },
468
+ {
469
+ "epoch": 0.37813884785819796,
470
+ "grad_norm": 0.40372708439826965,
471
+ "learning_rate": 1.9750324868552133e-05,
472
+ "loss": 0.3662,
473
+ "step": 64
474
+ },
475
+ {
476
+ "epoch": 0.38404726735598227,
477
+ "grad_norm": 0.396133691072464,
478
+ "learning_rate": 1.9735488153739128e-05,
479
+ "loss": 0.3726,
480
+ "step": 65
481
+ },
482
+ {
483
+ "epoch": 0.38995568685376664,
484
+ "grad_norm": 0.398989737033844,
485
+ "learning_rate": 1.972022914080411e-05,
486
+ "loss": 0.3595,
487
+ "step": 66
488
+ },
489
+ {
490
+ "epoch": 0.39586410635155095,
491
+ "grad_norm": 0.4102807939052582,
492
+ "learning_rate": 1.9704548491640195e-05,
493
+ "loss": 0.3308,
494
+ "step": 67
495
+ },
496
+ {
497
+ "epoch": 0.4017725258493353,
498
+ "grad_norm": 0.344397634267807,
499
+ "learning_rate": 1.9688446886429885e-05,
500
+ "loss": 0.3653,
501
+ "step": 68
502
+ },
503
+ {
504
+ "epoch": 0.4076809453471196,
505
+ "grad_norm": 0.3550814390182495,
506
+ "learning_rate": 1.9671925023615572e-05,
507
+ "loss": 0.3412,
508
+ "step": 69
509
+ },
510
+ {
511
+ "epoch": 0.413589364844904,
512
+ "grad_norm": 0.4047009348869324,
513
+ "learning_rate": 1.9654983619869242e-05,
514
+ "loss": 0.3578,
515
+ "step": 70
516
+ },
517
+ {
518
+ "epoch": 0.4194977843426883,
519
+ "grad_norm": 0.41112563014030457,
520
+ "learning_rate": 1.9637623410061392e-05,
521
+ "loss": 0.3694,
522
+ "step": 71
523
+ },
524
+ {
525
+ "epoch": 0.4254062038404727,
526
+ "grad_norm": 0.3775319755077362,
527
+ "learning_rate": 1.961984514722914e-05,
528
+ "loss": 0.3571,
529
+ "step": 72
530
+ },
531
+ {
532
+ "epoch": 0.43131462333825704,
533
+ "grad_norm": 0.3610381782054901,
534
+ "learning_rate": 1.960164960254358e-05,
535
+ "loss": 0.3713,
536
+ "step": 73
537
+ },
538
+ {
539
+ "epoch": 0.43722304283604135,
540
+ "grad_norm": 0.38662371039390564,
541
+ "learning_rate": 1.9583037565276314e-05,
542
+ "loss": 0.311,
543
+ "step": 74
544
+ },
545
+ {
546
+ "epoch": 0.4431314623338257,
547
+ "grad_norm": 0.3574771285057068,
548
+ "learning_rate": 1.9564009842765225e-05,
549
+ "loss": 0.3353,
550
+ "step": 75
551
+ },
552
+ {
553
+ "epoch": 0.44903988183161003,
554
+ "grad_norm": 0.3932562470436096,
555
+ "learning_rate": 1.9544567260379455e-05,
556
+ "loss": 0.3536,
557
+ "step": 76
558
+ },
559
+ {
560
+ "epoch": 0.4549483013293944,
561
+ "grad_norm": 0.3974682092666626,
562
+ "learning_rate": 1.9524710661483594e-05,
563
+ "loss": 0.3556,
564
+ "step": 77
565
+ },
566
+ {
567
+ "epoch": 0.4608567208271787,
568
+ "grad_norm": 0.37172290682792664,
569
+ "learning_rate": 1.9504440907401113e-05,
570
+ "loss": 0.3568,
571
+ "step": 78
572
+ },
573
+ {
574
+ "epoch": 0.4667651403249631,
575
+ "grad_norm": 0.37170422077178955,
576
+ "learning_rate": 1.948375887737699e-05,
577
+ "loss": 0.3556,
578
+ "step": 79
579
+ },
580
+ {
581
+ "epoch": 0.4726735598227474,
582
+ "grad_norm": 0.3596966862678528,
583
+ "learning_rate": 1.9462665468539582e-05,
584
+ "loss": 0.332,
585
+ "step": 80
586
+ },
587
+ {
588
+ "epoch": 0.47858197932053176,
589
+ "grad_norm": 0.35934680700302124,
590
+ "learning_rate": 1.944116159586169e-05,
591
+ "loss": 0.3276,
592
+ "step": 81
593
+ },
594
+ {
595
+ "epoch": 0.4844903988183161,
596
+ "grad_norm": 0.40984946489334106,
597
+ "learning_rate": 1.94192481921209e-05,
598
+ "loss": 0.3685,
599
+ "step": 82
600
+ },
601
+ {
602
+ "epoch": 0.49039881831610044,
603
+ "grad_norm": 0.3622114658355713,
604
+ "learning_rate": 1.9396926207859085e-05,
605
+ "loss": 0.3336,
606
+ "step": 83
607
+ },
608
+ {
609
+ "epoch": 0.4963072378138848,
610
+ "grad_norm": 0.34888842701911926,
611
+ "learning_rate": 1.9374196611341212e-05,
612
+ "loss": 0.3625,
613
+ "step": 84
614
+ },
615
+ {
616
+ "epoch": 0.5022156573116692,
617
+ "grad_norm": 0.37125518918037415,
618
+ "learning_rate": 1.9351060388513304e-05,
619
+ "loss": 0.3304,
620
+ "step": 85
621
+ },
622
+ {
623
+ "epoch": 0.5081240768094535,
624
+ "grad_norm": 0.4107120931148529,
625
+ "learning_rate": 1.9327518542959717e-05,
626
+ "loss": 0.3755,
627
+ "step": 86
628
+ },
629
+ {
630
+ "epoch": 0.5140324963072378,
631
+ "grad_norm": 0.3420109748840332,
632
+ "learning_rate": 1.9303572095859545e-05,
633
+ "loss": 0.3457,
634
+ "step": 87
635
+ },
636
+ {
637
+ "epoch": 0.5199409158050221,
638
+ "grad_norm": 0.35079535841941833,
639
+ "learning_rate": 1.9279222085942396e-05,
640
+ "loss": 0.3454,
641
+ "step": 88
642
+ },
643
+ {
644
+ "epoch": 0.5258493353028065,
645
+ "grad_norm": 0.3775666058063507,
646
+ "learning_rate": 1.9254469569443274e-05,
647
+ "loss": 0.3501,
648
+ "step": 89
649
+ },
650
+ {
651
+ "epoch": 0.5317577548005908,
652
+ "grad_norm": 0.3327409625053406,
653
+ "learning_rate": 1.9229315620056805e-05,
654
+ "loss": 0.3507,
655
+ "step": 90
656
+ },
657
+ {
658
+ "epoch": 0.5376661742983752,
659
+ "grad_norm": 0.37142789363861084,
660
+ "learning_rate": 1.9203761328890626e-05,
661
+ "loss": 0.3453,
662
+ "step": 91
663
+ },
664
+ {
665
+ "epoch": 0.5435745937961596,
666
+ "grad_norm": 0.36256077885627747,
667
+ "learning_rate": 1.91778078044181e-05,
668
+ "loss": 0.3588,
669
+ "step": 92
670
+ },
671
+ {
672
+ "epoch": 0.5494830132939439,
673
+ "grad_norm": 0.3861102759838104,
674
+ "learning_rate": 1.9151456172430186e-05,
675
+ "loss": 0.3479,
676
+ "step": 93
677
+ },
678
+ {
679
+ "epoch": 0.5553914327917282,
680
+ "grad_norm": 0.3359353542327881,
681
+ "learning_rate": 1.9124707575986642e-05,
682
+ "loss": 0.318,
683
+ "step": 94
684
+ },
685
+ {
686
+ "epoch": 0.5612998522895125,
687
+ "grad_norm": 0.33662593364715576,
688
+ "learning_rate": 1.909756317536643e-05,
689
+ "loss": 0.3421,
690
+ "step": 95
691
+ },
692
+ {
693
+ "epoch": 0.5672082717872969,
694
+ "grad_norm": 0.35831600427627563,
695
+ "learning_rate": 1.9070024148017375e-05,
696
+ "loss": 0.3409,
697
+ "step": 96
698
+ },
699
+ {
700
+ "epoch": 0.5731166912850812,
701
+ "grad_norm": 0.39858701825141907,
702
+ "learning_rate": 1.9042091688505104e-05,
703
+ "loss": 0.3319,
704
+ "step": 97
705
+ },
706
+ {
707
+ "epoch": 0.5790251107828656,
708
+ "grad_norm": 0.3343643546104431,
709
+ "learning_rate": 1.9013767008461236e-05,
710
+ "loss": 0.3352,
711
+ "step": 98
712
+ },
713
+ {
714
+ "epoch": 0.5849335302806499,
715
+ "grad_norm": 0.3519919216632843,
716
+ "learning_rate": 1.89850513365308e-05,
717
+ "loss": 0.3634,
718
+ "step": 99
719
+ },
720
+ {
721
+ "epoch": 0.5908419497784343,
722
+ "grad_norm": 0.32900717854499817,
723
+ "learning_rate": 1.895594591831896e-05,
724
+ "loss": 0.3415,
725
+ "step": 100
726
+ },
727
+ {
728
+ "epoch": 0.5967503692762186,
729
+ "grad_norm": 0.34432175755500793,
730
+ "learning_rate": 1.8926452016336987e-05,
731
+ "loss": 0.3169,
732
+ "step": 101
733
+ },
734
+ {
735
+ "epoch": 0.6026587887740029,
736
+ "grad_norm": 0.33144107460975647,
737
+ "learning_rate": 1.8896570909947477e-05,
738
+ "loss": 0.3431,
739
+ "step": 102
740
+ },
741
+ {
742
+ "epoch": 0.6085672082717873,
743
+ "grad_norm": 0.3299802839756012,
744
+ "learning_rate": 1.8866303895308856e-05,
745
+ "loss": 0.3411,
746
+ "step": 103
747
+ },
748
+ {
749
+ "epoch": 0.6144756277695717,
750
+ "grad_norm": 0.30740225315093994,
751
+ "learning_rate": 1.883565228531919e-05,
752
+ "loss": 0.3355,
753
+ "step": 104
754
