Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- README.md +28 -28
- checkpoint-244/added_tokens.json +24 -0
- checkpoint-244/config.json +28 -0
- checkpoint-244/generation_config.json +14 -0
- checkpoint-244/latest +1 -0
- checkpoint-244/merges.txt +0 -0
- checkpoint-244/model-00001-of-00002.safetensors +3 -0
- checkpoint-244/model-00002-of-00002.safetensors +3 -0
- checkpoint-244/model.safetensors.index.json +442 -0
- checkpoint-244/rng_state_0.pth +3 -0
- checkpoint-244/rng_state_1.pth +3 -0
- checkpoint-244/scheduler.pt +3 -0
- checkpoint-244/special_tokens_map.json +31 -0
- checkpoint-244/tokenizer.json +3 -0
- checkpoint-244/tokenizer_config.json +208 -0
- checkpoint-244/trainer_state.json +1765 -0
- checkpoint-244/training_args.bin +3 -0
- checkpoint-244/vocab.json +0 -0
- checkpoint-244/zero_to_fp32.py +760 -0
- checkpoint-488/added_tokens.json +24 -0
- checkpoint-488/config.json +28 -0
- checkpoint-488/generation_config.json +14 -0
- checkpoint-488/latest +1 -0
- checkpoint-488/merges.txt +0 -0
- checkpoint-488/model-00001-of-00002.safetensors +3 -0
- checkpoint-488/model-00002-of-00002.safetensors +3 -0
- checkpoint-488/model.safetensors.index.json +442 -0
- checkpoint-488/rng_state_0.pth +3 -0
- checkpoint-488/rng_state_1.pth +3 -0
- checkpoint-488/scheduler.pt +3 -0
- checkpoint-488/special_tokens_map.json +31 -0
- checkpoint-488/tokenizer.json +3 -0
- checkpoint-488/tokenizer_config.json +208 -0
- checkpoint-488/trainer_state.json +3497 -0
- checkpoint-488/training_args.bin +3 -0
- checkpoint-488/vocab.json +0 -0
- checkpoint-488/zero_to_fp32.py +760 -0
- checkpoint-732/added_tokens.json +24 -0
- checkpoint-732/config.json +28 -0
- checkpoint-732/generation_config.json +14 -0
- checkpoint-732/latest +1 -0
- checkpoint-732/merges.txt +0 -0
- checkpoint-732/model-00001-of-00002.safetensors +3 -0
- checkpoint-732/model-00002-of-00002.safetensors +3 -0
- checkpoint-732/model.safetensors.index.json +442 -0
- checkpoint-732/rng_state_0.pth +3 -0
- checkpoint-732/rng_state_1.pth +3 -0
- checkpoint-732/scheduler.pt +3 -0
- checkpoint-732/special_tokens_map.json +31 -0
- checkpoint-732/tokenizer.json +3 -0
README.md
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
license:
|
4 |
-
base_model: Qwen/Qwen2.5-
|
5 |
tags:
|
6 |
- generated_from_trainer
|
7 |
datasets:
|
@@ -19,7 +19,7 @@ should probably proofread and complete it, then remove this comment. -->
|
|
19 |
|
20 |
axolotl version: `0.6.0`
|
21 |
```yaml
|
22 |
-
base_model: Qwen/Qwen2.5-
|
23 |
model_type: AutoModelForCausalLM
|
24 |
tokenizer_type: AutoTokenizer
|
25 |
trust_remote_code: false
|
@@ -29,10 +29,7 @@ load_in_4bit: false
|
|
29 |
strict: false
|
30 |
|
31 |
output_dir: ./outputs/out
|
32 |
-
remove_unused_columns: false
|
33 |
-
|
34 |
chat_template: qwen_25
|
35 |
-
# chat_template: qwen_25
|
36 |
datasets:
|
37 |
- path: train.jsonl
|
38 |
type: chat_template
|
@@ -40,17 +37,19 @@ datasets:
|
|
40 |
message_field_role: role
|
41 |
message_field_content: content
|
42 |
roles:
|
|
|
|
|
43 |
user:
|
44 |
- user
|
45 |
assistant:
|
46 |
- assistant
|
47 |
|
48 |
-
dataset_prepared_path:
|
49 |
-
# dataset_prepared_path: ko_r1
|
50 |
val_set_size: 0.005
|
|
|
51 |
eval_sample_packing: False
|
52 |
|
53 |
-
sequence_len:
|
54 |
sample_packing: False
|
55 |
pad_to_sequence_len: False
|
56 |
|
@@ -59,6 +58,7 @@ wandb_entity:
|
|
59 |
wandb_watch:
|
60 |
wandb_name:
|
61 |
wandb_log_model:
|
|
|
62 |
|
63 |
plugins:
|
64 |
- axolotl.integrations.liger.LigerPlugin
|
@@ -67,8 +67,8 @@ liger_rms_norm: true
|
|
67 |
liger_swiglu: true
|
68 |
liger_fused_linear_cross_entropy: true
|
69 |
|
70 |
-
gradient_accumulation_steps:
|
71 |
-
micro_batch_size:
|
72 |
eval_batch_size: 4
|
73 |
num_epochs: 3
|
74 |
optimizer: paged_adamw_8bit
|
@@ -78,7 +78,7 @@ learning_rate: 2e-5
|
|
78 |
train_on_inputs: false
|
79 |
group_by_length: false
|
80 |
bf16: auto
|
81 |
-
fp16:
|
82 |
tf32: false
|
83 |
|
84 |
gradient_checkpointing: true
|
@@ -90,7 +90,7 @@ logging_steps: 1
|
|
90 |
xformers_attention:
|
91 |
flash_attention: true
|
92 |
|
93 |
-
warmup_steps:
|
94 |
evals_per_epoch: 3
|
95 |
eval_max_new_tokens: 128
|
96 |
eval_table_size:
|
@@ -101,16 +101,15 @@ weight_decay: 0.01
|
|
101 |
fsdp:
|
102 |
fsdp_config:
|
103 |
special_tokens:
|
104 |
-
eos_token:
|
105 |
```
|
106 |
|
107 |
</details><br>
|
108 |
|
109 |
# outputs/out
|
110 |
|
111 |
-
This model is a fine-tuned version of [Qwen/Qwen2.5-
|
112 |
It achieves the following results on the evaluation set:
|
113 |
-
- Loss: 0.
|
114 |
|
115 |
## Model description
|
116 |
|
@@ -130,31 +129,32 @@ More information needed
|
|
130 |
|
131 |
The following hyperparameters were used during training:
|
132 |
- learning_rate: 2e-05
|
133 |
-
- train_batch_size:
|
134 |
- eval_batch_size: 4
|
135 |
- seed: 42
|
136 |
- distributed_type: multi-GPU
|
137 |
- num_devices: 2
|
138 |
-
-
|
|
|
139 |
- total_eval_batch_size: 8
|
140 |
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
141 |
- lr_scheduler_type: cosine
|
142 |
-
- lr_scheduler_warmup_steps:
|
143 |
- num_epochs: 3.0
|
144 |
|
145 |
### Training results
|
146 |
|
147 |
| Training Loss | Epoch | Step | Validation Loss |
|
148 |
|:-------------:|:------:|:----:|:---------------:|
|
149 |
-
|
|
150 |
-
| 0.
|
151 |
-
| 0.
|
152 |
-
| 0.
|
153 |
-
| 0.
|
154 |
-
| 0.
|
155 |
-
| 0.
|
156 |
-
| 0.
|
157 |
-
| 0.
|
158 |
|
159 |
|
160 |
### Framework versions
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: other
|
4 |
+
base_model: Qwen/Qwen2.5-3B-Instruct
|
5 |
tags:
|
6 |
- generated_from_trainer
|
7 |
datasets:
|
|
|
19 |
|
20 |
axolotl version: `0.6.0`
|
21 |
```yaml
|
22 |
+
base_model: Qwen/Qwen2.5-3B-Instruct
|
23 |
model_type: AutoModelForCausalLM
|
24 |
tokenizer_type: AutoTokenizer
|
25 |
trust_remote_code: false
|
|
|
29 |
strict: false
|
30 |
|
31 |
output_dir: ./outputs/out
|
|
|
|
|
32 |
chat_template: qwen_25
|
|
|
33 |
datasets:
|
34 |
- path: train.jsonl
|
35 |
type: chat_template
|
|
|
37 |
message_field_role: role
|
38 |
message_field_content: content
|
39 |
roles:
|
40 |
+
system:
|
41 |
+
- system
|
42 |
user:
|
43 |
- user
|
44 |
assistant:
|
45 |
- assistant
|
46 |
|
47 |
+
dataset_prepared_path: last_run_prepared
|
|
|
48 |
val_set_size: 0.005
|
49 |
+
output_dir: ./outputs/out
|
50 |
eval_sample_packing: False
|
51 |
|
52 |
+
sequence_len: 8192
|
53 |
sample_packing: False
|
54 |
pad_to_sequence_len: False
|
55 |
|
|
|
58 |
wandb_watch:
|
59 |
wandb_name:
|
60 |
wandb_log_model:
|
61 |
+
# hub_model_id: amphora/merged-bench-qwen-full
|
62 |
|
63 |
plugins:
|
64 |
- axolotl.integrations.liger.LigerPlugin
|
|
|
67 |
liger_swiglu: true
|
68 |
liger_fused_linear_cross_entropy: true
|
69 |
|
70 |
+
gradient_accumulation_steps: 4
|
71 |
+
micro_batch_size: 8
|
72 |
eval_batch_size: 4
|
73 |
num_epochs: 3
|
74 |
optimizer: paged_adamw_8bit
|
|
|
78 |
train_on_inputs: false
|
79 |
group_by_length: false
|
80 |
bf16: auto
|
81 |
+
fp16:
|
82 |
tf32: false
|
83 |
|
84 |
gradient_checkpointing: true
|
|
|
90 |
xformers_attention:
|
91 |
flash_attention: true
|
92 |
|
93 |
+
warmup_steps: 30
|
94 |
evals_per_epoch: 3
|
95 |
eval_max_new_tokens: 128
|
96 |
eval_table_size:
|
|
|
101 |
fsdp:
|
102 |
fsdp_config:
|
103 |
special_tokens:
|
|
|
104 |
```
|
105 |
|
106 |
</details><br>
|
107 |
|
108 |
# outputs/out
|
109 |
|
110 |
+
This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the train.jsonl dataset.