+ },
755
+ {
756
+ "epoch": 0.620384047267356,
757
+ "grad_norm": 0.34325993061065674,
758
+ "learning_rate": 1.88046174095592e-05,
759
+ "loss": 0.3188,
760
+ "step": 105
761
+ },
762
+ {
763
+ "epoch": 0.6262924667651403,
764
+ "grad_norm": 0.3394065797328949,
765
+ "learning_rate": 1.8773200614234587e-05,
766
+ "loss": 0.3153,
767
+ "step": 106
768
+ },
769
+ {
770
+ "epoch": 0.6322008862629247,
771
+ "grad_norm": 0.35468512773513794,
772
+ "learning_rate": 1.874140326211766e-05,
773
+ "loss": 0.3387,
774
+ "step": 107
775
+ },
776
+ {
777
+ "epoch": 0.638109305760709,
778
+ "grad_norm": 0.36726799607276917,
779
+ "learning_rate": 1.8709226732488216e-05,
780
+ "loss": 0.3457,
781
+ "step": 108
782
+ },
783
+ {
784
+ "epoch": 0.6440177252584933,
785
+ "grad_norm": 0.3223711848258972,
786
+ "learning_rate": 1.86766724210737e-05,
787
+ "loss": 0.3588,
788
+ "step": 109
789
+ },
790
+ {
791
+ "epoch": 0.6499261447562777,
792
+ "grad_norm": 0.3537541925907135,
793
+ "learning_rate": 1.8643741739988672e-05,
794
+ "loss": 0.3506,
795
+ "step": 110
796
+ },
797
+ {
798
+ "epoch": 0.6558345642540621,
799
+ "grad_norm": 0.3755073845386505,
800
+ "learning_rate": 1.8610436117673557e-05,
801
+ "loss": 0.3221,
802
+ "step": 111
803
+ },
804
+ {
805
+ "epoch": 0.6617429837518464,
806
+ "grad_norm": 0.31778833270072937,
807
+ "learning_rate": 1.8576756998832667e-05,
808
+ "loss": 0.3161,
809
+ "step": 112
810
+ },
811
+ {
812
+ "epoch": 0.6676514032496307,
813
+ "grad_norm": 0.3517738878726959,
814
+ "learning_rate": 1.8542705844371544e-05,
815
+ "loss": 0.3442,
816
+ "step": 113
817
+ },
818
+ {
819
+ "epoch": 0.6735598227474151,
820
+ "grad_norm": 0.3254755139350891,
821
+ "learning_rate": 1.8508284131333604e-05,
822
+ "loss": 0.3372,
823
+ "step": 114
824
+ },
825
+ {
826
+ "epoch": 0.6735598227474151,
827
+ "eval_loss": 0.363791823387146,
828
+ "eval_runtime": 4.0908,
829
+ "eval_samples_per_second": 13.445,
830
+ "eval_steps_per_second": 1.711,
831
+ "step": 114
832
+ },
833
+ {
834
+ "epoch": 0.6794682422451994,
835
+ "grad_norm": 0.3458060622215271,
836
+ "learning_rate": 1.8473493352836032e-05,
837
+ "loss": 0.3329,
838
+ "step": 115
839
+ },
840
+ {
841
+ "epoch": 0.6853766617429837,
842
+ "grad_norm": 0.33962881565093994,
843
+ "learning_rate": 1.8438335018005052e-05,
844
+ "loss": 0.3478,
845
+ "step": 116
846
+ },
847
+ {
848
+ "epoch": 0.691285081240768,
849
+ "grad_norm": 0.33980926871299744,
850
+ "learning_rate": 1.8402810651910444e-05,
851
+ "loss": 0.3484,
852
+ "step": 117
853
+ },
854
+ {
855
+ "epoch": 0.6971935007385525,
856
+ "grad_norm": 0.355694979429245,
857
+ "learning_rate": 1.8366921795499394e-05,
858
+ "loss": 0.3686,
859
+ "step": 118
860
+ },
861
+ {
862
+ "epoch": 0.7031019202363368,
863
+ "grad_norm": 0.3415476083755493,
864
+ "learning_rate": 1.8330670005529657e-05,
865
+ "loss": 0.3204,
866
+ "step": 119
867
+ },
868
+ {
869
+ "epoch": 0.7090103397341211,
870
+ "grad_norm": 0.3336890935897827,
871
+ "learning_rate": 1.829405685450202e-05,
872
+ "loss": 0.3323,
873
+ "step": 120
874
+ },
875
+ {
876
+ "epoch": 0.7149187592319055,
877
+ "grad_norm": 0.34337785840034485,
878
+ "learning_rate": 1.8257083930592102e-05,
879
+ "loss": 0.3283,
880
+ "step": 121
881
+ },
882
+ {
883
+ "epoch": 0.7208271787296898,
884
+ "grad_norm": 0.3578524887561798,
885
+ "learning_rate": 1.8219752837581466e-05,
886
+ "loss": 0.3326,
887
+ "step": 122
888
+ },
889
+ {
890
+ "epoch": 0.7267355982274741,
891
+ "grad_norm": 0.32392922043800354,
892
+ "learning_rate": 1.8182065194788024e-05,
893
+ "loss": 0.3141,
894
+ "step": 123
895
+ },
896
+ {
897
+ "epoch": 0.7326440177252584,
898
+ "grad_norm": 0.36127492785453796,
899
+ "learning_rate": 1.814402263699584e-05,
900
+ "loss": 0.3461,
901
+ "step": 124
902
+ },
903
+ {
904
+ "epoch": 0.7385524372230429,
905
+ "grad_norm": 0.33812931180000305,
906
+ "learning_rate": 1.8105626814384173e-05,
907
+ "loss": 0.3404,
908
+ "step": 125
909
+ },
910
+ {
911
+ "epoch": 0.7444608567208272,
912
+ "grad_norm": 0.3138431906700134,
913
+ "learning_rate": 1.8066879392455932e-05,
914
+ "loss": 0.3237,
915
+ "step": 126
916
+ },
917
+ {
918
+ "epoch": 0.7503692762186115,
919
+ "grad_norm": 0.33033978939056396,
920
+ "learning_rate": 1.8027782051965408e-05,
921
+ "loss": 0.3416,
922
+ "step": 127
923
+ },
924
+ {
925
+ "epoch": 0.7562776957163959,
926
+ "grad_norm": 0.3907163143157959,
927
+ "learning_rate": 1.7988336488845374e-05,
928
+ "loss": 0.3352,
929
+ "step": 128
930
+ },
931
+ {
932
+ "epoch": 0.7621861152141802,
933
+ "grad_norm": 0.315248042345047,
934
+ "learning_rate": 1.7948544414133534e-05,
935
+ "loss": 0.3225,
936
+ "step": 129
937
+ },
938
+ {
939
+ "epoch": 0.7680945347119645,
940
+ "grad_norm": 0.3284492790699005,
941
+ "learning_rate": 1.7908407553898282e-05,
942
+ "loss": 0.3217,
943
+ "step": 130
944
+ },
945
+ {
946
+ "epoch": 0.7740029542097489,
947
+ "grad_norm": 0.3439176082611084,
948
+ "learning_rate": 1.7867927649163838e-05,
949
+ "loss": 0.3367,
950
+ "step": 131
951
+ },
952
+ {
953
+ "epoch": 0.7799113737075333,
954
+ "grad_norm": 0.31954073905944824,
955
+ "learning_rate": 1.782710645583473e-05,
956
+ "loss": 0.3133,
957
+ "step": 132
958
+ },
959
+ {
960
+ "epoch": 0.7858197932053176,
961
+ "grad_norm": 0.38416293263435364,
962
+ "learning_rate": 1.7785945744619642e-05,
963
+ "loss": 0.3484,
964
+ "step": 133
965
+ },
966
+ {
967
+ "epoch": 0.7917282127031019,
968
+ "grad_norm": 0.34139737486839294,
969
+ "learning_rate": 1.774444730095456e-05,
970
+ "loss": 0.3042,
971
+ "step": 134
972
+ },
973
+ {
974
+ "epoch": 0.7976366322008862,
975
+ "grad_norm": 0.3623535931110382,
976
+ "learning_rate": 1.7702612924925377e-05,
977
+ "loss": 0.3318,
978
+ "step": 135
979
+ },
980
+ {
981
+ "epoch": 0.8035450516986706,
982
+ "grad_norm": 0.32973209023475647,
983
+ "learning_rate": 1.766044443118978e-05,
984
+ "loss": 0.3092,
985
+ "step": 136
986
+ },
987
+ {
988
+ "epoch": 0.8094534711964549,
989
+ "grad_norm": 0.30704402923583984,
990
+ "learning_rate": 1.761794364889855e-05,
991
+ "loss": 0.321,
992
+ "step": 137
993
+ },
994
+ {
995
+ "epoch": 0.8153618906942393,
996
+ "grad_norm": 0.34877485036849976,
997
+ "learning_rate": 1.7575112421616203e-05,
998
+ "loss": 0.3266,
999
+ "step": 138
1000
+ },
1001
+ {
1002
+ "epoch": 0.8212703101920237,
1003
+ "grad_norm": 0.3538282811641693,
1004
+ "learning_rate": 1.7531952607241033e-05,
1005
+ "loss": 0.3703,
1006
+ "step": 139
1007
+ },
1008
+ {
1009
+ "epoch": 0.827178729689808,
1010
+ "grad_norm": 0.35590365529060364,
1011
+ "learning_rate": 1.7488466077924525e-05,
1012
+ "loss": 0.3506,
1013
+ "step": 140
1014
+ },
1015
+ {
1016
+ "epoch": 0.8330871491875923,
1017
+ "grad_norm": 0.33215418457984924,
1018
+ "learning_rate": 1.7444654719990128e-05,
1019
+ "loss": 0.3207,
1020
+ "step": 141
1021
+ },
1022
+ {
1023
+ "epoch": 0.8389955686853766,
1024
+ "grad_norm": 0.3381923735141754,
1025
+ "learning_rate": 1.7400520433851457e-05,
1026
+ "loss": 0.3237,
1027
+ "step": 142
1028
+ },
1029
+ {
1030
+ "epoch": 0.844903988183161,
1031
+ "grad_norm": 0.3371356129646301,
1032
+ "learning_rate": 1.735606513392984e-05,
1033
+ "loss": 0.3394,
1034
+ "step": 143
1035
+ },
1036
+ {
1037
+ "epoch": 0.8508124076809453,
1038
+ "grad_norm": 0.344291627407074,
1039
+ "learning_rate": 1.7311290748571273e-05,
1040
+ "loss": 0.3604,
1041
+ "step": 144
1042
+ },
1043
+ {
1044
+ "epoch": 0.8567208271787297,
1045
+ "grad_norm": 0.3567575216293335,
1046
+ "learning_rate": 1.72661992199628e-05,
1047
+ "loss": 0.3518,
1048
+ "step": 145
1049
+ },
1050
+ {
1051
+ "epoch": 0.8626292466765141,
1052
+ "grad_norm": 0.33762165904045105,
1053
+ "learning_rate": 1.7220792504048227e-05,
1054
+ "loss": 0.3146,
1055
+ "step": 146
1056
+ },
1057
+ {
1058
+ "epoch": 0.8685376661742984,
1059
+ "grad_norm": 0.3404117822647095,
1060
+ "learning_rate": 1.717507257044331e-05,
1061
+ "loss": 0.3192,
1062
+ "step": 147
1063
+ },
1064
+ {
1065
+ "epoch": 0.8744460856720827,
1066
+ "grad_norm": 0.3535095751285553,
1067
+ "learning_rate": 1.7129041402350317e-05,
1068
+ "loss": 0.3364,
1069
+ "step": 148
1070
+ },
1071
+ {
1072
+ "epoch": 0.880354505169867,
1073
+ "grad_norm": 0.3418992757797241,
1074
+ "learning_rate": 1.708270099647198e-05,
1075
+ "loss": 0.3327,
1076
+ "step": 149
1077
+ },
1078
+ {
1079
+ "epoch": 0.8862629246676514,
1080
+ "grad_norm": 0.3172495663166046,
1081
+ "learning_rate": 1.7036053362924896e-05,
1082
+ "loss": 0.3404,
1083
+ "step": 150
1084
+ },
1085
+ {
1086
+ "epoch": 0.8921713441654358,
1087
+ "grad_norm": 0.3307952284812927,
1088
+ "learning_rate": 1.6989100525152346e-05,
1089
+ "loss": 0.3279,
1090
+ "step": 151
1091
+ },
1092
+ {
1093
+ "epoch": 0.8980797636632201,
1094
+ "grad_norm": 0.29014381766319275,
1095
+ "learning_rate": 1.694184451983651e-05,
1096
+ "loss": 0.3027,
1097
+ "step": 152
1098
+ },
1099
+ {
1100
+ "epoch": 0.9039881831610044,
1101
+ "grad_norm": 0.3290538191795349,
1102
+ "learning_rate": 1.689428739681012e-05,
1103
+ "loss": 0.3297,
1104
+ "step": 153
1105
+ },
1106
+ {
1107
+ "epoch": 0.9098966026587888,
1108
+ "grad_norm": 0.3165034353733063,
1109
+ "learning_rate": 1.684643121896755e-05,
1110
+ "loss": 0.3225,
1111
+ "step": 154
1112
+ },
1113
+ {
1114
+ "epoch": 0.9158050221565731,
1115
+ "grad_norm": 0.3677435517311096,
1116
+ "learning_rate": 1.679827806217533e-05,
1117
+ "loss": 0.328,
1118
+ "step": 155
1119
+ },
1120
+ {
1121
+ "epoch": 0.9217134416543574,
1122
+ "grad_norm": 0.3617594242095947,
1123
+ "learning_rate": 1.6749830015182106e-05,
1124
+ "loss": 0.3299,
1125
+ "step": 156
1126
+ },
1127
+ {
1128
+ "epoch": 0.9276218611521418,
1129
+ "grad_norm": 0.31069889664649963,
1130
+ "learning_rate": 1.6701089179528032e-05,
1131
+ "loss": 0.3146,
1132
+ "step": 157
1133
+ },
1134
+ {
1135
+ "epoch": 0.9335302806499262,
1136
+ "grad_norm": 0.3610530197620392,
1137
+ "learning_rate": 1.6652057669453606e-05,
1138
+ "loss": 0.3223,
1139
+ "step": 158
1140
+ },
1141
+ {
1142
+ "epoch": 0.9394387001477105,
1143
+ "grad_norm": 0.3169001638889313,
1144
+ "learning_rate": 1.6602737611807975e-05,
1145
+ "loss": 0.3194,
1146
+ "step": 159
1147
+ },
1148
+ {
1149
+ "epoch": 0.9453471196454948,
1150
+ "grad_norm": 0.33033737540245056,
1151
+ "learning_rate": 1.655313114595666e-05,
1152
+ "loss": 0.3317,
1153
+ "step": 160
1154
+ },
1155
+ {
1156
+ "epoch": 0.9512555391432792,
1157
+ "grad_norm": 0.35510334372520447,
1158
+ "learning_rate": 1.6503240423688768e-05,
1159
+ "loss": 0.3249,
1160
+ "step": 161
1161
+ },
1162
+ {
1163
+ "epoch": 0.9571639586410635,
1164
+ "grad_norm": 0.356079638004303,
1165
+ "learning_rate": 1.6453067609123656e-05,
1166
+ "loss": 0.3274,
1167
+ "step": 162
1168
+ },
1169
+ {
1170
+ "epoch": 0.9630723781388478,
1171
+ "grad_norm": 0.36350899934768677,
1172
+ "learning_rate": 1.6402614878617037e-05,
1173
+ "loss": 0.3553,
1174
+ "step": 163
1175
+ },
1176
+ {
1177
+ "epoch": 0.9689807976366323,
1178
+ "grad_norm": 0.3371831476688385,
1179
+ "learning_rate": 1.6351884420666616e-05,
1180
+ "loss": 0.3245,
1181
+ "step": 164
1182
+ },
1183
+ {
1184
+ "epoch": 0.9748892171344166,
1185
+ "grad_norm": 0.3398657739162445,
1186
+ "learning_rate": 1.6300878435817115e-05,
1187
+ "loss": 0.3043,
1188
+ "step": 165
1189
+ },
1190
+ {
1191
+ "epoch": 0.9807976366322009,
1192
+ "grad_norm": 0.34537115693092346,
1193
+ "learning_rate": 1.6249599136564837e-05,
1194
+ "loss": 0.349,
1195
+ "step": 166
1196
+ },
1197
+ {
1198
+ "epoch": 0.9867060561299852,
1199
+ "grad_norm": 0.31506776809692383,
1200
+ "learning_rate": 1.619804874726171e-05,
1201
+ "loss": 0.315,
1202
+ "step": 167
1203
+ },
1204
+ {
1205
+ "epoch": 0.9926144756277696,
1206
+ "grad_norm": 0.32844215631484985,
1207
+ "learning_rate": 1.6146229504018777e-05,
1208
+ "loss": 0.3247,
1209
+ "step": 168
1210
+ },
1211
+ {
1212
+ "epoch": 0.9985228951255539,
1213
+ "grad_norm": 0.3447742760181427,
1214
+ "learning_rate": 1.609414365460921e-05,
1215
+ "loss": 0.3193,
1216
+ "step": 169
1217
+ },
1218
+ {
1219
+ "epoch": 1.0,
1220
+ "grad_norm": 0.3447742760181427,
1221
+ "learning_rate": 1.6041793458370812e-05,
1222
+ "loss": 0.3359,
1223
+ "step": 170
1224
+ },
1225
+ {
1226
+ "epoch": 1.0059084194977843,
1227
+ "grad_norm": 0.27635836601257324,
1228
+ "learning_rate": 1.5989181186108003e-05,
1229
+ "loss": 0.2579,
1230
+ "step": 171
1231
+ },
1232
+ {
1233
+ "epoch": 1.0059084194977843,
1234
+ "eval_loss": 0.3496532440185547,
1235
+ "eval_runtime": 4.0258,
1236
+ "eval_samples_per_second": 13.662,
1237
+ "eval_steps_per_second": 1.739,
1238
+ "step": 171
1239
+ },
1240
+ {
1241
+ "epoch": 1.0118168389955686,
1242
+ "grad_norm": 0.27547529339790344,
1243
+ "learning_rate": 1.5936309119993333e-05,
1244
+ "loss": 0.2532,
1245
+ "step": 172
1246
+ },
1247
+ {
1248
+ "epoch": 1.017725258493353,
1249
+ "grad_norm": 0.2674752473831177,
1250
+ "learning_rate": 1.5883179553468465e-05,
1251
+ "loss": 0.2413,
1252
+ "step": 173
1253
+ },
1254
+ {
1255
+ "epoch": 1.0236336779911375,
1256
+ "grad_norm": 0.3056715428829193,
1257
+ "learning_rate": 1.5829794791144723e-05,
1258
+ "loss": 0.2418,
1259
+ "step": 174
1260
+ },
1261
+ {
1262
+ "epoch": 1.0295420974889218,
1263
+ "grad_norm": 0.27895164489746094,
1264
+ "learning_rate": 1.5776157148703094e-05,
1265
+ "loss": 0.2516,
1266
+ "step": 175
1267
+ },
1268
+ {
1269
+ "epoch": 1.035450516986706,
1270
+ "grad_norm": 0.2935872972011566,
1271
+ "learning_rate": 1.5722268952793806e-05,
1272
+ "loss": 0.254,
1273
+ "step": 176
1274
+ },
1275
+ {
1276
+ "epoch": 1.0413589364844904,
1277
+ "grad_norm": 0.28329288959503174,
1278
+ "learning_rate": 1.566813254093538e-05,
1279
+ "loss": 0.2356,
1280
+ "step": 177
1281
+ },
1282
+ {
1283
+ "epoch": 1.0472673559822747,
1284
+ "grad_norm": 0.29026728868484497,
1285
+ "learning_rate": 1.5613750261413256e-05,
1286
+ "loss": 0.2404,
1287
+ "step": 178
1288
+ },
1289
+ {
1290
+ "epoch": 1.053175775480059,
1291
+ "grad_norm": 0.3126751780509949,
1292
+ "learning_rate": 1.555912447317792e-05,
1293
+ "loss": 0.2303,
1294
+ "step": 179
1295
+ },
1296
+ {
1297
+ "epoch": 1.0590841949778433,
1298
+ "grad_norm": 0.26517724990844727,
1299
+ "learning_rate": 1.5504257545742585e-05,
1300
+ "loss": 0.2175,
1301
+ "step": 180
1302
+ },
1303
+ {
1304
+ "epoch": 1.0649926144756279,
1305
+ "grad_norm": 0.26433265209198,
1306
+ "learning_rate": 1.5449151859080395e-05,
1307
+ "loss": 0.2169,
1308
+ "step": 181
1309
+ },
1310
+ {
1311
+ "epoch": 1.0709010339734122,
1312
+ "grad_norm": 0.2908313274383545,
1313