|
111 |
It achieves the following results on the evaluation set:
|
112 |
+
- Loss: 0.2783
|
113 |
|
114 |
## Model description
|
115 |
|
|
|
129 |
|
130 |
The following hyperparameters were used during training:
|
131 |
- learning_rate: 2e-05
|
132 |
+
- train_batch_size: 8
|
133 |
- eval_batch_size: 4
|
134 |
- seed: 42
|
135 |
- distributed_type: multi-GPU
|
136 |
- num_devices: 2
|
137 |
+
- gradient_accumulation_steps: 4
|
138 |
+
- total_train_batch_size: 64
|
139 |
- total_eval_batch_size: 8
|
140 |
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
141 |
- lr_scheduler_type: cosine
|
142 |
+
- lr_scheduler_warmup_steps: 30
|
143 |
- num_epochs: 3.0
|
144 |
|
145 |
### Training results
|
146 |
|
147 |
| Training Loss | Epoch | Step | Validation Loss |
|
148 |
|:-------------:|:------:|:----:|:---------------:|
|
149 |
+
| 1.3989 | 0.0041 | 1 | 1.7111 |
|
150 |
+
| 0.2969 | 0.3350 | 82 | 0.3192 |
|
151 |
+
| 0.3027 | 0.6701 | 164 | 0.2914 |
|
152 |
+
| 0.177 | 1.0082 | 246 | 0.2854 |
|
153 |
+
| 0.1735 | 1.3432 | 328 | 0.2857 |
|
154 |
+
| 0.1684 | 1.6782 | 410 | 0.2805 |
|
155 |
+
| 0.1109 | 2.0163 | 492 | 0.2741 |
|
156 |
+
| 0.0946 | 2.3514 | 574 | 0.2828 |
|
157 |
+
| 0.0968 | 2.6864 | 656 | 0.2783 |
|
158 |
|
159 |
|
160 |
### Framework versions
|
checkpoint-244/added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
checkpoint-244/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen2.5-3B-Instruct",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"eos_token_id": 151645,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 2048,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 11008,
|
12 |
+
"max_position_embeddings": 32768,
|
13 |
+
"max_window_layers": 70,
|
14 |
+
"model_type": "qwen2",
|
15 |
+
"num_attention_heads": 16,
|
16 |
+
"num_hidden_layers": 36,
|
17 |
+
"num_key_value_heads": 2,
|
18 |
+
"rms_norm_eps": 1e-06,
|
19 |
+
"rope_scaling": null,
|
20 |
+
"rope_theta": 1000000.0,
|
21 |
+
"sliding_window": null,
|
22 |
+
"tie_word_embeddings": true,
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"transformers_version": "4.48.1",
|
25 |
+
"use_cache": false,
|
26 |
+
"use_sliding_window": false,
|
27 |
+
"vocab_size": 151665
|
28 |
+
}
|
checkpoint-244/generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.05,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.48.1"
|
14 |
+
}
|
checkpoint-244/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step244
|
checkpoint-244/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-244/model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b177b17305dfd0a160a85100c35a38e3ac87b207f8f13f906dd114b62534a2d
|
3 |
+
size 4956450288
|
checkpoint-244/model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb9ce7028d6aa2ffffc37212cb54fb4d943af4c4dad356c80f1621510f4f6a21
|
3 |
+
size 1835586736
|
checkpoint-244/model.safetensors.index.json
ADDED
@@ -0,0 +1,442 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 6791987200
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
260 |
+
"model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
261 |
+
"model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
262 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
263 |
+
"model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
264 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
265 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
266 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
268 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
269 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
270 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
271 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
272 |
+
"model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
273 |
+
"model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
274 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
275 |
+
"model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
276 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
277 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
278 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
279 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
280 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
281 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
282 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
283 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
284 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
285 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
286 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
287 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
288 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
289 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
290 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
291 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
292 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
293 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
294 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
295 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
296 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
297 |
+
"model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
298 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
299 |
+
"model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
300 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
301 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
302 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
303 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
304 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
305 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
306 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
307 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
308 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
309 |
+
"model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
310 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
311 |
+
"model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
312 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
313 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
314 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
315 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
316 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
317 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
318 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
319 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
320 |
+
"model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
321 |
+
"model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
322 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
323 |
+
"model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
324 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
325 |
+
"model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
326 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
327 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
328 |
+
"model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
329 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
330 |
+
"model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
331 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
332 |
+
"model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
333 |
+
"model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
334 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
335 |
+
"model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
336 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
337 |
+
"model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
338 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
339 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
340 |
+
"model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
341 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
342 |
+
"model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
343 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
344 |
+
"model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
345 |
+
"model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
346 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
347 |
+
"model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
348 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
349 |
+
"model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
350 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
351 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
352 |
+
"model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
353 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
354 |
+
"model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
355 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
356 |
+
"model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
357 |
+
"model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
358 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
359 |
+
"model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
360 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
361 |
+
"model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
362 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
363 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
364 |
+
"model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
365 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
366 |
+
"model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
367 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
368 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
369 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
370 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
371 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
372 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
373 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
374 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
375 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
376 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
377 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