+ "learning_rate": 1.5393809803521213e-05,
1314
+ "loss": 0.2236,
1315
+ "step": 182
1316
+ },
1317
+ {
1318
+ "epoch": 1.0768094534711965,
1319
+ "grad_norm": 0.2951337397098541,
1320
+ "learning_rate": 1.533823377964791e-05,
1321
+ "loss": 0.2305,
1322
+ "step": 183
1323
+ },
1324
+ {
1325
+ "epoch": 1.0827178729689808,
1326
+ "grad_norm": 0.29755067825317383,
1327
+ "learning_rate": 1.528242619819224e-05,
1328
+ "loss": 0.2385,
1329
+ "step": 184
1330
+ },
1331
+ {
1332
+ "epoch": 1.0886262924667651,
1333
+ "grad_norm": 0.2879098355770111,
1334
+ "learning_rate": 1.5226389479930296e-05,
1335
+ "loss": 0.2377,
1336
+ "step": 185
1337
+ },
1338
+ {
1339
+ "epoch": 1.0945347119645494,
1340
+ "grad_norm": 0.2590835392475128,
1341
+ "learning_rate": 1.517012605557746e-05,
1342
+ "loss": 0.2312,
1343
+ "step": 186
1344
+ },
1345
+ {
1346
+ "epoch": 1.1004431314623337,
1347
+ "grad_norm": 0.2694130837917328,
1348
+ "learning_rate": 1.5113638365682996e-05,
1349
+ "loss": 0.2347,
1350
+ "step": 187
1351
+ },
1352
+ {
1353
+ "epoch": 1.106351550960118,
1354
+ "grad_norm": 0.29442402720451355,
1355
+ "learning_rate": 1.5056928860524181e-05,
1356
+ "loss": 0.2428,
1357
+ "step": 188
1358
+ },
1359
+ {
1360
+ "epoch": 1.1122599704579026,
1361
+ "grad_norm": 0.29042768478393555,
1362
+ "learning_rate": 1.5000000000000002e-05,
1363
+ "loss": 0.2501,
1364
+ "step": 189
1365
+ },
1366
+ {
1367
+ "epoch": 1.118168389955687,
1368
+ "grad_norm": 0.2620311975479126,
1369
+ "learning_rate": 1.4942854253524479e-05,
1370
+ "loss": 0.2395,
1371
+ "step": 190
1372
+ },
1373
+ {
1374
+ "epoch": 1.1240768094534712,
1375
+ "grad_norm": 0.26113441586494446,
1376
+ "learning_rate": 1.488549409991953e-05,
1377
+ "loss": 0.2532,
1378
+ "step": 191
1379
+ },
1380
+ {
1381
+ "epoch": 1.1299852289512555,
1382
+ "grad_norm": 0.2995262145996094,
1383
+ "learning_rate": 1.482792202730745e-05,
1384
+ "loss": 0.2319,
1385
+ "step": 192
1386
+ },
1387
+ {
1388
+ "epoch": 1.1358936484490398,
1389
+ "grad_norm": 0.27327674627304077,
1390
+ "learning_rate": 1.477014053300299e-05,
1391
+ "loss": 0.2348,
1392
+ "step": 193
1393
+ },
1394
+ {
1395
+ "epoch": 1.1418020679468242,
1396
+ "grad_norm": 0.26245003938674927,
1397
+ "learning_rate": 1.4712152123405018e-05,
1398
+ "loss": 0.228,
1399
+ "step": 194
1400
+ },
1401
+ {
1402
+ "epoch": 1.1477104874446087,
1403
+ "grad_norm": 0.28888335824012756,
1404
+ "learning_rate": 1.4653959313887813e-05,
1405
+ "loss": 0.2436,
1406
+ "step": 195
1407
+ },
1408
+ {
1409
+ "epoch": 1.153618906942393,
1410
+ "grad_norm": 0.2724781632423401,
1411
+ "learning_rate": 1.4595564628691944e-05,
1412
+ "loss": 0.2442,
1413
+ "step": 196
1414
+ },
1415
+ {
1416
+ "epoch": 1.1595273264401773,
1417
+ "grad_norm": 0.2921780049800873,
1418
+ "learning_rate": 1.4536970600814789e-05,
1419
+ "loss": 0.2412,
1420
+ "step": 197
1421
+ },
1422
+ {
1423
+ "epoch": 1.1654357459379616,
1424
+ "grad_norm": 0.27938568592071533,
1425
+ "learning_rate": 1.4478179771900634e-05,
1426
+ "loss": 0.2465,
1427
+ "step": 198
1428
+ },
1429
+ {
1430
+ "epoch": 1.171344165435746,
1431
+ "grad_norm": 0.29516273736953735,
1432
+ "learning_rate": 1.4419194692130453e-05,
1433
+ "loss": 0.2415,
1434
+ "step": 199
1435
+ },
1436
+ {
1437
+ "epoch": 1.1772525849335302,
1438
+ "grad_norm": 0.27947136759757996,
1439
+ "learning_rate": 1.436001792011128e-05,
1440
+ "loss": 0.2295,
1441
+ "step": 200
1442
+ },
1443
+ {
1444
+ "epoch": 1.1831610044313146,
1445
+ "grad_norm": 0.26482367515563965,
1446
+ "learning_rate": 1.4300652022765207e-05,
1447
+ "loss": 0.2273,
1448
+ "step": 201
1449
+ },
1450
+ {
1451
+ "epoch": 1.1890694239290989,
1452
+ "grad_norm": 0.2728091776371002,
1453
+ "learning_rate": 1.424109957521806e-05,
1454
+ "loss": 0.2227,
1455
+ "step": 202
1456
+ },
1457
+ {
1458
+ "epoch": 1.1949778434268834,
1459
+ "grad_norm": 0.28748828172683716,
1460
+ "learning_rate": 1.4181363160687693e-05,
1461
+ "loss": 0.2402,
1462
+ "step": 203
1463
+ },
1464
+ {
1465
+ "epoch": 1.2008862629246677,
1466
+ "grad_norm": 0.2891993820667267,
1467
+ "learning_rate": 1.4121445370371922e-05,
1468
+ "loss": 0.224,
1469
+ "step": 204
1470
+ },
1471
+ {
1472
+ "epoch": 1.206794682422452,
1473
+ "grad_norm": 0.24767152965068817,
1474
+ "learning_rate": 1.4061348803336135e-05,
1475
+ "loss": 0.221,
1476
+ "step": 205
1477
+ },
1478
+ {
1479
+ "epoch": 1.2127031019202363,
1480
+ "grad_norm": 0.2819165885448456,
1481
+ "learning_rate": 1.400107606640056e-05,
1482
+ "loss": 0.2231,
1483
+ "step": 206
1484
+ },
1485
+ {
1486
+ "epoch": 1.2186115214180206,
1487
+ "grad_norm": 0.27328819036483765,
1488
+ "learning_rate": 1.394062977402717e-05,
1489
+ "loss": 0.229,
1490
+ "step": 207
1491
+ },
1492
+ {
1493
+ "epoch": 1.224519940915805,
1494
+ "grad_norm": 0.2674582302570343,
1495
+ "learning_rate": 1.3880012548206292e-05,
1496
+ "loss": 0.2155,
1497
+ "step": 208
1498
+ },
1499
+ {
1500
+ "epoch": 1.2304283604135893,
1501
+ "grad_norm": 0.2989075481891632,
1502
+ "learning_rate": 1.3819227018342865e-05,
1503
+ "loss": 0.2184,
1504
+ "step": 209
1505
+ },
1506
+ {
1507
+ "epoch": 1.2363367799113738,
1508
+ "grad_norm": 0.30796098709106445,
1509
+ "learning_rate": 1.3758275821142382e-05,
1510
+ "loss": 0.2288,
1511
+ "step": 210
1512
+ },
1513
+ {
1514
+ "epoch": 1.2422451994091581,
1515
+ "grad_norm": 0.29833805561065674,
1516
+ "learning_rate": 1.3697161600496525e-05,
1517
+ "loss": 0.2368,
1518
+ "step": 211
1519
+ },
1520
+ {
1521
+ "epoch": 1.2481536189069424,
1522
+ "grad_norm": 0.26458829641342163,
1523
+ "learning_rate": 1.3635887007368467e-05,
1524
+ "loss": 0.2376,
1525
+ "step": 212
1526
+ },
1527
+ {
1528
+ "epoch": 1.2540620384047267,
1529
+ "grad_norm": 0.2781698703765869,
1530
+ "learning_rate": 1.3574454699677893e-05,
1531
+ "loss": 0.2167,
1532
+ "step": 213
1533
+ },
1534
+ {
1535
+ "epoch": 1.259970457902511,
1536
+ "grad_norm": 0.268433153629303,
1537
+ "learning_rate": 1.3512867342185705e-05,
1538
+ "loss": 0.2229,
1539
+ "step": 214
1540
+ },
1541
+ {
1542
+ "epoch": 1.2658788774002954,
1543
+ "grad_norm": 0.2726047933101654,
1544
+ "learning_rate": 1.3451127606378425e-05,
1545
+ "loss": 0.223,
1546
+ "step": 215
1547
+ },
1548
+ {
1549
+ "epoch": 1.2717872968980797,
1550
+ "grad_norm": 0.29567429423332214,
1551
+ "learning_rate": 1.3389238170352318e-05,
1552
+ "loss": 0.2105,
1553
+ "step": 216
1554
+ },
1555
+ {
1556
+ "epoch": 1.277695716395864,
1557
+ "grad_norm": 0.30303359031677246,
1558
+ "learning_rate": 1.3327201718697232e-05,
1559
+ "loss": 0.2602,
1560
+ "step": 217
1561
+ },
1562
+ {
1563
+ "epoch": 1.2836041358936485,
1564
+ "grad_norm": 0.27332380414009094,
1565
+ "learning_rate": 1.326502094238013e-05,
1566
+ "loss": 0.2288,
1567
+ "step": 218
1568
+ },
1569
+ {
1570
+ "epoch": 1.2895125553914328,
1571
+ "grad_norm": 0.2703614830970764,
1572
+ "learning_rate": 1.3202698538628376e-05,
1573
+ "loss": 0.2308,
1574
+ "step": 219
1575
+ },
1576
+ {
1577
+ "epoch": 1.2954209748892171,
1578
+ "grad_norm": 0.2788908779621124,
1579
+ "learning_rate": 1.3140237210812741e-05,
1580
+ "loss": 0.2254,
1581
+ "step": 220
1582
+ },
1583
+ {
1584
+ "epoch": 1.3013293943870015,
1585
+ "grad_norm": 0.27442580461502075,
1586
+ "learning_rate": 1.3077639668330124e-05,
1587
+ "loss": 0.2158,
1588
+ "step": 221
1589
+ },
1590
+ {
1591
+ "epoch": 1.3072378138847858,
1592
+ "grad_norm": 0.28895896673202515,
1593
+ "learning_rate": 1.3014908626486032e-05,
1594
+ "loss": 0.2404,
1595
+ "step": 222
1596
+ },
1597
+ {
1598
+ "epoch": 1.31314623338257,
1599
+ "grad_norm": 0.24982582032680511,
1600
+ "learning_rate": 1.2952046806376806e-05,
1601
+ "loss": 0.2201,
1602
+ "step": 223
1603
+ },
1604
+ {
1605
+ "epoch": 1.3190546528803546,
1606
+ "grad_norm": 0.28909650444984436,
1607
+ "learning_rate": 1.2889056934771577e-05,
1608
+ "loss": 0.2384,
1609
+ "step": 224
1610
+ },
1611
+ {
1612
+ "epoch": 1.324963072378139,
1613
+ "grad_norm": 0.28018954396247864,
1614
+ "learning_rate": 1.282594174399399e-05,
1615
+ "loss": 0.2324,
1616
+ "step": 225
1617
+ },
1618
+ {
1619
+ "epoch": 1.3308714918759232,
1620
+ "grad_norm": 0.29922735691070557,
1621
+ "learning_rate": 1.2762703971803684e-05,
1622
+ "loss": 0.2457,
1623
+ "step": 226
1624
+ },
1625
+ {
1626
+ "epoch": 1.3367799113737076,
1627
+ "grad_norm": 0.289288729429245,
1628
+ "learning_rate": 1.2699346361277538e-05,
1629
+ "loss": 0.2366,
1630
+ "step": 227
1631
+ },
1632
+ {
1633
+ "epoch": 1.3426883308714919,
1634
+ "grad_norm": 0.2790012061595917,
1635
+ "learning_rate": 1.2635871660690677e-05,
1636
+ "loss": 0.2359,
1637
+ "step": 228
1638
+ },
1639
+ {
1640
+ "epoch": 1.3426883308714919,
1641
+ "eval_loss": 0.35204342007637024,
1642
+ "eval_runtime": 4.4578,
1643
+ "eval_samples_per_second": 12.338,
1644
+ "eval_steps_per_second": 1.57,
1645
+ "step": 228
1646
+ },
1647
+ {
1648
+ "epoch": 1.3485967503692762,
1649
+ "grad_norm": 0.36030444502830505,
1650
+ "learning_rate": 1.2572282623397268e-05,
1651
+ "loss": 0.2405,
1652
+ "step": 229
1653
+ },
1654
+ {
1655
+ "epoch": 1.3545051698670605,
1656
+ "grad_norm": 0.24079382419586182,
1657
+ "learning_rate": 1.2508582007711074e-05,
1658
+ "loss": 0.2148,
1659
+ "step": 230
1660
+ },
1661
+ {
1662
+ "epoch": 1.3604135893648448,
1663
+ "grad_norm": 0.26674559712409973,
1664
+ "learning_rate": 1.2444772576785828e-05,
1665
+ "loss": 0.2457,
1666
+ "step": 231
1667
+ },
1668
+ {
1669
+ "epoch": 1.3663220088626291,
1670
+ "grad_norm": 0.25345727801322937,
1671
+ "learning_rate": 1.2380857098495355e-05,
1672
+ "loss": 0.2229,
1673
+ "step": 232
1674
+ },
1675
+ {
1676
+ "epoch": 1.3722304283604136,
1677
+ "grad_norm": 0.2623337507247925,
1678
+ "learning_rate": 1.2316838345313517e-05,
1679
+ "loss": 0.231,
1680
+ "step": 233
1681
+ },
1682
+ {
1683
+ "epoch": 1.378138847858198,
1684
+ "grad_norm": 0.27783095836639404,
1685
+ "learning_rate": 1.225271909419395e-05,
1686
+ "loss": 0.2251,
1687
+ "step": 234
1688
+ },
1689
+ {
1690
+ "epoch": 1.3840472673559823,
1691
+ "grad_norm": 0.25021976232528687,
1692
+ "learning_rate": 1.2188502126449616e-05,
1693
+ "loss": 0.226,
1694
+ "step": 235
1695
+ },
1696
+ {
1697
+ "epoch": 1.3899556868537666,
1698
+ "grad_norm": 0.2695038318634033,
1699
+ "learning_rate": 1.2124190227632138e-05,
1700
+ "loss": 0.2438,
1701
+ "step": 236
1702
+ },
1703
+ {
1704
+ "epoch": 1.395864106351551,
1705
+ "grad_norm": 0.24312005937099457,
1706
+ "learning_rate": 1.2059786187410984e-05,
1707
+ "loss": 0.2138,
1708
+ "step": 237
1709
+ },
1710
+ {
1711
+ "epoch": 1.4017725258493354,
1712
+ "grad_norm": 0.2761548161506653,
1713
+ "learning_rate": 1.1995292799452472e-05,
1714
+ "loss": 0.244,
1715
+ "step": 238
1716
+ },
1717
+ {
1718
+ "epoch": 1.4076809453471197,
1719
+ "grad_norm": 0.2740529477596283,
1720
+ "learning_rate": 1.1930712861298553e-05,
1721
+ "loss": 0.2416,
1722
+ "step": 239
1723
+ },
1724
+ {
1725
+ "epoch": 1.413589364844904,
1726
+ "grad_norm": 0.2605426013469696,
1727
+ "learning_rate": 1.186604917424549e-05,
1728
+ "loss": 0.2515,
1729
+ "step": 240
1730
+ },
1731
+ {
1732
+ "epoch": 1.4194977843426884,
1733
+ "grad_norm": 0.27557292580604553,
1734
+ "learning_rate": 1.1801304543222349e-05,
1735
+ "loss": 0.232,
1736
+ "step": 241
1737
+ },
1738
+ {
1739
+ "epoch": 1.4254062038404727,
1740
+ "grad_norm": 0.2512328624725342,
1741
+ "learning_rate": 1.1736481776669307e-05,
1742
+ "loss": 0.2311,
1743
+ "step": 242
1744
+ },
1745
+ {
1746
+ "epoch": 1.431314623338257,
1747
+ "grad_norm": 0.2634104788303375,
1748
+ "learning_rate": 1.1671583686415833e-05,
1749
+ "loss": 0.2207,
1750
+ "step": 243
1751
+ },
1752
+ {
1753
+ "epoch": 1.4372230428360413,
1754
+ "grad_norm": 0.2541881203651428,
1755
+ "learning_rate": 1.1606613087558748e-05,
1756
+ "loss": 0.2207,
1757
+ "step": 244
1758
+ },
1759
+ {
1760
+ "epoch": 1.4431314623338256,
1761
+ "grad_norm": 0.24408863484859467,
1762
+ "learning_rate": 1.1541572798340076e-05,
1763
+ "loss": 0.2155,
1764
+ "step": 245
1765
+ },
1766
+ {
1767
+ "epoch": 1.44903988183161,
1768
+ "grad_norm": 0.25305289030075073,
1769
+ "learning_rate": 1.1476465640024814e-05,
1770
+ "loss": 0.2245,
1771
+ "step": 246
1772
+ },
1773
+ {
1774
+ "epoch": 1.4549483013293945,
1775
+ "grad_norm": 0.26579606533050537,
1776
+ "learning_rate": 1.1411294436778562e-05,
1777
+ "loss": 0.2295,
1778
+ "step": 247
1779
+ },
1780
+ {
1781
+ "epoch": 1.4608567208271788,
1782
+ "grad_norm": 0.26332345604896545,
1783
+ "learning_rate": 1.1346062015544997e-05,
1784
+ "loss": 0.2363,
1785
+ "step": 248
1786
+ },
1787
+ {
1788
+ "epoch": 1.466765140324963,
1789
+ "grad_norm": 0.2519514262676239,
1790
+ "learning_rate": 1.1280771205923269e-05,
1791
+ "loss": 0.2215,
1792
+ "step": 249
1793
+ },
1794
+ {
1795
+ "epoch": 1.4726735598227474,
1796
+ "grad_norm": 0.2569345533847809,
1797
+ "learning_rate": 1.1215424840045254e-05,
1798
+ "loss": 0.223,
1799
+ "step": 250
1800
+ },
1801
+ {
1802
+ "epoch": 1.4785819793205317,
1803
+ "grad_norm": 0.25557035207748413,
1804
+ "learning_rate": 1.1150025752452693e-05,
1805
+ "loss": 0.2511,
1806
+ "step": 251
1807
+ },
1808
+ {
1809
+ "epoch": 1.4844903988183162,
1810
+ "grad_norm": 0.26646342873573303,
1811
+ "learning_rate": 1.1084576779974257e-05,
1812
+ "loss": 0.2476,
1813
+ "step": 252
1814
+ },
1815
+ {
1816
+ "epoch": 1.4903988183161005,
1817
+ "grad_norm": 0.27917614579200745,
1818
+ "learning_rate": 1.1019080761602473e-05,
1819
+ "loss": 0.2284,
1820
+ "step": 253
1821
+ },
1822
+ {
1823
+ "epoch": 1.4963072378138849,
1824
+ "grad_norm": 0.2594425082206726,
1825
+ "learning_rate": 1.0953540538370591e-05,
1826
+ "loss": 0.2319,
1827
+ "step": 254
1828
+ },
1829
+ {
1830
+ "epoch": 1.5022156573116692,
1831
+ "grad_norm": 0.23648317158222198,
1832
+ "learning_rate": 1.0887958953229349e-05,
1833
+ "loss": 0.225,
1834
+ "step": 255
1835
+ },
1836
+ {
1837
+ "epoch": 1.5081240768094535,
1838
+ "grad_norm": 0.24810343980789185,
1839
+ "learning_rate": 1.0822338850923644e-05,
1840
+ "loss": 0.2222,
1841
+ "step": 256
1842
+ },
1843
+ {
1844
+ "epoch": 1.5140324963072378,
1845
+ "grad_norm": 0.25305667519569397,
1846
+ "learning_rate": 1.0756683077869133e-05,
1847
+ "loss": 0.2178,
1848
+ "step": 257
1849
+ },
1850
+ {
1851
+ "epoch": 1.519940915805022,
1852
+ "grad_norm": 0.23994190990924835,
1853
+ "learning_rate": 1.069099448202878e-05,
1854
+ "loss": 0.2274,
1855
+ "step": 258
1856
+ },
1857
+ {
1858
+ "epoch": 1.5258493353028064,
1859
+ "grad_norm": 0.28112536668777466,
1860
+ "learning_rate": 1.0625275912789307e-05,
1861
+ "loss": 0.2157,
1862