378 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
379 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
380 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
381 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
382 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
383 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
384 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
385 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
386 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
387 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
388 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
389 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
390 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
391 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
392 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
393 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
394 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
395 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
396 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
397 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
398 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
399 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
400 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
401 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
402 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
403 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
404 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
405 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
406 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
407 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
408 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
409 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
410 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
411 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
412 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
413 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
414 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
415 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
416 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
417 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
418 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
419 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
420 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
421 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
422 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
423 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
424 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
425 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
426 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
427 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
428 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
429 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
430 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
431 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
432 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
433 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
434 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
435 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
436 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
437 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
438 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
439 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
440 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
441 |
+
}
|
442 |
+
}
|
checkpoint-244/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9affc1541e7e94c18354d5173bc55400c5f07faf3d080c6d453d48e7a8d6ac3
|
3 |
+
size 14512
|
checkpoint-244/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4748c3ebf0e4c051c58b92e4a8c5b87cdb39d55cfdc2aec81a1baef0f02fc113
|
3 |
+
size 14512
|
checkpoint-244/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5cb186d02e42c19d881269361281b0d1dc724284e39baf6809ced6fd93070319
|
3 |
+
size 1064
|
checkpoint-244/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
checkpoint-244/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
3 |
+
size 11421896
|
checkpoint-244/tokenizer_config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|im_end|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"extra_special_tokens": {},
|
203 |
+
"model_max_length": 131072,
|
204 |
+
"pad_token": "<|endoftext|>",
|
205 |
+
"split_special_tokens": false,
|
206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
207 |
+
"unk_token": null
|
208 |
+
}
|
checkpoint-244/trainer_state.json
ADDED
@@ -0,0 +1,1765 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.9969356486210419,
|
5 |
+
"eval_steps": 82,
|
6 |
+
"global_step": 244,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0040858018386108275,
|
13 |
+
"grad_norm": 4.75867223739624,
|
14 |
+
"learning_rate": 6.666666666666667e-07,
|
15 |
+
"loss": 1.3989,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.0040858018386108275,
|
20 |
+
"eval_loss": 1.7111468315124512,
|
21 |
+
"eval_runtime": 5.4436,
|
22 |
+
"eval_samples_per_second": 14.512,
|
23 |
+
"eval_steps_per_second": 1.837,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.008171603677221655,
|
28 |
+
"grad_norm": 4.975377559661865,
|
29 |
+
"learning_rate": 1.3333333333333334e-06,
|
30 |
+
"loss": 1.4837,
|
31 |
+
"step": 2
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.012257405515832482,
|
35 |
+
"grad_norm": 5.219729900360107,
|
36 |
+
"learning_rate": 2.0000000000000003e-06,
|
37 |
+
"loss": 1.5181,
|
38 |
+
"step": 3
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.01634320735444331,
|
42 |
+
"grad_norm": 4.57335901260376,
|
43 |
+
"learning_rate": 2.666666666666667e-06,
|
44 |
+
"loss": 1.4106,
|
45 |
+
"step": 4
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.020429009193054137,
|
49 |
+
"grad_norm": 3.840559720993042,
|
50 |
+
"learning_rate": 3.3333333333333333e-06,
|
51 |
+
"loss": 1.3763,
|
52 |
+
"step": 5
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.024514811031664963,
|
56 |
+
"grad_norm": 3.2056212425231934,
|
57 |
+
"learning_rate": 4.000000000000001e-06,
|
58 |
+
"loss": 1.1876,
|
59 |
+
"step": 6
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.028600612870275793,
|
63 |
+
"grad_norm": 2.6987595558166504,
|
64 |
+
"learning_rate": 4.666666666666667e-06,
|
65 |
+
"loss": 1.2154,
|
66 |
+
"step": 7
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.03268641470888662,
|
70 |
+
"grad_norm": 2.378502130508423,
|
71 |
+
"learning_rate": 5.333333333333334e-06,
|
72 |
+
"loss": 1.1594,
|
73 |
+
"step": 8
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.03677221654749745,
|
77 |
+
"grad_norm": 1.7688865661621094,
|
78 |
+
"learning_rate": 6e-06,
|
79 |
+
"loss": 0.8435,
|
80 |
+
"step": 9
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.04085801838610827,
|
84 |
+
"grad_norm": 1.3263744115829468,
|
85 |
+
"learning_rate": 6.666666666666667e-06,
|
86 |
+
"loss": 0.7219,
|
87 |
+
"step": 10
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.0449438202247191,
|
91 |
+
"grad_norm": 1.3509997129440308,
|
92 |
+
"learning_rate": 7.333333333333333e-06,
|
93 |
+
"loss": 0.8172,
|
94 |
+
"step": 11
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.049029622063329927,
|
98 |
+
"grad_norm": 1.4541417360305786,
|
99 |
+
"learning_rate": 8.000000000000001e-06,
|
100 |
+
"loss": 0.7393,
|
101 |
+
"step": 12
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.05311542390194075,
|
105 |
+
"grad_norm": 1.181699275970459,
|
106 |
+
"learning_rate": 8.666666666666668e-06,
|
107 |
+
"loss": 0.664,
|
108 |
+
"step": 13
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.05720122574055159,
|
112 |
+
"grad_norm": 0.9503294825553894,
|
113 |
+
"learning_rate": 9.333333333333334e-06,
|
114 |
+
"loss": 0.6222,
|
115 |
+
"step": 14
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.06128702757916241,
|
119 |
+
"grad_norm": 0.7614471316337585,
|
120 |
+
"learning_rate": 1e-05,
|
121 |
+
"loss": 0.56,
|
122 |
+
"step": 15
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.06537282941777324,
|
126 |
+
"grad_norm": 0.9878801107406616,
|
127 |
+
"learning_rate": 1.0666666666666667e-05,
|
128 |
+
"loss": 0.5548,
|
129 |
+
"step": 16
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.06945863125638406,
|
133 |
+
"grad_norm": 0.8131901025772095,
|
134 |
+
"learning_rate": 1.1333333333333334e-05,
|
135 |
+
"loss": 0.4878,
|
136 |
+
"step": 17
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.0735444330949949,
|
140 |
+
"grad_norm": 0.7322743535041809,
|
141 |
+
"learning_rate": 1.2e-05,
|
142 |
+
"loss": 0.5159,
|
143 |
+
"step": 18
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.07763023493360573,
|
147 |
+
"grad_norm": 0.6428759098052979,
|
148 |
+
"learning_rate": 1.2666666666666667e-05,
|
149 |
+
"loss": 0.4575,
|
150 |
+
"step": 19
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.08171603677221655,
|
154 |
+
"grad_norm": 0.562318742275238,
|
155 |
+
"learning_rate": 1.3333333333333333e-05,
|
156 |
+
"loss": 0.4571,
|
157 |
+
"step": 20
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.08580183861082738,
|
161 |
+
"grad_norm": 0.5707699060440063,
|
162 |
+
"learning_rate": 1.4e-05,
|
163 |
+
"loss": 0.4592,
|
164 |
+
"step": 21
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.0898876404494382,
|
168 |
+
"grad_norm": 0.5272228717803955,
|
169 |
+
"learning_rate": 1.4666666666666666e-05,
|
170 |
+
"loss": 0.4457,
|
171 |
+
"step": 22
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.09397344228804903,
|
175 |
+
"grad_norm": 0.5120903253555298,
|
176 |
+
"learning_rate": 1.5333333333333334e-05,
|
177 |
+
"loss": 0.4034,
|
178 |
+
"step": 23
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.09805924412665985,
|
182 |
+
"grad_norm": 0.46359285712242126,
|
183 |
+
"learning_rate": 1.6000000000000003e-05,
|
184 |
+
"loss": 0.4037,
|
185 |
+
"step": 24
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.10214504596527069,
|
189 |
+
"grad_norm": 0.49431198835372925,
|
190 |
+
"learning_rate": 1.6666666666666667e-05,
|
191 |
+
"loss": 0.3875,
|
192 |
+
"step": 25
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.1062308478038815,
|
196 |
+
"grad_norm": 0.4450273811817169,
|
197 |
+
"learning_rate": 1.7333333333333336e-05,
|
198 |
+
"loss": 0.3797,
|
199 |
+
"step": 26
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.11031664964249234,
|
203 |
+
"grad_norm": 0.4551868140697479,
|
204 |
+
"learning_rate": 1.8e-05,
|
205 |
+
"loss": 0.3512,
|
206 |
+
"step": 27
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.11440245148110317,
|
210 |
+
"grad_norm": 0.5083736777305603,
|
211 |
+
"learning_rate": 1.866666666666667e-05,
|
212 |
+
"loss": 0.3906,
|
213 |
+
"step": 28
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.118488253319714,
|
217 |
+
"grad_norm": 0.47295963764190674,
|
218 |
+
"learning_rate": 1.9333333333333333e-05,
|
219 |
+
"loss": 0.3554,
|
220 |
+
"step": 29
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 0.12257405515832483,
|
224 |
+
"grad_norm": 0.4848616123199463,
|
225 |
+
"learning_rate": 2e-05,
|
226 |
+
"loss": 0.3712,
|
227 |
+
"step": 30
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 0.12665985699693566,
|
231 |
+
"grad_norm": 0.4398118555545807,
|
232 |
+
"learning_rate": 1.999989986294826e-05,
|
233 |
+
"loss": 0.3694,
|
234 |
+
"step": 31
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.13074565883554648,
|
238 |
+
"grad_norm": 0.41183602809906006,
|
239 |
+
"learning_rate": 1.9999599453798523e-05,
|
240 |
+
"loss": 0.3336,
|
241 |
+
"step": 32
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 0.1348314606741573,
|
245 |
+
"grad_norm": 0.492713987827301,
|
246 |
+
"learning_rate": 1.999909877856721e-05,
|
247 |
+
"loss": 0.3657,
|
248 |
+
"step": 33
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.13891726251276812,
|
252 |
+
"grad_norm": 0.4517015516757965,
|
253 |
+
"learning_rate": 1.9998397847281548e-05,
|
254 |
+
"loss": 0.367,
|
255 |
+
"step": 34
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.14300306435137897,
|
259 |
+
"grad_norm": 0.4641965627670288,
|
260 |
+
"learning_rate": 1.9997496673979375e-05,
|
261 |
+
"loss": 0.3565,
|
262 |
+
"step": 35
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"epoch": 0.1470888661899898,
|
266 |
+
"grad_norm": 0.4812065064907074,
|
267 |
+
"learning_rate": 1.9996395276708856e-05,
|
268 |
+
"loss": 0.3773,
|
269 |
+
"step": 36
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.1511746680286006,
|
273 |
+
"grad_norm": 0.42300987243652344,
|
274 |
+
"learning_rate": 1.999509367752813e-05,
|
275 |
+
"loss": 0.3643,
|
276 |
+
"step": 37
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 0.15526046986721145,
|
280 |
+
"grad_norm": 0.4512963593006134,
|
281 |
+
"learning_rate": 1.9993591902504854e-05,
|
282 |
+
"loss": 0.3409,
|
283 |
+
"step": 38
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"epoch": 0.15934627170582227,
|
287 |
+
"grad_norm": 0.41626426577568054,
|
288 |
+
"learning_rate": 1.9991889981715696e-05,
|
289 |
+
"loss": 0.3546,
|
290 |
+
"step": 39
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.1634320735444331,
|
294 |
+
"grad_norm": 0.43549367785453796,
|
295 |
+
"learning_rate": 1.9989987949245725e-05,
|
296 |
+
"loss": 0.3091,
|
297 |
+
"step": 40
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.1675178753830439,
|
301 |
+
"grad_norm": 0.4042600393295288,
|
302 |
+
"learning_rate": 1.9987885843187717e-05,
|
303 |
+
"loss": 0.3174,
|
304 |
+
"step": 41
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 0.17160367722165476,
|
308 |
+
"grad_norm": 0.4394363462924957,
|
309 |
+
"learning_rate": 1.9985583705641418e-05,
|
310 |
+
"loss": 0.3601,
|
311 |
+
"step": 42
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 0.17568947906026558,
|
315 |
+
"grad_norm": 0.4294170141220093,
|
316 |
+
"learning_rate": 1.9983081582712684e-05,
|
317 |
+
"loss": 0.3283,
|
318 |
+
"step": 43
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 0.1797752808988764,
|
322 |
+
"grad_norm": 0.44452300667762756,
|
323 |
+
"learning_rate": 1.998037952451255e-05,
|
324 |
+
"loss": 0.3367,
|
325 |
+
"step": 44
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"epoch": 0.18386108273748722,
|
329 |
+
"grad_norm": 0.4113090932369232,
|
330 |
+
"learning_rate": 1.9977477585156252e-05,
|
331 |
+
"loss": 0.2986,
|
332 |
+
"step": 45
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.18794688457609807,
|
336 |
+
"grad_norm": 0.44443050026893616,
|
337 |
+
"learning_rate": 1.9974375822762117e-05,
|
338 |
+
"loss": 0.3463,
|
339 |
+
"step": 46
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.1920326864147089,
|
343 |
+
"grad_norm": 0.4303809106349945,
|
344 |
+
"learning_rate": 1.9971074299450414e-05,
|
345 |
+
"loss": 0.3281,
|
346 |
+
"step": 47
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 0.1961184882533197,
|
350 |
+
"grad_norm": 0.4178621470928192,
|
351 |
+
"learning_rate": 1.9967573081342103e-05,
|
352 |
+
"loss": 0.3629,
|
353 |
+
"step": 48
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.20020429009193055,
|
357 |
+
"grad_norm": 0.38657113909721375,
|
358 |
+
"learning_rate": 1.9963872238557516e-05,
|
359 |
+
"loss": 0.3225,
|
360 |
+
"step": 49
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 0.20429009193054137,
|
364 |
+
"grad_norm": 0.5300270915031433,
|
365 |
+
"learning_rate": 1.9959971845214953e-05,
|
366 |
+
"loss": 0.3279,
|
367 |
+
"step": 50
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 0.2083758937691522,
|
371 |
+
"grad_norm": 0.4061177968978882,
|
372 |
+
"learning_rate": 1.9955871979429188e-05,
|
373 |
+
"loss": 0.3278,
|
374 |
+
"step": 51
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.212461695607763,
|
378 |
+
"grad_norm": 0.41504785418510437,
|
379 |
+
"learning_rate": 1.9951572723309918e-05,
|
380 |
+
"loss": 0.3096,
|
381 |
+
"step": 52
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.21654749744637386,
|
385 |
+
"grad_norm": 0.4208971858024597,
|
386 |
+
"learning_rate": 1.9947074162960113e-05,
|
387 |
+
"loss": 0.3187,
|
388 |
+
"step": 53
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 0.22063329928498468,
|
392 |
+
"grad_norm": 0.36819201707839966,
|
393 |
+
"learning_rate": 1.9942376388474282e-05,
|
394 |
+
"loss": 0.3167,
|
395 |
+
"step": 54
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.2247191011235955,
|
399 |
+
"grad_norm": 0.43327596783638,
|
400 |
+
"learning_rate": 1.993747949393668e-05,
|
401 |
+
"loss": 0.3188,
|
402 |
+
"step": 55
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 0.22880490296220635,
|
406 |
+
"grad_norm": 0.4377865791320801,
|
407 |
+
"learning_rate": 1.9932383577419432e-05,
|
408 |
+
"loss": 0.3478,
|
409 |
+
"step": 56
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 0.23289070480081717,
|
413 |
+
"grad_norm": 0.43336397409439087,
|
414 |
+
"learning_rate": 1.992708874098054e-05,
|
415 |
+
"loss": 0.3025,
|
416 |
+
"step": 57
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.236976506639428,
|
420 |
+
"grad_norm": 0.4399135410785675,
|
421 |
+
"learning_rate": 1.9921595090661872e-05,
|
422 |
+
"loss": 0.3098,
|
423 |
+
"step": 58
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.2410623084780388,
|
427 |
+
"grad_norm": 0.4253901243209839,
|
428 |
+
"learning_rate": 1.991590273648702e-05,
|
429 |
+
"loss": 0.3303,
|
430 |
+
"step": 59
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"epoch": 0.24514811031664965,
|
434 |
+
"grad_norm": 0.39254307746887207,
|
435 |
+
"learning_rate": 1.9910011792459086e-05,
|
436 |
+
"loss": 0.3018,
|
437 |
+
"step": 60
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.24923391215526047,
|
441 |
+
"grad_norm": 0.4217659831047058,
|
442 |
+
"learning_rate": 1.9903922376558432e-05,
|
443 |
+
"loss": 0.285,
|
444 |
+
"step": 61
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 0.2533197139938713,
|
448 |
+
"grad_norm": 0.48558109998703003,
|
449 |
+
"learning_rate": 1.989763461074029e-05,
|
450 |
+
"loss": 0.3221,
|
451 |
+
"step": 62
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 0.2574055158324821,
|
455 |
+
"grad_norm": 0.47454214096069336,
|
456 |
+
"learning_rate": 1.989114862093232e-05,
|
457 |
+
"loss": 0.3056,
|
458 |
+
"step": 63
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.26149131767109296,
|
462 |
+
"grad_norm": 0.4013993442058563,
|
463 |
+
"learning_rate": 1.9884464537032103e-05,
|
464 |
+
"loss": 0.3376,
|
465 |
+
"step": 64
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.26557711950970375,
|
469 |
+
"grad_norm": 0.4264606237411499,
|
470 |
+
"learning_rate": 1.9877582492904533e-05,
|
471 |
+
"loss": 0.3158,
|
472 |
+
"step": 65
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"epoch": 0.2696629213483146,
|
476 |
+
"grad_norm": 0.5440453886985779,
|
477 |
+
"learning_rate": 1.9870502626379127e-05,
|
478 |
+
"loss": 0.3056,
|
479 |
+
"step": 66
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.27374872318692545,
|
483 |
+
"grad_norm": 0.40003377199172974,
|
484 |
+
"learning_rate": 1.9863225079247286e-05,
|
485 |
+
"loss": 0.3357,
|
486 |
+
"step": 67
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"epoch": 0.27783452502553624,
|
490 |
+
"grad_norm": 0.39155763387680054,
|
491 |
+
"learning_rate": 1.985574999725943e-05,
|
492 |
+
"loss": 0.2819,
|
493 |
+
"step": 68
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"epoch": 0.2819203268641471,
|
497 |
+
"grad_norm": 0.4461009204387665,
|
498 |
+
"learning_rate": 1.9848077530122083e-05,
|
499 |
+
"loss": 0.2732,
|
500 |
+
"step": 69
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.28600612870275793,
|
504 |
+
"grad_norm": 0.38970062136650085,
|
505 |
+
"learning_rate": 1.9840207831494903e-05,
|
506 |
+
"loss": 0.2957,
|
507 |
+
"step": 70
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.2900919305413687,
|
511 |
+
"grad_norm": 0.4369664788246155,
|
512 |
+
"learning_rate": 1.983214105898757e-05,
|
513 |
+
"loss": 0.3158,
|
514 |
+
"step": 71