+ "step": 259
1863
+ },
1864
+ {
1865
+ "epoch": 1.5317577548005907,
1866
+ "grad_norm": 0.2910768687725067,
1867
+ "learning_rate": 1.0559530220837593e-05,
1868
+ "loss": 0.2337,
1869
+ "step": 260
1870
+ },
1871
+ {
1872
+ "epoch": 1.537666174298375,
1873
+ "grad_norm": 0.26320862770080566,
1874
+ "learning_rate": 1.049376025803703e-05,
1875
+ "loss": 0.2156,
1876
+ "step": 261
1877
+ },
1878
+ {
1879
+ "epoch": 1.5435745937961596,
1880
+ "grad_norm": 0.2653874456882477,
1881
+ "learning_rate": 1.0427968877303809e-05,
1882
+ "loss": 0.2269,
1883
+ "step": 262
1884
+ },
1885
+ {
1886
+ "epoch": 1.549483013293944,
1887
+ "grad_norm": 0.24998469650745392,
1888
+ "learning_rate": 1.0362158932483165e-05,
1889
+ "loss": 0.2252,
1890
+ "step": 263
1891
+ },
1892
+ {
1893
+ "epoch": 1.5553914327917282,
1894
+ "grad_norm": 0.25920990109443665,
1895
+ "learning_rate": 1.0296333278225599e-05,
1896
+ "loss": 0.2274,
1897
+ "step": 264
1898
+ },
1899
+ {
1900
+ "epoch": 1.5612998522895125,
1901
+ "grad_norm": 0.2827723026275635,
1902
+ "learning_rate": 1.023049476986304e-05,
1903
+ "loss": 0.248,
1904
+ "step": 265
1905
+ },
1906
+ {
1907
+ "epoch": 1.567208271787297,
1908
+ "grad_norm": 0.27848076820373535,
1909
+ "learning_rate": 1.0164646263284993e-05,
1910
+ "loss": 0.2372,
1911
+ "step": 266
1912
+ },
1913
+ {
1914
+ "epoch": 1.5731166912850814,
1915
+ "grad_norm": 0.2601296305656433,
1916
+ "learning_rate": 1.0098790614814658e-05,
1917
+ "loss": 0.212,
1918
+ "step": 267
1919
+ },
1920
+ {
1921
+ "epoch": 1.5790251107828657,
1922
+ "grad_norm": 0.24360589683055878,
1923
+ "learning_rate": 1.0032930681085028e-05,
1924
+ "loss": 0.2152,
1925
+ "step": 268
1926
+ },
1927
+ {
1928
+ "epoch": 1.58493353028065,
1929
+ "grad_norm": 0.3080978989601135,
1930
+ "learning_rate": 9.967069318914977e-06,
1931
+ "loss": 0.2218,
1932
+ "step": 269
1933
+ },
1934
+ {
1935
+ "epoch": 1.5908419497784343,
1936
+ "grad_norm": 0.26208099722862244,
1937
+ "learning_rate": 9.901209385185345e-06,
1938
+ "loss": 0.2184,
1939
+ "step": 270
1940
+ },
1941
+ {
1942
+ "epoch": 1.5967503692762186,
1943
+ "grad_norm": 0.2984671890735626,
1944
+ "learning_rate": 9.835353736715007e-06,
1945
+ "loss": 0.2432,
1946
+ "step": 271
1947
+ },
1948
+ {
1949
+ "epoch": 1.602658788774003,
1950
+ "grad_norm": 0.26782581210136414,
1951
+ "learning_rate": 9.769505230136962e-06,
1952
+ "loss": 0.2126,
1953
+ "step": 272
1954
+ },
1955
+ {
1956
+ "epoch": 1.6085672082717872,
1957
+ "grad_norm": 0.28440967202186584,
1958
+ "learning_rate": 9.703666721774403e-06,
1959
+ "loss": 0.2214,
1960
+ "step": 273
1961
+ },
1962
+ {
1963
+ "epoch": 1.6144756277695715,
1964
+ "grad_norm": 0.2926226854324341,
1965
+ "learning_rate": 9.637841067516837e-06,
1966
+ "loss": 0.2256,
1967
+ "step": 274
1968
+ },
1969
+ {
1970
+ "epoch": 1.6203840472673559,
1971
+ "grad_norm": 0.25548121333122253,
1972
+ "learning_rate": 9.572031122696196e-06,
1973
+ "loss": 0.2304,
1974
+ "step": 275
1975
+ },
1976
+ {
1977
+ "epoch": 1.6262924667651402,
1978
+ "grad_norm": 0.28455373644828796,
1979
+ "learning_rate": 9.506239741962971e-06,
1980
+ "loss": 0.2299,
1981
+ "step": 276
1982
+ },
1983
+ {
1984
+ "epoch": 1.6322008862629247,
1985
+ "grad_norm": 0.262614369392395,
1986
+ "learning_rate": 9.440469779162407e-06,
1987
+ "loss": 0.2251,
1988
+ "step": 277
1989
+ },
1990
+ {
1991
+ "epoch": 1.638109305760709,
1992
+ "grad_norm": 0.27394819259643555,
1993
+ "learning_rate": 9.374724087210698e-06,
1994
+ "loss": 0.2117,
1995
+ "step": 278
1996
+ },
1997
+ {
1998
+ "epoch": 1.6440177252584933,
1999
+ "grad_norm": 0.2843812108039856,
2000
+ "learning_rate": 9.309005517971222e-06,
2001
+ "loss": 0.2268,
2002
+ "step": 279
2003
+ },
2004
+ {
2005
+ "epoch": 1.6499261447562779,
2006
+ "grad_norm": 0.25647154450416565,
2007
+ "learning_rate": 9.24331692213087e-06,
2008
+ "loss": 0.2187,
2009
+ "step": 280
2010
+ },
2011
+ {
2012
+ "epoch": 1.6558345642540622,
2013
+ "grad_norm": 0.27861371636390686,
2014
+ "learning_rate": 9.17766114907636e-06,
2015
+ "loss": 0.2311,
2016
+ "step": 281
2017
+ },
2018
+ {
2019
+ "epoch": 1.6617429837518465,
2020
+ "grad_norm": 0.270049512386322,
2021
+ "learning_rate": 9.112041046770653e-06,
2022
+ "loss": 0.2265,
2023
+ "step": 282
2024
+ },
2025
+ {
2026
+ "epoch": 1.6676514032496308,
2027
+ "grad_norm": 0.2750328779220581,
2028
+ "learning_rate": 9.04645946162941e-06,
2029
+ "loss": 0.2253,
2030
+ "step": 283
2031
+ },
2032
+ {
2033
+ "epoch": 1.673559822747415,
2034
+ "grad_norm": 0.2412230521440506,
2035
+ "learning_rate": 8.980919238397532e-06,
2036
+ "loss": 0.2394,
2037
+ "step": 284
2038
+ },
2039
+ {
2040
+ "epoch": 1.6794682422451994,
2041
+ "grad_norm": 0.2524693012237549,
2042
+ "learning_rate": 8.915423220025747e-06,
2043
+ "loss": 0.2258,
2044
+ "step": 285
2045
+ },
2046
+ {
2047
+ "epoch": 1.6794682422451994,
2048
+ "eval_loss": 0.3460842967033386,
2049
+ "eval_runtime": 4.0784,
2050
+ "eval_samples_per_second": 13.486,
2051
+ "eval_steps_per_second": 1.716,
2052
+ "step": 285
2053
+ },
2054
+ {
2055
+ "epoch": 1.6853766617429837,
2056
+ "grad_norm": 0.25439098477363586,
2057
+ "learning_rate": 8.849974247547307e-06,
2058
+ "loss": 0.2266,
2059
+ "step": 286
2060
+ },
2061
+ {
2062
+ "epoch": 1.691285081240768,
2063
+ "grad_norm": 0.257929265499115,
2064
+ "learning_rate": 8.784575159954748e-06,
2065
+ "loss": 0.2133,
2066
+ "step": 287
2067
+ },
2068
+ {
2069
+ "epoch": 1.6971935007385524,
2070
+ "grad_norm": 0.24912972748279572,
2071
+ "learning_rate": 8.719228794076733e-06,
2072
+ "loss": 0.2129,
2073
+ "step": 288
2074
+ },
2075
+ {
2076
+ "epoch": 1.7031019202363367,
2077
+ "grad_norm": 0.27103564143180847,
2078
+ "learning_rate": 8.653937984455007e-06,
2079
+ "loss": 0.2276,
2080
+ "step": 289
2081
+ },
2082
+ {
2083
+ "epoch": 1.709010339734121,
2084
+ "grad_norm": 0.2718878984451294,
2085
+ "learning_rate": 8.588705563221444e-06,
2086
+ "loss": 0.2276,
2087
+ "step": 290
2088
+ },
2089
+ {
2090
+ "epoch": 1.7149187592319055,
2091
+ "grad_norm": 0.26431816816329956,
2092
+ "learning_rate": 8.52353435997519e-06,
2093
+ "loss": 0.2328,
2094
+ "step": 291
2095
+ },
2096
+ {
2097
+ "epoch": 1.7208271787296898,
2098
+ "grad_norm": 0.2725984752178192,
2099
+ "learning_rate": 8.458427201659926e-06,
2100
+ "loss": 0.2292,
2101
+ "step": 292
2102
+ },
2103
+ {
2104
+ "epoch": 1.7267355982274741,
2105
+ "grad_norm": 0.2515108585357666,
2106
+ "learning_rate": 8.393386912441257e-06,
2107
+ "loss": 0.226,
2108
+ "step": 293
2109
+ },
2110
+ {
2111
+ "epoch": 1.7326440177252584,
2112
+ "grad_norm": 0.2476361244916916,
2113
+ "learning_rate": 8.328416313584169e-06,
2114
+ "loss": 0.2277,
2115
+ "step": 294
2116
+ },
2117
+ {
2118
+ "epoch": 1.738552437223043,
2119
+ "grad_norm": 0.25414201617240906,
2120
+ "learning_rate": 8.263518223330698e-06,
2121
+ "loss": 0.2268,
2122
+ "step": 295
2123
+ },
2124
+ {
2125
+ "epoch": 1.7444608567208273,
2126
+ "grad_norm": 0.26264503598213196,
2127
+ "learning_rate": 8.198695456777653e-06,
2128
+ "loss": 0.2193,
2129
+ "step": 296
2130
+ },
2131
+ {
2132
+ "epoch": 1.7503692762186116,
2133
+ "grad_norm": 0.26917147636413574,
2134
+ "learning_rate": 8.133950825754511e-06,
2135
+ "loss": 0.2251,
2136
+ "step": 297
2137
+ },
2138
+ {
2139