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"epoch": 0.2941777323799796,
|
518 |
+
"grad_norm": 0.4734659492969513,
|
519 |
+
"learning_rate": 1.9823877374156647e-05,
|
520 |
+
"loss": 0.3054,
|
521 |
+
"step": 72
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 0.2982635342185904,
|
525 |
+
"grad_norm": 0.3933468461036682,
|
526 |
+
"learning_rate": 1.9815416942502346e-05,
|
527 |
+
"loss": 0.286,
|
528 |
+
"step": 73
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"epoch": 0.3023493360572012,
|
532 |
+
"grad_norm": 0.4472273290157318,
|
533 |
+
"learning_rate": 1.98067599334652e-05,
|
534 |
+
"loss": 0.3149,
|
535 |
+
"step": 74
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"epoch": 0.30643513789581206,
|
539 |
+
"grad_norm": 0.43143752217292786,
|
540 |
+
"learning_rate": 1.979790652042268e-05,
|
541 |
+
"loss": 0.2792,
|
542 |
+
"step": 75
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.3105209397344229,
|
546 |
+
"grad_norm": 0.4325246512889862,
|
547 |
+
"learning_rate": 1.978885688068572e-05,
|
548 |
+
"loss": 0.3024,
|
549 |
+
"step": 76
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.3146067415730337,
|
553 |
+
"grad_norm": 0.48796600103378296,
|
554 |
+
"learning_rate": 1.9779611195495177e-05,
|
555 |
+
"loss": 0.3343,
|
556 |
+
"step": 77
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 0.31869254341164455,
|
560 |
+
"grad_norm": 0.40505748987197876,
|
561 |
+
"learning_rate": 1.977016965001817e-05,
|
562 |
+
"loss": 0.2753,
|
563 |
+
"step": 78
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 0.32277834525025534,
|
567 |
+
"grad_norm": 0.40753036737442017,
|
568 |
+
"learning_rate": 1.976053243334442e-05,
|
569 |
+
"loss": 0.3073,
|
570 |
+
"step": 79
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 0.3268641470888662,
|
574 |
+
"grad_norm": 0.4000149071216583,
|
575 |
+
"learning_rate": 1.9750699738482403e-05,
|
576 |
+
"loss": 0.284,
|
577 |
+
"step": 80
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"epoch": 0.33094994892747703,
|
581 |
+
"grad_norm": 0.42099907994270325,
|
582 |
+
"learning_rate": 1.9740671762355548e-05,
|
583 |
+
"loss": 0.2881,
|
584 |
+
"step": 81
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.3350357507660878,
|
588 |
+
"grad_norm": 0.4155902564525604,
|
589 |
+
"learning_rate": 1.973044870579824e-05,
|
590 |
+
"loss": 0.2969,
|
591 |
+
"step": 82
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.3350357507660878,
|
595 |
+
"eval_loss": 0.31923907995224,
|
596 |
+
"eval_runtime": 5.81,
|
597 |
+
"eval_samples_per_second": 13.597,
|
598 |
+
"eval_steps_per_second": 1.721,
|
599 |
+
"step": 82
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"epoch": 0.3391215526046987,
|
603 |
+
"grad_norm": 0.39282551407814026,
|
604 |
+
"learning_rate": 1.972003077355183e-05,
|
605 |
+
"loss": 0.2948,
|
606 |
+
"step": 83
|
607 |
+
},
|
608 |
+
{
|
609 |
+
"epoch": 0.3432073544433095,
|
610 |
+
"grad_norm": 0.4381943643093109,
|
611 |
+
"learning_rate": 1.9709418174260523e-05,
|
612 |
+
"loss": 0.3454,
|
613 |
+
"step": 84
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"epoch": 0.3472931562819203,
|
617 |
+
"grad_norm": 0.4093382954597473,
|
618 |
+
"learning_rate": 1.9698611120467196e-05,
|
619 |
+
"loss": 0.2962,
|
620 |
+
"step": 85
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 0.35137895812053116,
|
624 |
+
"grad_norm": 0.450135737657547,
|
625 |
+
"learning_rate": 1.9687609828609156e-05,
|
626 |
+
"loss": 0.3243,
|
627 |
+
"step": 86
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 0.355464759959142,
|
631 |
+
"grad_norm": 0.4139018654823303,
|
632 |
+
"learning_rate": 1.9676414519013782e-05,
|
633 |
+
"loss": 0.2996,
|
634 |
+
"step": 87
|
635 |
+
},
|
636 |
+
{
|
637 |
+
"epoch": 0.3595505617977528,
|
638 |
+
"grad_norm": 0.40026575326919556,
|
639 |
+
"learning_rate": 1.966502541589414e-05,
|
640 |
+
"loss": 0.2788,
|
641 |
+
"step": 88
|
642 |
+
},
|
643 |
+
{
|
644 |
+
"epoch": 0.36363636363636365,
|
645 |
+
"grad_norm": 0.36627820134162903,
|
646 |
+
"learning_rate": 1.965344274734447e-05,
|
647 |
+
"loss": 0.2857,
|
648 |
+
"step": 89
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"epoch": 0.36772216547497444,
|
652 |
+
"grad_norm": 0.42685478925704956,
|
653 |
+
"learning_rate": 1.9641666745335626e-05,
|
654 |
+
"loss": 0.2995,
|
655 |
+
"step": 90
|
656 |
+
},
|
657 |
+
{
|
658 |
+
"epoch": 0.3718079673135853,
|
659 |
+
"grad_norm": 0.374288946390152,
|
660 |
+
"learning_rate": 1.9629697645710432e-05,
|
661 |
+
"loss": 0.3056,
|
662 |
+
"step": 91
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 0.37589376915219613,
|
666 |
+
"grad_norm": 0.3649786114692688,
|
667 |
+
"learning_rate": 1.961753568817896e-05,
|
668 |
+
"loss": 0.2854,
|
669 |
+
"step": 92
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 0.3799795709908069,
|
673 |
+
"grad_norm": 0.38573023676872253,
|
674 |
+
"learning_rate": 1.9605181116313725e-05,
|
675 |
+
"loss": 0.2667,
|
676 |
+
"step": 93
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 0.3840653728294178,
|
680 |
+
"grad_norm": 0.37577807903289795,
|
681 |
+
"learning_rate": 1.9592634177544803e-05,
|
682 |
+
"loss": 0.2815,
|
683 |
+
"step": 94
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"epoch": 0.3881511746680286,
|
687 |
+
"grad_norm": 0.4320047199726105,
|
688 |
+
"learning_rate": 1.957989512315489e-05,
|
689 |
+
"loss": 0.3094,
|
690 |
+
"step": 95
|
691 |
+
},
|
692 |
+
{
|
693 |
+
"epoch": 0.3922369765066394,
|
694 |
+
"grad_norm": 0.3816889524459839,
|
695 |
+
"learning_rate": 1.9566964208274254e-05,
|
696 |
+
"loss": 0.292,
|
697 |
+
"step": 96
|
698 |
+
},
|
699 |
+
{
|
700 |
+
"epoch": 0.39632277834525026,
|
701 |
+
"grad_norm": 0.3946669399738312,
|
702 |
+
"learning_rate": 1.9553841691875632e-05,
|
703 |
+
"loss": 0.3002,
|
704 |
+
"step": 97
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 0.4004085801838611,
|
708 |
+
"grad_norm": 0.36885613203048706,
|
709 |
+
"learning_rate": 1.9540527836769047e-05,
|
710 |
+
"loss": 0.2583,
|
711 |
+
"step": 98
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 0.4044943820224719,
|
715 |
+
"grad_norm": 0.37865176796913147,
|
716 |
+
"learning_rate": 1.9527022909596537e-05,
|
717 |
+
"loss": 0.2787,
|
718 |
+
"step": 99
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"epoch": 0.40858018386108275,
|
722 |
+
"grad_norm": 0.4429585337638855,
|
723 |
+
"learning_rate": 1.951332718082682e-05,
|
724 |
+
"loss": 0.3226,
|
725 |
+
"step": 100
|
726 |
+
},
|
727 |
+
{
|
728 |
+
"epoch": 0.41266598569969354,
|
729 |
+
"grad_norm": 0.3926009237766266,
|
730 |
+
"learning_rate": 1.9499440924749878e-05,
|
731 |
+
"loss": 0.2914,
|
732 |
+
"step": 101
|
733 |
+
},
|
734 |
+
{
|
735 |
+
"epoch": 0.4167517875383044,
|
736 |
+
"grad_norm": 0.3467339277267456,
|
737 |
+
"learning_rate": 1.9485364419471454e-05,
|
738 |
+
"loss": 0.266,
|
739 |
+
"step": 102
|
740 |
+
},
|
741 |
+
{
|
742 |
+
"epoch": 0.42083758937691523,
|
743 |
+
"grad_norm": 0.4126642644405365,
|
744 |
+
"learning_rate": 1.9471097946907506e-05,
|
745 |
+
"loss": 0.2775,
|
746 |
+
"step": 103
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 0.424923391215526,
|
750 |
+
"grad_norm": 0.44586020708084106,
|
751 |
+
"learning_rate": 1.9456641792778527e-05,
|
752 |
+
"loss": 0.2884,
|
753 |
+
"step": 104
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 0.4290091930541369,
|
757 |
+
"grad_norm": 0.3969588279724121,
|
758 |
+
"learning_rate": 1.9441996246603848e-05,
|
759 |
+
"loss": 0.2835,
|
760 |
+
"step": 105
|
761 |
+
},
|
762 |
+
{
|
763 |
+
"epoch": 0.4330949948927477,
|
764 |
+
"grad_norm": 0.38928356766700745,
|
765 |
+
"learning_rate": 1.9427161601695833e-05,
|
766 |
+
"loss": 0.2826,
|
767 |
+
"step": 106
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"epoch": 0.4371807967313585,
|
771 |
+
"grad_norm": 0.4089799225330353,
|
772 |
+
"learning_rate": 1.9412138155154e-05,
|
773 |
+
"loss": 0.2817,
|
774 |
+
"step": 107
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 0.44126659856996936,
|
778 |
+
"grad_norm": 0.375505656003952,
|
779 |
+
"learning_rate": 1.9396926207859085e-05,
|
780 |
+
"loss": 0.2882,
|
781 |
+
"step": 108
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 0.4453524004085802,
|
785 |
+
"grad_norm": 0.406118780374527,
|
786 |
+
"learning_rate": 1.9381526064466995e-05,
|
787 |
+
"loss": 0.2861,
|
788 |
+
"step": 109
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 0.449438202247191,
|
792 |
+
"grad_norm": 0.3882409334182739,
|
793 |
+
"learning_rate": 1.9365938033402715e-05,
|
794 |
+
"loss": 0.261,
|
795 |
+
"step": 110
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 0.45352400408580185,
|
799 |
+
"grad_norm": 0.4351583421230316,
|
800 |
+
"learning_rate": 1.9350162426854152e-05,
|
801 |
+
"loss": 0.3014,
|
802 |
+
"step": 111
|
803 |
+
},
|
804 |
+
{
|
805 |
+
"epoch": 0.4576098059244127,
|
806 |
+
"grad_norm": 0.3621097505092621,
|
807 |
+
"learning_rate": 1.933419956076584e-05,
|
808 |
+
"loss": 0.2728,
|
809 |
+
"step": 112
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"epoch": 0.4616956077630235,
|
813 |
+
"grad_norm": 0.3881032466888428,
|
814 |
+
"learning_rate": 1.9318049754832656e-05,
|
815 |
+
"loss": 0.2736,
|
816 |
+
"step": 113
|
817 |
+
},
|
818 |
+
{
|
819 |
+
"epoch": 0.46578140960163433,
|
820 |
+
"grad_norm": 0.37627285718917847,
|
821 |
+
"learning_rate": 1.9301713332493386e-05,
|
822 |
+
"loss": 0.2707,
|
823 |
+
"step": 114
|
824 |
+
},
|
825 |
+
{
|
826 |
+
"epoch": 0.4698672114402451,
|
827 |
+
"grad_norm": 0.4285913109779358,
|
828 |
+
"learning_rate": 1.9285190620924267e-05,
|
829 |
+
"loss": 0.2815,
|
830 |
+
"step": 115
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"epoch": 0.473953013278856,
|
834 |
+
"grad_norm": 0.35718926787376404,
|
835 |
+
"learning_rate": 1.926848195103242e-05,
|
836 |
+
"loss": 0.2621,
|
837 |
+
"step": 116
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 0.4780388151174668,
|
841 |
+
"grad_norm": 0.3852044641971588,
|
842 |
+
"learning_rate": 1.925158765744924e-05,
|
843 |
+
"loss": 0.283,
|
844 |
+
"step": 117
|
845 |
+
},
|
846 |
+
{
|
847 |
+
"epoch": 0.4821246169560776,
|
848 |
+
"grad_norm": 0.3884032368659973,
|
849 |
+
"learning_rate": 1.923450807852367e-05,
|
850 |
+
"loss": 0.2711,
|
851 |
+
"step": 118
|
852 |
+
},
|
853 |
+
{
|
854 |
+
"epoch": 0.48621041879468846,
|
855 |
+
"grad_norm": 0.4398249685764313,
|
856 |
+
"learning_rate": 1.9217243556315445e-05,
|
857 |
+
"loss": 0.2757,
|
858 |
+
"step": 119
|
859 |
+
},
|
860 |
+
{
|
861 |
+
"epoch": 0.4902962206332993,
|
862 |
+
"grad_norm": 0.36689624190330505,
|
863 |
+
"learning_rate": 1.9199794436588244e-05,
|
864 |
+
"loss": 0.2669,
|
865 |
+
"step": 120
|
866 |
+
},
|
867 |
+
{
|
868 |
+
"epoch": 0.4943820224719101,
|
869 |
+
"grad_norm": 0.46398666501045227,
|
870 |
+
"learning_rate": 1.9182161068802742e-05,
|
871 |
+
"loss": 0.2683,
|
872 |
+
"step": 121
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 0.49846782431052095,
|
876 |
+
"grad_norm": 0.40020987391471863,
|
877 |
+
"learning_rate": 1.916434380610963e-05,
|
878 |
+
"loss": 0.2927,
|
879 |
+
"step": 122
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 0.5025536261491318,
|
883 |
+
"grad_norm": 0.4032459259033203,
|
884 |
+
"learning_rate": 1.9146343005342546e-05,
|
885 |
+
"loss": 0.31,
|
886 |
+
"step": 123
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"epoch": 0.5066394279877426,
|
890 |
+
"grad_norm": 0.44166550040245056,
|
891 |
+
"learning_rate": 1.912815902701091e-05,
|
892 |
+
"loss": 0.2842,
|
893 |
+
"step": 124
|
894 |
+
},
|
895 |
+
{
|
896 |
+
"epoch": 0.5107252298263534,
|
897 |
+
"grad_norm": 0.39895153045654297,
|
898 |
+
"learning_rate": 1.9109792235292715e-05,
|
899 |
+
"loss": 0.2766,
|
900 |
+
"step": 125
|
901 |
+
},
|
902 |
+
{
|
903 |
+
"epoch": 0.5148110316649642,
|
904 |
+
"grad_norm": 0.3415013253688812,
|
905 |
+
"learning_rate": 1.909124299802724e-05,
|
906 |
+
"loss": 0.2761,
|
907 |
+
"step": 126
|
908 |
+
},
|
909 |
+
{
|
910 |
+
"epoch": 0.5188968335035751,
|
911 |
+
"grad_norm": 0.3837663531303406,
|
912 |
+
"learning_rate": 1.9072511686707663e-05,
|
913 |
+
"loss": 0.2797,
|
914 |
+
"step": 127
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 0.5229826353421859,
|
918 |
+
"grad_norm": 0.4030819833278656,
|
919 |
+
"learning_rate": 1.9053598676473656e-05,
|
920 |
+
"loss": 0.2932,
|
921 |
+
"step": 128
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"epoch": 0.5270684371807968,
|
925 |
+
"grad_norm": 0.40120938420295715,
|
926 |
+
"learning_rate": 1.9034504346103825e-05,
|
927 |
+
"loss": 0.2698,
|
928 |
+
"step": 129
|
929 |
+
},
|
930 |
+
{
|
931 |
+
"epoch": 0.5311542390194075,
|
932 |
+
"grad_norm": 0.3621327579021454,
|
933 |
+
"learning_rate": 1.9015229078008163e-05,
|
934 |
+
"loss": 0.298,
|
935 |
+
"step": 130
|
936 |
+
},
|
937 |
+
{
|
938 |
+
"epoch": 0.5352400408580184,
|
939 |
+
"grad_norm": 0.33476150035858154,
|
940 |
+
"learning_rate": 1.8995773258220374e-05,
|
941 |
+
"loss": 0.2612,
|
942 |
+
"step": 131
|
943 |
+
},
|
944 |
+
{
|
945 |
+
"epoch": 0.5393258426966292,
|
946 |
+
"grad_norm": 0.3523140549659729,
|
947 |
+
"learning_rate": 1.8976137276390145e-05,
|
948 |
+
"loss": 0.2671,
|
949 |
+
"step": 132
|
950 |
+
},
|
951 |
+
{
|
952 |
+
"epoch": 0.54341164453524,
|
953 |
+
"grad_norm": 0.3624558746814728,
|
954 |
+
"learning_rate": 1.8956321525775337e-05,
|
955 |
+
"loss": 0.2687,
|
956 |
+
"step": 133
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"epoch": 0.5474974463738509,
|
960 |
+
"grad_norm": 0.35892072319984436,
|
961 |
+
"learning_rate": 1.8936326403234125e-05,
|
962 |
+
"loss": 0.2755,
|
963 |
+
"step": 134
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"epoch": 0.5515832482124617,
|
967 |
+
"grad_norm": 0.3678256869316101,
|
968 |
+
"learning_rate": 1.891615230921703e-05,
|
969 |
+
"loss": 0.278,
|
970 |
+
"step": 135
|
971 |
+
},
|
972 |
+
{
|
973 |
+
"epoch": 0.5556690500510725,
|
974 |
+
"grad_norm": 0.38125160336494446,
|
975 |
+
"learning_rate": 1.8895799647758912e-05,
|
976 |
+
"loss": 0.2765,
|
977 |
+
"step": 136
|
978 |
+
},
|
979 |
+
{
|
980 |
+
"epoch": 0.5597548518896833,
|
981 |
+
"grad_norm": 0.40152257680892944,
|
982 |
+
"learning_rate": 1.8875268826470875e-05,
|
983 |
+
"loss": 0.3239,
|
984 |
+
"step": 137
|
985 |
+
},
|
986 |
+
{
|
987 |
+
"epoch": 0.5638406537282942,
|
988 |
+
"grad_norm": 0.3935178816318512,
|
989 |
+
"learning_rate": 1.8854560256532098e-05,
|
990 |
+
"loss": 0.2956,
|
991 |
+
"step": 138
|
992 |
+
},
|
993 |
+
{
|
994 |
+
"epoch": 0.567926455566905,
|
995 |
+
"grad_norm": 0.4389478266239166,
|
996 |
+
"learning_rate": 1.8833674352681613e-05,
|
997 |
+
"loss": 0.2968,
|
998 |
+
"step": 139
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 0.5720122574055159,
|
1002 |
+
"grad_norm": 0.3884355127811432,
|
1003 |
+
"learning_rate": 1.881261153320999e-05,
|
1004 |
+
"loss": 0.3074,
|
1005 |
+
"step": 140
|
1006 |
+
},
|
1007 |
+
{
|
1008 |
+
"epoch": 0.5760980592441267,
|
1009 |
+
"grad_norm": 0.4054373502731323,
|
1010 |
+
"learning_rate": 1.879137221995095e-05,
|
1011 |
+
"loss": 0.2996,
|
1012 |
+
"step": 141
|
1013 |
+
},
|
1014 |
+
{
|
1015 |
+
"epoch": 0.5801838610827375,
|
1016 |
+
"grad_norm": 0.4423893690109253,
|
1017 |
+
"learning_rate": 1.8769956838272937e-05,
|
1018 |
+
"loss": 0.3082,
|
1019 |
+
"step": 142
|
1020 |
+
},
|
1021 |
+
{
|
1022 |
+
"epoch": 0.5842696629213483,
|
1023 |
+
"grad_norm": 0.42978307604789734,
|
1024 |
+
"learning_rate": 1.8748365817070586e-05,
|
1025 |
+
"loss": 0.2878,
|
1026 |
+
"step": 143
|
1027 |
+
},
|
1028 |
+
{
|
1029 |
+
"epoch": 0.5883554647599591,
|
1030 |
+
"grad_norm": 0.38182228803634644,
|
1031 |
+
"learning_rate": 1.8726599588756144e-05,
|
1032 |
+
"loss": 0.2649,
|
1033 |
+
"step": 144
|
1034 |
+
},
|
1035 |
+
{
|
1036 |
+
"epoch": 0.59244126659857,
|
1037 |
+
"grad_norm": 0.43477413058280945,
|
1038 |
+
"learning_rate": 1.8704658589250795e-05,
|
1039 |
+
"loss": 0.271,
|
1040 |
+
"step": 145
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 0.5965270684371808,
|
1044 |
+
"grad_norm": 0.3876926898956299,
|
1045 |
+
"learning_rate": 1.868254325797594e-05,
|
1046 |
+
"loss": 0.2804,
|
1047 |
+
"step": 146
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"epoch": 0.6006128702757916,
|
1051 |
+
"grad_norm": 0.39310601353645325,
|
1052 |
+
"learning_rate": 1.866025403784439e-05,
|
1053 |
+
"loss": 0.2767,
|
1054 |
+
"step": 147
|
1055 |
+
},
|
1056 |
+
{
|
1057 |
+
"epoch": 0.6046986721144024,
|
1058 |
+
"grad_norm": 0.421290785074234,
|
1059 |
+
"learning_rate": 1.8637791375251505e-05,
|
1060 |
+
"loss": 0.2668,
|
1061 |
+
"step": 148
|
1062 |
+
},
|
1063 |
+
{
|
1064 |
+
"epoch": 0.6087844739530133,
|
1065 |
+
"grad_norm": 0.450023353099823,
|
1066 |
+
"learning_rate": 1.8615155720066247e-05,
|
1067 |
+
"loss": 0.2888,
|
1068 |
+
"step": 149
|
1069 |
+
},
|
1070 |
+
{
|
1071 |
+
"epoch": 0.6128702757916241,
|
1072 |
+
"grad_norm": 0.3645341396331787,
|
1073 |
+
"learning_rate": 1.859234752562217e-05,
|
1074 |
+
"loss": 0.2828,
|
1075 |
+
"step": 150
|
1076 |
+
},
|
1077 |
+
{
|
1078 |
+
"epoch": 0.616956077630235,
|
1079 |
+
"grad_norm": 0.41853606700897217,
|
1080 |
+
"learning_rate": 1.8569367248708343e-05,
|
1081 |
+
"loss": 0.284,
|
1082 |
+
"step": 151
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 0.6210418794688458,
|
1086 |
+
"grad_norm": 0.3675737679004669,
|
1087 |
+
"learning_rate": 1.8546215349560204e-05,
|
1088 |
+
"loss": 0.2933,
|
1089 |
+
"step": 152
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 0.6251276813074566,
|
1093 |
+
"grad_norm": 0.3668256998062134,
|
1094 |
+
"learning_rate": 1.8522892291850335e-05,
|
1095 |
+
"loss": 0.2729,
|
1096 |
+
"step": 153
|
1097 |
+
},
|
1098 |
+
{
|
1099 |
+
"epoch": 0.6292134831460674,
|
1100 |
+
"grad_norm": 0.34576019644737244,
|
1101 |
+
"learning_rate": 1.849939854267919e-05,
|
1102 |
+
"loss": 0.2612,
|
1103 |
+
"step": 154
|
1104 |
+
},
|
1105 |
+
{
|
1106 |
+
"epoch": 0.6332992849846782,
|
1107 |
+
"grad_norm": 0.41370126605033875,
|
1108 |
+
"learning_rate": 1.847573457256571e-05,
|
1109 |
+
"loss": 0.2693,
|
1110 |
+
"step": 155
|
1111 |
+
},
|
1112 |
+
{
|
1113 |
+
"epoch": 0.6373850868232891,
|
1114 |
+
"grad_norm": 0.4205566644668579,
|
1115 |
+
"learning_rate": 1.845190085543795e-05,
|
1116 |
+
"loss": 0.2746,
|
1117 |
+
"step": 156
|
1118 |
+
},
|
1119 |
+
{
|
1120 |
+
"epoch": 0.6414708886618999,
|
1121 |
+
"grad_norm": 0.3997614085674286,
|
1122 |
+
"learning_rate": 1.8427897868623535e-05,
|
1123 |
+
"loss": 0.2813,
|
1124 |
+
"step": 157
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"epoch": 0.6455566905005107,
|
1128 |
+
"grad_norm": 0.41005200147628784,
|
1129 |
+
"learning_rate": 1.840372609284013e-05,
|
1130 |
+
"loss": 0.2647,
|
1131 |
+
"step": 158
|
1132 |
+
},
|
1133 |
+
{
|
1134 |
+
"epoch": 0.6496424923391215,
|
1135 |
+
"grad_norm": 0.4547550678253174,
|
1136 |
+
"learning_rate": 1.8379386012185813e-05,
|
1137 |
+
"loss": 0.2791,
|
1138 |
+
"step": 159
|
1139 |
+
},
|
1140 |
+
{
|
1141 |
+
"epoch": 0.6537282941777324,
|
1142 |
+
"grad_norm": 0.4075047969818115,
|
1143 |
+
"learning_rate": 1.8354878114129368e-05,
|
1144 |
+
"loss": 0.2769,
|
1145 |
+
"step": 160
|
1146 |
+
},
|
1147 |
+
{
|
1148 |
+
"epoch": 0.6578140960163432,
|
1149 |
+
"grad_norm": 0.37060046195983887,
|
1150 |
+
"learning_rate": 1.8330202889500518e-05,
|
1151 |
+
"loss": 0.3028,
|
1152 |
+
"step": 161
|
1153 |
+
},
|
1154 |
+
{
|
1155 |
+
"epoch": 0.6618998978549541,
|
1156 |
+
"grad_norm": 0.35541340708732605,
|
1157 |
+
"learning_rate": 1.8305360832480118e-05,
|
1158 |
+
"loss": 0.2981,
|
1159 |
+
"step": 162
|
1160 |
+
},
|
1161 |
+
{
|
1162 |
+
"epoch": 0.6659856996935649,
|
1163 |
+
"grad_norm": 0.3970625400543213,
|
1164 |
+
"learning_rate": 1.8280352440590236e-05,
|
1165 |
+
"loss": 0.2634,
|
1166 |
+
"step": 163
|
1167 |
+
},
|
1168 |
+
{
|
1169 |
+
"epoch": 0.6700715015321757,
|
1170 |
+
"grad_norm": 0.4075865149497986,
|
1171 |
+
"learning_rate": 1.82551782146842e-05,
|
1172 |
+
"loss": 0.3027,
|
1173 |
+
"step": 164
|
1174 |
+
},
|
1175 |
+
{
|
1176 |
+
"epoch": 0.6700715015321757,
|
1177 |
+
"eval_loss": 0.291363924741745,
|
1178 |
+
"eval_runtime": 5.7936,
|
1179 |
+
"eval_samples_per_second": 13.636,
|
1180 |
+
"eval_steps_per_second": 1.726,
|
1181 |
+
"step": 164
|
1182 |
+
},
|
1183 |
+
{
|
1184 |
+
"epoch": 0.6741573033707865,
|
1185 |
+
"grad_norm": 0.34390076994895935,
|
1186 |
+
"learning_rate": 1.8229838658936566e-05,
|
1187 |
+
"loss": 0.2536,
|
1188 |
+
"step": 165
|
1189 |
+
},
|
1190 |
+
{
|
1191 |
+
"epoch": 0.6782431052093973,
|
1192 |
+
"grad_norm": 0.3729197084903717,
|
1193 |
+
"learning_rate": 1.8204334280833005e-05,
|
1194 |
+
"loss": 0.2739,
|
1195 |
+
"step": 166
|
1196 |
+
},
|
1197 |
+
{
|
1198 |
+
"epoch": 0.6823289070480082,
|
1199 |
+
"grad_norm": 0.3974601924419403,
|
1200 |
+
"learning_rate": 1.817866559116017e-05,
|
1201 |
+
"loss": 0.2858,
|
1202 |
+
"step": 167
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 0.686414708886619,
|
1206 |
+
"grad_norm": 0.3424644470214844,
|
1207 |
+
"learning_rate": 1.8152833103995443e-05,
|
1208 |
+
"loss": 0.2305,
|
1209 |
+
"step": 168
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 0.6905005107252298,
|
1213 |
+
"grad_norm": 0.4293709397315979,
|
1214 |
+
"learning_rate": 1.8126837336696645e-05,
|
1215 |
+
"loss": 0.3179,
|
1216 |
+
"step": 169
|
1217 |
+
},
|
1218 |
+
{
|
1219 |
+
"epoch": 0.6945863125638406,
|
1220 |
+
"grad_norm": 0.3259459435939789,
|
1221 |
+
"learning_rate": 1.8100678809891668e-05,
|
1222 |
+
"loss": 0.2589,
|
1223 |
+
"step": 170
|
1224 |
+
},
|
1225 |
+
{
|
1226 |
+
"epoch": 0.6986721144024515,
|
1227 |
+
"grad_norm": 0.40771302580833435,
|
1228 |
+
"learning_rate": 1.807435804746807e-05,
|
1229 |
+
"loss": 0.2637,
|
1230 |
+
"step": 171
|
1231 |
+
},
|
1232 |
+
{
|
1233 |
+
"epoch": 0.7027579162410623,
|
1234 |
+
"grad_norm": 0.3847212493419647,
|
1235 |
+
"learning_rate": 1.8047875576562556e-05,
|
1236 |
+
"loss": 0.2782,
|
1237 |
+
"step": 172
|
1238 |
+
},
|
1239 |
+
{
|
1240 |
+
"epoch": 0.7068437180796732,
|
1241 |
+
"grad_norm": 0.35547974705696106,
|
1242 |
+
"learning_rate": 1.802123192755044e-05,
|
1243 |
+
"loss": 0.2695,
|
1244 |
+
"step": 173
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"epoch": 0.710929519918284,
|
1248 |
+
"grad_norm": 0.3954298198223114,
|
1249 |
+
"learning_rate": 1.7994427634035016e-05,
|
1250 |
+
"loss": 0.3005,
|
1251 |
+
"step": 174
|
1252 |
+
},
|
1253 |
+
{
|
1254 |
+
"epoch": 0.7150153217568948,
|
1255 |
+
"grad_norm": 0.3506409525871277,
|
1256 |
+
"learning_rate": 1.796746323283686e-05,
|
1257 |
+
"loss": 0.2716,
|
1258 |
+
"step": 175
|
1259 |
+
},
|
1260 |
+
{
|
1261 |
+
"epoch": 0.7191011235955056,
|
1262 |
+
"grad_norm": 0.42227277159690857,
|
1263 |
+
"learning_rate": 1.7940339263983112e-05,
|
1264 |
+
"loss": 0.2915,
|
1265 |
+
"step": 176
|
1266 |
+
},
|
1267 |
+
{
|
1268 |
+
"epoch": 0.7231869254341164,
|
1269 |
+
"grad_norm": 0.3948259949684143,
|
1270 |
+
"learning_rate": 1.791305627069662e-05,
|
1271 |
+
"loss": 0.2883,
|
1272 |
+
"step": 177
|
1273 |
+
},
|
1274 |
+
{
|
1275 |
+
"epoch": 0.7272727272727273,
|
1276 |
+
"grad_norm": 0.3580792248249054,
|
1277 |
+
"learning_rate": 1.7885614799385086e-05,
|
1278 |
+
"loss": 0.2782,
|
1279 |
+
"step": 178
|
1280 |
+
},
|
1281 |
+
{
|
1282 |
+
"epoch": 0.7313585291113381,
|
1283 |
+
"grad_norm": 0.39698660373687744,
|
1284 |
+
"learning_rate": 1.785801539963012e-05,
|
1285 |
+
"loss": 0.2657,
|
1286 |
+
"step": 179
|
1287 |
+
},
|
1288 |
+
{
|
1289 |
+
"epoch": 0.7354443309499489,
|
1290 |
+
"grad_norm": 0.3663792610168457,
|
1291 |
+
"learning_rate": 1.7830258624176224e-05,
|
1292 |
+
"loss": 0.2686,
|
1293 |
+
"step": 180
|
1294 |
+
},
|
1295 |
+
{
|
1296 |
+
"epoch": 0.7395301327885597,
|
1297 |
+
"grad_norm": 0.38216930627822876,
|
1298 |
+
"learning_rate": 1.7802345028919728e-05,
|
1299 |
+
"loss": 0.2706,
|
1300 |
+
"step": 181
|
1301 |
+
},
|
1302 |
+
{
|
1303 |
+
"epoch": 0.7436159346271706,
|
1304 |
+
"grad_norm": 0.4187450706958771,
|
1305 |
+
"learning_rate": 1.777427517289766e-05,
|
1306 |
+
"loss": 0.2573,
|
1307 |
+
"step": 182
|
1308 |
+
},
|
1309 |
+
{
|
1310 |
+
"epoch": 0.7477017364657814,
|
1311 |
+
"grad_norm": 0.34619036316871643,
|
1312 |
+
"learning_rate": 1.7746049618276545e-05,
|
1313 |
+
"loss": 0.269,
|
1314 |
+
"step": 183
|
1315 |
+
},
|
1316 |
+
{
|
1317 |
+
"epoch": 0.7517875383043923,
|
1318 |
+
"grad_norm": 0.35370582342147827,
|
1319 |
+
"learning_rate": 1.7717668930341152e-05,
|
1320 |
+
"loss": 0.2552,
|
1321 |
+
"step": 184
|
1322 |
+
},
|
1323 |
+
{
|
1324 |
+
"epoch": 0.7558733401430031,
|
1325 |
+
"grad_norm": 0.4264880418777466,
|
1326 |
+
"learning_rate": 1.768913367748316e-05,
|
1327 |
+
"loss": 0.2952,
|
1328 |
+
"step": 185
|
1329 |
+
},
|
1330 |
+
{
|
1331 |
+
"epoch": 0.7599591419816139,
|
1332 |
+
"grad_norm": 0.39135676622390747,
|
1333 |
+
"learning_rate": 1.766044443118978e-05,
|
1334 |
+
"loss": 0.2661,
|
1335 |
+
"step": 186
|
1336 |
+
},
|
1337 |
+
{
|
1338 |
+
"epoch": 0.7640449438202247,
|
1339 |
+
"grad_norm": 0.39061596989631653,
|
1340 |
+
"learning_rate": 1.7631601766032337e-05,
|
1341 |
+
"loss": 0.2737,
|
1342 |
+
"step": 187
|
1343 |
+
},
|
1344 |
+
{
|
1345 |
+
"epoch": 0.7681307456588355,
|
1346 |
+
"grad_norm": 0.3799816966056824,
|
1347 |
+
"learning_rate": 1.7602606259654704e-05,
|
1348 |
+
"loss": 0.2767,
|
1349 |
+
"step": 188
|
1350 |
+
},
|
1351 |
+
{
|
1352 |
+
"epoch": 0.7722165474974464,
|
1353 |
+
"grad_norm": 0.3592148721218109,
|
1354 |
+
"learning_rate": 1.7573458492761802e-05,
|
1355 |
+
"loss": 0.2448,
|
1356 |
+
"step": 189
|
1357 |
+
},
|
1358 |
+
{
|
1359 |
+
"epoch": 0.7763023493360572,
|
1360 |
+
"grad_norm": 0.39084604382514954,
|
1361 |
+
"learning_rate": 1.7544159049107902e-05,
|
1362 |
+
"loss": 0.275,
|
1363 |
+
"step": 190
|
1364 |
+
},
|
1365 |
+
{
|
1366 |
+
"epoch": 0.780388151174668,
|
1367 |
+
"grad_norm": 0.36443451046943665,
|
1368 |
+
"learning_rate": 1.7514708515485002e-05,
|
1369 |
+
"loss": 0.2645,
|
1370 |
+
"step": 191
|
1371 |
+
},
|
1372 |
+
{
|
1373 |
+
"epoch": 0.7844739530132788,
|
1374 |
+
"grad_norm": 0.4001200497150421,
|
1375 |
+
"learning_rate": 1.7485107481711014e-05,
|
1376 |
+
"loss": 0.2724,
|
1377 |
+
"step": 192
|
1378 |
+
},
|
1379 |
+
{
|
1380 |
+
"epoch": 0.7885597548518897,
|
1381 |
+
"grad_norm": 0.39093396067619324,
|
1382 |
+
"learning_rate": 1.7455356540617988e-05,
|
1383 |
+
"loss": 0.2712,
|
1384 |
+
"step": 193
|
1385 |
+
},
|
1386 |
+
{
|
1387 |
+
"epoch": 0.7926455566905005,
|
1388 |
+
"grad_norm": 0.3430577218532562,
|
1389 |
+
"learning_rate": 1.7425456288040236e-05,
|
1390 |
+
"loss": 0.2489,
|
1391 |
+
"step": 194
|
1392 |
+
},
|
1393 |
+
{
|
1394 |
+
"epoch": 0.7967313585291114,
|
1395 |
+
"grad_norm": 0.3573733866214752,
|
1396 |
+
"learning_rate": 1.7395407322802374e-05,
|
1397 |
+
"loss": 0.2696,
|
1398 |
+
"step": 195
|
1399 |
+
},
|
1400 |
+
{
|
1401 |
+
"epoch": 0.8008171603677222,
|
1402 |
+
"grad_norm": 0.38158077001571655,
|
1403 |
+
"learning_rate": 1.736521024670737e-05,
|
1404 |
+
"loss": 0.2814,
|
1405 |
+
"step": 196
|
1406 |
+
},
|
1407 |
+
{
|
1408 |
+
"epoch": 0.804902962206333,
|
1409 |
+
"grad_norm": 0.366470068693161,
|
1410 |
+
"learning_rate": 1.733486566452446e-05,
|
1411 |
+
"loss": 0.2529,
|
1412 |
+
"step": 197
|
1413 |
+
},
|
1414 |
+
{
|
1415 |
+
"epoch": 0.8089887640449438,
|
1416 |
+
"grad_norm": 0.3718278408050537,
|
1417 |
+
"learning_rate": 1.7304374183977032e-05,
|
1418 |
+
"loss": 0.2747,
|
1419 |
+
"step": 198
|
1420 |
+
},
|
1421 |
+
{
|
1422 |
+
"epoch": 0.8130745658835546,
|
1423 |
+
"grad_norm": 0.3395809233188629,
|
1424 |
+
"learning_rate": 1.7273736415730488e-05,
|
1425 |
+
"loss": 0.2693,
|
1426 |
+
"step": 199
|
1427 |
+
},
|
1428 |
+
{
|
1429 |
+
"epoch": 0.8171603677221655,
|
1430 |
+
"grad_norm": 0.307731032371521,
|
1431 |
+
"learning_rate": 1.7242952973379983e-05,
|
1432 |
+
"loss": 0.2081,
|
1433 |
+
"step": 200
|
1434 |
+
},
|
1435 |
+
{
|
1436 |
+
"epoch": 0.8212461695607763,
|
1437 |
+
"grad_norm": 0.3522433936595917,
|
1438 |
+
"learning_rate": 1.7212024473438145e-05,
|
1439 |
+
"loss": 0.2495,
|
1440 |
+
"step": 201
|
1441 |
+
},
|
1442 |
+
{
|
1443 |
+
"epoch": 0.8253319713993871,
|
1444 |
+
"grad_norm": 0.35946980118751526,
|
1445 |
+
"learning_rate": 1.7180951535322742e-05,
|
1446 |
+
"loss": 0.2702,
|
1447 |
+
"step": 202
|
1448 |
+
},
|
1449 |
+
{
|
1450 |
+
"epoch": 0.8294177732379979,
|
1451 |
+
"grad_norm": 0.3933047950267792,
|
1452 |
+
"learning_rate": 1.7149734781344247e-05,
|
1453 |
+
"loss": 0.2629,
|
1454 |
+
"step": 203
|
1455 |
+
},
|
1456 |
+
{
|
1457 |
+
"epoch": 0.8335035750766088,
|
1458 |
+
"grad_norm": 0.3658384084701538,
|
1459 |
+
"learning_rate": 1.7118374836693407e-05,
|
1460 |
+
"loss": 0.2538,
|
1461 |
+
"step": 204
|
1462 |
+
},
|
1463 |
+
{
|
1464 |
+
"epoch": 0.8375893769152196,
|
1465 |
+
"grad_norm": 0.3532220423221588,
|
1466 |
+
"learning_rate": 1.7086872329428702e-05,
|
1467 |
+
"loss": 0.2587,
|
1468 |
+
"step": 205
|
1469 |
+
},
|
1470 |
+
{
|
1471 |
+
"epoch": 0.8416751787538305,
|
1472 |
+
"grad_norm": 0.3619686961174011,
|
1473 |
+
"learning_rate": 1.705522789046377e-05,
|
1474 |
+
"loss": 0.2658,
|
1475 |
+
"step": 206
|
1476 |
+
},
|
1477 |
+
{
|
1478 |
+
"epoch": 0.8457609805924413,
|
1479 |
+
"grad_norm": 0.4083801209926605,
|
1480 |
+
"learning_rate": 1.7023442153554776e-05,
|
1481 |
+
"loss": 0.2614,
|
1482 |
+
"step": 207
|
1483 |
+
},
|
1484 |
+
{
|
1485 |
+
"epoch": 0.849846782431052,
|
1486 |
+
"grad_norm": 0.3868924081325531,
|
1487 |
+
"learning_rate": 1.6991515755287715e-05,
|
1488 |
+
"loss": 0.2831,
|
1489 |
+
"step": 208
|
1490 |
+
},
|
1491 |
+
{
|
1492 |
+
"epoch": 0.8539325842696629,
|
1493 |
+
"grad_norm": 0.38413897156715393,
|
1494 |
+
"learning_rate": 1.695944933506567e-05,
|
1495 |
+
"loss": 0.2596,
|
1496 |
+
"step": 209
|
1497 |
+
},
|
1498 |
+
{
|
1499 |
+
"epoch": 0.8580183861082737,
|
1500 |
+
"grad_norm": 0.34999531507492065,
|
1501 |
+
"learning_rate": 1.6927243535095995e-05,
|
1502 |
+
"loss": 0.2842,
|
1503 |
+
"step": 210
|
1504 |
+
},
|
1505 |
+
{
|
1506 |
+
"epoch": 0.8621041879468846,
|
1507 |
+
"grad_norm": 0.328204482793808,
|
1508 |
+
"learning_rate": 1.6894899000377462e-05,