+ "epoch": 1.756277695716396,
2140
+ "grad_norm": 0.2692192792892456,
2141
+ "learning_rate": 8.069287138701452e-06,
2142
+ "loss": 0.232,
2143
+ "step": 298
2144
+ },
2145
+ {
2146
+ "epoch": 1.7621861152141802,
2147
+ "grad_norm": 0.27494263648986816,
2148
+ "learning_rate": 8.004707200547534e-06,
2149
+ "loss": 0.2461,
2150
+ "step": 299
2151
+ },
2152
+ {
2153
+ "epoch": 1.7680945347119645,
2154
+ "grad_norm": 0.28247448801994324,
2155
+ "learning_rate": 7.940213812589018e-06,
2156
+ "loss": 0.2226,
2157
+ "step": 300
2158
+ },
2159
+ {
2160
+ "epoch": 1.7740029542097489,
2161
+ "grad_norm": 0.2632560133934021,
2162
+ "learning_rate": 7.875809772367867e-06,
2163
+ "loss": 0.216,
2164
+ "step": 301
2165
+ },
2166
+ {
2167
+ "epoch": 1.7799113737075332,
2168
+ "grad_norm": 0.26561063528060913,
2169
+ "learning_rate": 7.81149787355039e-06,
2170
+ "loss": 0.2286,
2171
+ "step": 302
2172
+ },
2173
+ {
2174
+ "epoch": 1.7858197932053175,
2175
+ "grad_norm": 0.24065916240215302,
2176
+ "learning_rate": 7.747280905806051e-06,
2177
+ "loss": 0.2201,
2178
+ "step": 303
2179
+ },
2180
+ {
2181
+ "epoch": 1.7917282127031018,
2182
+ "grad_norm": 0.288473904132843,
2183
+ "learning_rate": 7.683161654686486e-06,
2184
+ "loss": 0.2179,
2185
+ "step": 304
2186
+ },
2187
+ {
2188
+ "epoch": 1.797636632200886,
2189
+ "grad_norm": 0.27798035740852356,
2190
+ "learning_rate": 7.619142901504649e-06,
2191
+ "loss": 0.2341,
2192
+ "step": 305
2193
+ },
2194
+ {
2195
+ "epoch": 1.8035450516986706,
2196
+ "grad_norm": 0.28387168049812317,
2197
+ "learning_rate": 7.555227423214174e-06,
2198
+ "loss": 0.226,
2199
+ "step": 306
2200
+ },
2201
+ {
2202
+ "epoch": 1.809453471196455,
2203
+ "grad_norm": 0.28974682092666626,
2204
+ "learning_rate": 7.491417992288927e-06,
2205
+ "loss": 0.2296,
2206
+ "step": 307
2207
+ },
2208
+ {
2209
+ "epoch": 1.8153618906942393,
2210
+ "grad_norm": 0.26052042841911316,
2211
+ "learning_rate": 7.427717376602739e-06,
2212
+ "loss": 0.2002,
2213
+ "step": 308
2214
+ },
2215
+ {
2216
+ "epoch": 1.8212703101920238,
2217
+ "grad_norm": 0.29558730125427246,
2218
+ "learning_rate": 7.364128339309326e-06,
2219
+ "loss": 0.263,
2220
+ "step": 309
2221
+ },
2222
+ {
2223
+ "epoch": 1.827178729689808,
2224
+ "grad_norm": 0.24457122385501862,
2225
+ "learning_rate": 7.300653638722463e-06,
2226
+ "loss": 0.224,
2227
+ "step": 310
2228
+ },
2229
+ {
2230
+ "epoch": 1.8330871491875924,
2231
+ "grad_norm": 0.2517196834087372,
2232
+ "learning_rate": 7.2372960281963165e-06,
2233
+ "loss": 0.2134,
2234
+ "step": 311
2235
+ },
2236
+ {
2237
+ "epoch": 1.8389955686853767,
2238
+ "grad_norm": 0.27632561326026917,
2239
+ "learning_rate": 7.174058256006012e-06,
2240
+ "loss": 0.2229,
2241
+ "step": 312
2242
+ },
2243
+ {
2244
+ "epoch": 1.844903988183161,
2245
+ "grad_norm": 0.2603515684604645,
2246
+ "learning_rate": 7.110943065228425e-06,
2247
+ "loss": 0.2299,
2248
+ "step": 313
2249
+ },
2250
+ {
2251
+ "epoch": 1.8508124076809453,
2252
+ "grad_norm": 0.24517123401165009,
2253
+ "learning_rate": 7.047953193623195e-06,
2254
+ "loss": 0.2096,
2255
+ "step": 314
2256
+ },
2257
+ {
2258
+ "epoch": 1.8567208271787297,
2259
+ "grad_norm": 0.24135427176952362,
2260
+ "learning_rate": 6.985091373513972e-06,
2261
+ "loss": 0.2072,
2262
+ "step": 315
2263
+ },
2264
+ {
2265
+ "epoch": 1.862629246676514,
2266
+ "grad_norm": 0.2676647901535034,
2267
+ "learning_rate": 6.92236033166988e-06,
2268
+ "loss": 0.2173,
2269
+ "step": 316
2270
+ },
2271
+ {
2272
+ "epoch": 1.8685376661742983,
2273
+ "grad_norm": 0.2504200041294098,
2274
+ "learning_rate": 6.859762789187259e-06,
2275
+ "loss": 0.2192,
2276
+ "step": 317
2277
+ },
2278
+ {
2279
+ "epoch": 1.8744460856720826,
2280
+ "grad_norm": 0.26364269852638245,
2281
+ "learning_rate": 6.797301461371626e-06,
2282
+ "loss": 0.2193,
2283
+ "step": 318
2284
+ },
2285
+ {
2286
+ "epoch": 1.880354505169867,
2287
+ "grad_norm": 0.24448218941688538,
2288
+ "learning_rate": 6.734979057619873e-06,
2289
+ "loss": 0.2208,
2290
+ "step": 319
2291
+ },
2292
+ {
2293
+ "epoch": 1.8862629246676514,
2294
+ "grad_norm": 0.24706940352916718,
2295
+ "learning_rate": 6.67279828130277e-06,
2296
+ "loss": 0.2211,
2297
+ "step": 320
2298
+ },
2299
+ {
2300
+ "epoch": 1.8921713441654358,
2301
+ "grad_norm": 0.24761930108070374,
2302
+ "learning_rate": 6.610761829647685e-06,
2303
+ "loss": 0.2222,
2304
+ "step": 321
2305
+ },
2306
+ {
2307
+ "epoch": 1.89807976366322,
2308
+ "grad_norm": 0.2566414475440979,
2309
+ "learning_rate": 6.548872393621578e-06,
2310
+ "loss": 0.2136,
2311
+ "step": 322
2312
+ },
2313
+ {
2314
+ "epoch": 1.9039881831610044,
2315
+ "grad_norm": 0.2611066401004791,
2316
+ "learning_rate": 6.487132657814297e-06,
2317
+ "loss": 0.2146,
2318
+ "step": 323
2319
+ },
2320
+ {
2321
+ "epoch": 1.909896602658789,
2322
+ "grad_norm": 0.27130842208862305,
2323
+ "learning_rate": 6.4255453003221115e-06,
2324
+ "loss": 0.2184,
2325
+ "step": 324
2326
+ },
2327
+ {
2328
+ "epoch": 1.9158050221565732,
2329
+ "grad_norm": 0.2548243999481201,
2330
+ "learning_rate": 6.364112992631537e-06,
2331
+ "loss": 0.2299,
2332
+ "step": 325
2333
+ },
2334
+ {
2335
+ "epoch": 1.9217134416543575,
2336
+ "grad_norm": 0.2533697187900543,
2337
+ "learning_rate": 6.302838399503477e-06,
2338
+ "loss": 0.2043,
2339
+ "step": 326
2340
+ },
2341
+ {
2342
+ "epoch": 1.9276218611521418,
2343
+ "grad_norm": 0.2540424168109894,
2344
+ "learning_rate": 6.241724178857621e-06,
2345
+ "loss": 0.2039,
2346
+ "step": 327
2347
+ },
2348
+ {
2349
+ "epoch": 1.9335302806499262,
2350
+ "grad_norm": 0.2535569965839386,
2351
+ "learning_rate": 6.180772981657139e-06,
2352
+ "loss": 0.2019,
2353
+ "step": 328
2354
+ },
2355
+ {
2356
+ "epoch": 1.9394387001477105,
2357
+ "grad_norm": 0.29982754588127136,
2358
+ "learning_rate": 6.119987451793711e-06,
2359
+ "loss": 0.2228,
2360
+ "step": 329
2361
+ },
2362
+ {
2363
+ "epoch": 1.9453471196454948,
2364
+ "grad_norm": 0.23110415041446686,
2365
+ "learning_rate": 6.059370225972834e-06,
2366
+ "loss": 0.2188,
2367
+ "step": 330
2368
+ },
2369
+ {
2370
+ "epoch": 1.951255539143279,
2371
+ "grad_norm": 0.2608148753643036,
2372
+ "learning_rate": 5.998923933599443e-06,
2373
+ "loss": 0.2236,
2374
+ "step": 331
2375
+ },
2376
+ {
2377
+ "epoch": 1.9571639586410634,
2378
+ "grad_norm": 0.26010897755622864,
2379
+ "learning_rate": 5.938651196663865e-06,
2380
+ "loss": 0.2032,
2381
+ "step": 332
2382
+ },
2383
+ {
2384
+ "epoch": 1.9630723781388477,
2385
+ "grad_norm": 0.26297712326049805,
2386
+ "learning_rate": 5.878554629628081e-06,
2387
+ "loss": 0.2224,
2388
+ "step": 333
2389
+ },
2390
+ {
2391
+ "epoch": 1.9689807976366323,
2392
+ "grad_norm": 0.2658803164958954,
2393
+ "learning_rate": 5.818636839312309e-06,
2394
+ "loss": 0.2153,
2395
+ "step": 334
2396
+ },
2397
+ {
2398
+ "epoch": 1.9748892171344166,
2399
+ "grad_norm": 0.23885361850261688,
2400
+ "learning_rate": 5.758900424781939e-06,
2401
+ "loss": 0.2029,
2402
+ "step": 335
2403
+ },
2404
+ {
2405
+ "epoch": 1.9807976366322009,
2406
+ "grad_norm": 0.2604767978191376,
2407
+ "learning_rate": 5.699347977234799e-06,
2408
+ "loss": 0.2059,
2409
+ "step": 336
2410
+ },
2411
+ {
2412
+ "epoch": 1.9867060561299852,
2413
+ "grad_norm": 0.2535778284072876,
2414