|
1509 |
+
"loss": 0.2332,
|
1510 |
+
"step": 211
|
1511 |
+
},
|
1512 |
+
{
|
1513 |
+
"epoch": 0.8661899897854954,
|
1514 |
+
"grad_norm": 0.3802552819252014,
|
1515 |
+
"learning_rate": 1.686241637868734e-05,
|
1516 |
+
"loss": 0.2709,
|
1517 |
+
"step": 212
|
1518 |
+
},
|
1519 |
+
{
|
1520 |
+
"epoch": 0.8702757916241062,
|
1521 |
+
"grad_norm": 0.35758858919143677,
|
1522 |
+
"learning_rate": 1.6829796320568416e-05,
|
1523 |
+
"loss": 0.279,
|
1524 |
+
"step": 213
|
1525 |
+
},
|
1526 |
+
{
|
1527 |
+
"epoch": 0.874361593462717,
|
1528 |
+
"grad_norm": 0.3561984896659851,
|
1529 |
+
"learning_rate": 1.6797039479315994e-05,
|
1530 |
+
"loss": 0.2868,
|
1531 |
+
"step": 214
|
1532 |
+
},
|
1533 |
+
{
|
1534 |
+
"epoch": 0.8784473953013279,
|
1535 |
+
"grad_norm": 0.32591065764427185,
|
1536 |
+
"learning_rate": 1.6764146510964762e-05,
|
1537 |
+
"loss": 0.2485,
|
1538 |
+
"step": 215
|
1539 |
+
},
|
1540 |
+
{
|
1541 |
+
"epoch": 0.8825331971399387,
|
1542 |
+
"grad_norm": 0.36409640312194824,
|
1543 |
+
"learning_rate": 1.67311180742757e-05,
|
1544 |
+
"loss": 0.2577,
|
1545 |
+
"step": 216
|
1546 |
+
},
|
1547 |
+
{
|
1548 |
+
"epoch": 0.8866189989785496,
|
1549 |
+
"grad_norm": 0.34685492515563965,
|
1550 |
+
"learning_rate": 1.669795483072287e-05,
|
1551 |
+
"loss": 0.247,
|
1552 |
+
"step": 217
|
1553 |
+
},
|
1554 |
+
{
|
1555 |
+
"epoch": 0.8907048008171604,
|
1556 |
+
"grad_norm": 0.3445712625980377,
|
1557 |
+
"learning_rate": 1.6664657444480145e-05,
|
1558 |
+
"loss": 0.2565,
|
1559 |
+
"step": 218
|
1560 |
+
},
|
1561 |
+
{
|
1562 |
+
"epoch": 0.8947906026557712,
|
1563 |
+
"grad_norm": 0.34710460901260376,
|
1564 |
+
"learning_rate": 1.6631226582407954e-05,
|
1565 |
+
"loss": 0.2363,
|
1566 |
+
"step": 219
|
1567 |
+
},
|
1568 |
+
{
|
1569 |
+
"epoch": 0.898876404494382,
|
1570 |
+
"grad_norm": 0.33726766705513,
|
1571 |
+
"learning_rate": 1.6597662914039885e-05,
|
1572 |
+
"loss": 0.2483,
|
1573 |
+
"step": 220
|
1574 |
+
},
|
1575 |
+
{
|
1576 |
+
"epoch": 0.9029622063329928,
|
1577 |
+
"grad_norm": 0.34024032950401306,
|
1578 |
+
"learning_rate": 1.65639671115693e-05,
|
1579 |
+
"loss": 0.2474,
|
1580 |
+
"step": 221
|
1581 |
+
},
|
1582 |
+
{
|
1583 |
+
"epoch": 0.9070480081716037,
|
1584 |
+
"grad_norm": 0.38807395100593567,
|
1585 |
+
"learning_rate": 1.653013984983585e-05,
|
1586 |
+
"loss": 0.2726,
|
1587 |
+
"step": 222
|
1588 |
+
},
|
1589 |
+
{
|
1590 |
+
"epoch": 0.9111338100102145,
|
1591 |
+
"grad_norm": 0.36375290155410767,
|
1592 |
+
"learning_rate": 1.6496181806312005e-05,
|
1593 |
+
"loss": 0.2726,
|
1594 |
+
"step": 223
|
1595 |
+
},
|
1596 |
+
{
|
1597 |
+
"epoch": 0.9152196118488254,
|
1598 |
+
"grad_norm": 0.36927178502082825,
|
1599 |
+
"learning_rate": 1.6462093661089432e-05,
|
1600 |
+
"loss": 0.2518,
|
1601 |
+
"step": 224
|
1602 |
+
},
|
1603 |
+
{
|
1604 |
+
"epoch": 0.9193054136874361,
|
1605 |
+
"grad_norm": 0.3809269070625305,
|
1606 |
+
"learning_rate": 1.6427876096865394e-05,
|
1607 |
+
"loss": 0.2449,
|
1608 |
+
"step": 225
|
1609 |
+
},
|
1610 |
+
{
|
1611 |
+
"epoch": 0.923391215526047,
|
1612 |
+
"grad_norm": 0.34634968638420105,
|
1613 |
+
"learning_rate": 1.6393529798929103e-05,
|
1614 |
+
"loss": 0.2575,
|
1615 |
+
"step": 226
|
1616 |
+
},
|
1617 |
+
{
|
1618 |
+
"epoch": 0.9274770173646578,
|
1619 |
+
"grad_norm": 0.33054831624031067,
|
1620 |
+
"learning_rate": 1.635905545514795e-05,
|
1621 |
+
"loss": 0.2639,
|
1622 |
+
"step": 227
|
1623 |
+
},
|
1624 |
+
{
|
1625 |
+
"epoch": 0.9315628192032687,
|
1626 |
+
"grad_norm": 0.35482174158096313,
|
1627 |
+
"learning_rate": 1.6324453755953772e-05,
|
1628 |
+
"loss": 0.2667,
|
1629 |
+
"step": 228
|
1630 |
+
},
|
1631 |
+
{
|
1632 |
+
"epoch": 0.9356486210418795,
|
1633 |
+
"grad_norm": 0.3657509684562683,
|
1634 |
+
"learning_rate": 1.6289725394328998e-05,
|
1635 |
+
"loss": 0.255,
|
1636 |
+
"step": 229
|
1637 |
+
},
|
1638 |
+
{
|
1639 |
+
"epoch": 0.9397344228804902,
|
1640 |
+
"grad_norm": 0.3343275785446167,
|
1641 |
+
"learning_rate": 1.6254871065792776e-05,
|
1642 |
+
"loss": 0.2336,
|
1643 |
+
"step": 230
|
1644 |
+
},
|
1645 |
+
{
|
1646 |
+
"epoch": 0.9438202247191011,
|
1647 |
+
"grad_norm": 0.3493170142173767,
|
1648 |
+
"learning_rate": 1.621989146838704e-05,
|
1649 |
+
"loss": 0.2649,
|
1650 |
+
"step": 231
|
1651 |
+
},
|
1652 |
+
{
|
1653 |
+
"epoch": 0.947906026557712,
|
1654 |
+
"grad_norm": 0.3305867612361908,
|
1655 |
+
"learning_rate": 1.618478730266255e-05,
|
1656 |
+
"loss": 0.2767,
|
1657 |
+
"step": 232
|
1658 |
+
},
|
1659 |
+
{
|
1660 |
+
"epoch": 0.9519918283963228,
|
1661 |
+
"grad_norm": 0.35817259550094604,
|
1662 |
+
"learning_rate": 1.6149559271664835e-05,
|
1663 |
+
"loss": 0.2817,
|
1664 |
+
"step": 233
|
1665 |
+
},
|
1666 |
+
{
|
1667 |
+
"epoch": 0.9560776302349336,
|
1668 |
+
"grad_norm": 0.37733370065689087,
|
1669 |
+
"learning_rate": 1.6114208080920125e-05,
|
1670 |
+
"loss": 0.2809,
|
1671 |
+
"step": 234
|
1672 |
+
},
|
1673 |
+
{
|
1674 |
+
"epoch": 0.9601634320735445,
|
1675 |
+
"grad_norm": 0.3227766156196594,
|
1676 |
+
"learning_rate": 1.607873443842122e-05,
|
1677 |
+
"loss": 0.2545,
|
1678 |
+
"step": 235
|
1679 |
+
},
|
1680 |
+
{
|
1681 |
+
"epoch": 0.9642492339121552,
|
1682 |
+
"grad_norm": 0.3445710241794586,
|
1683 |
+
"learning_rate": 1.6043139054613326e-05,
|
1684 |
+
"loss": 0.2476,
|
1685 |
+
"step": 236
|
1686 |
+
},
|
1687 |
+
{
|
1688 |
+
"epoch": 0.9683350357507661,
|
1689 |
+
"grad_norm": 0.3375508785247803,
|
1690 |
+
"learning_rate": 1.600742264237979e-05,
|
1691 |
+
"loss": 0.2502,
|
1692 |
+
"step": 237
|
1693 |
+
},
|
1694 |
+
{
|
1695 |
+
"epoch": 0.9724208375893769,
|
1696 |
+
"grad_norm": 0.356039434671402,
|
1697 |
+
"learning_rate": 1.5971585917027864e-05,
|
1698 |
+
"loss": 0.268,
|
1699 |
+
"step": 238
|
1700 |
+
},
|
1701 |
+
{
|
1702 |
+
"epoch": 0.9765066394279878,
|
1703 |
+
"grad_norm": 0.34852373600006104,
|
1704 |
+
"learning_rate": 1.5935629596274345e-05,
|
1705 |
+
"loss": 0.2605,
|
1706 |
+
"step": 239
|
1707 |
+
},
|
1708 |
+
{
|
1709 |
+
"epoch": 0.9805924412665986,
|
1710 |
+
"grad_norm": 0.3376101851463318,
|
1711 |
+
"learning_rate": 1.5899554400231233e-05,
|
1712 |
+
"loss": 0.2567,
|
1713 |
+
"step": 240
|
1714 |
+
},
|
1715 |
+
{
|
1716 |
+
"epoch": 0.9846782431052093,
|
1717 |
+
"grad_norm": 0.32361170649528503,
|
1718 |
+
"learning_rate": 1.586336105139127e-05,
|
1719 |
+
"loss": 0.2481,
|
1720 |
+
"step": 241
|
1721 |
+
},
|
1722 |
+
{
|
1723 |
+
"epoch": 0.9887640449438202,
|
1724 |
+
"grad_norm": 0.35558903217315674,
|
1725 |
+
"learning_rate": 1.5827050274613512e-05,
|
1726 |
+
"loss": 0.2514,
|
1727 |
+
"step": 242
|
1728 |
+
},
|
1729 |
+
{
|
1730 |
+
"epoch": 0.992849846782431,
|
1731 |
+
"grad_norm": 0.31636619567871094,
|
1732 |
+
"learning_rate": 1.579062279710879e-05,
|
1733 |
+
"loss": 0.2237,
|
1734 |
+
"step": 243
|
1735 |
+
},
|
1736 |
+
{
|
1737 |
+
"epoch": 0.9969356486210419,
|
1738 |
+
"grad_norm": 0.3540779948234558,
|
1739 |
+
"learning_rate": 1.5754079348425137e-05,
|
1740 |
+
"loss": 0.2381,
|
1741 |
+
"step": 244
|
1742 |
+
}
|
1743 |
+
],
|
1744 |
+
"logging_steps": 1,
|
1745 |
+
"max_steps": 732,
|
1746 |
+
"num_input_tokens_seen": 0,
|
1747 |
+
"num_train_epochs": 3,
|
1748 |
+
"save_steps": 244,
|
1749 |
+
"stateful_callbacks": {
|
1750 |
+
"TrainerControl": {
|
1751 |
+
"args": {
|
1752 |
+
"should_epoch_stop": false,
|
1753 |
+
"should_evaluate": false,
|
1754 |
+
"should_log": false,
|
1755 |
+
"should_save": true,
|
1756 |
+
"should_training_stop": false
|
1757 |
+
},
|
1758 |
+
"attributes": {}
|
1759 |
+
}
|
1760 |
+
},
|
1761 |
+
"total_flos": 4.127797840707584e+17,
|
1762 |
+
"train_batch_size": 8,
|
1763 |
+
"trial_name": null,
|
1764 |
+
"trial_params": null
|
1765 |
+
}
|
checkpoint-244/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d8a51e619db41bfecd4e2978f86e8cb848022d32d79a042203708d80062927ea
|
3 |
+
size 10744
|
checkpoint-244/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-244/zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
checkpoint-488/added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
checkpoint-488/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen2.5-3B-Instruct",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"eos_token_id": 151645,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 2048,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 11008,
|
12 |
+
"max_position_embeddings": 32768,
|
13 |
+
"max_window_layers": 70,
|
14 |
+
"model_type": "qwen2",
|
15 |
+
"num_attention_heads": 16,
|
16 |
+
"num_hidden_layers": 36,
|
17 |
+
"num_key_value_heads": 2,
|
18 |
+
"rms_norm_eps": 1e-06,
|
19 |
+
"rope_scaling": null,
|
20 |
+
"rope_theta": 1000000.0,
|
21 |
+
"sliding_window": null,
|
22 |
+
"tie_word_embeddings": true,
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"transformers_version": "4.48.1",
|
25 |
+
"use_cache": false,
|
26 |
+
"use_sliding_window": false,
|
27 |
+
"vocab_size": 151665
|
28 |
+
}
|
checkpoint-488/generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.05,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.48.1"
|
14 |
+
}
|
checkpoint-488/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step488
|
checkpoint-488/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-488/model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7bc974c51afa91050753be9509aad253632e3f54e8ef7abefff0fd407e809321
|
3 |
+
size 4956450288
|
checkpoint-488/model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f57fb6f644c16010eadbc4ff90a14eb769cef04dcea00d2116b60e65fb8db3f
|
3 |
+
size 1835586736
|
checkpoint-488/model.safetensors.index.json
ADDED
@@ -0,0 +1,442 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 6791987200
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
260 |
+
"model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
261 |
+
"model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
262 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
263 |
+
"model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
264 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