+ "learning_rate": 5.6399820798887266e-06,
2415
+ "loss": 0.2204,
2416
+ "step": 337
2417
+ },
2418
+ {
2419
+ "epoch": 1.9926144756277697,
2420
+ "grad_norm": 0.2699243128299713,
2421
+ "learning_rate": 5.580805307869549e-06,
2422
+ "loss": 0.2158,
2423
+ "step": 338
2424
+ }
2425
+ ],
2426
+ "logging_steps": 1,
2427
+ "max_steps": 507,
2428
+ "num_input_tokens_seen": 0,
2429
+ "num_train_epochs": 3,
2430
+ "save_steps": 169,
2431
+ "stateful_callbacks": {
2432
+ "TrainerControl": {
2433
+ "args": {
2434
+ "should_epoch_stop": false,
2435
+ "should_evaluate": false,
2436
+ "should_log": false,
2437
+ "should_save": true,
2438
+ "should_training_stop": false
2439
+ },
2440
+ "attributes": {}
2441
+ }
2442
+ },
2443
+ "total_flos": 5.797158580880671e+17,
2444
+ "train_batch_size": 8,
2445
+ "trial_name": null,
2446
+ "trial_params": null
2447
+ }
3b-mb_base/checkpoint-338/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d657c9786dc6c8c08c64e914a96a01397e0a80c1d965337767408bc8f80e5cf
3
+ size 10744
3b-mb_base/checkpoint-338/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
3b-mb_base/checkpoint-338/zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
3b-mb_base/checkpoint-507/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
3b-mb_base/checkpoint-507/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-3B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "eos_token_id": 151645,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 2048,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_position_embeddings": 32768,
13
+ "max_window_layers": 70,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 16,
16
+ "num_hidden_layers": 36,
17
+ "num_key_value_heads": 2,
18
+ "rms_norm_eps": 1e-06,
19
+ "rope_scaling": null,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": true,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.48.1",
25
+ "use_cache": false,
26
+ "use_sliding_window": false,
27
+ "vocab_size": 151665
28
+ }
3b-mb_base/checkpoint-507/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.48.1"
14
+ }
3b-mb_base/checkpoint-507/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step505
3b-mb_base/checkpoint-507/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
3b-mb_base/checkpoint-507/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c63c90852fa3fa4280db2cd535d3288d97103797c36bc01f6b86838774637395
3
+ size 4956450288
3b-mb_base/checkpoint-507/model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5abba5a27427c5628dcedab5d617b319036407f2fc964f81ba71cfb4a973b178
3
+ size 1835586736
3b-mb_base/checkpoint-507/model.safetensors.index.json ADDED
@@ -0,0 +1,442 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 6791987200
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
368
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
369
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
370
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
371
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
372
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
373
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
374
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
376
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
377
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
378
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
379
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
380
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
382
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
384
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
385
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
386
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
387
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
388
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
389
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
390
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
391
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
394
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
395
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
396
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
397
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
398
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
399
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
400
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
401
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
402
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
403
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
404
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
405
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
406
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
407
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
408
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
409
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
410
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
411
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
412
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
413
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
414
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
415
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
416
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
417
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
418
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
419
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
420
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
421
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
422
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
423
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
424
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
425
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
426
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
427
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
428
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
429
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
430
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
431
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
432
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
433
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
434
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
435
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
436
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
437
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
438
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
439
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
440
+ "model.norm.weight": "model-00002-of-00002.safetensors"
441
+ }
442
+ }
3b-mb_base/checkpoint-507/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f3803bff3f596c03b55881de967a825b5734e4a581739164f9cb9e7fd1aee89
3
+ size 14512
3b-mb_base/checkpoint-507/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d768a04b798e2ca42effbe096b8e4481f32a402a9125a2ced390586dab8eb29e
3
+ size 14512
3b-mb_base/checkpoint-507/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7cc083c6282a60be998cf859b1a6c559bc7ea7e1edebd39819cd91f2b32e45e
3
+ size 1064
3b-mb_base/checkpoint-507/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }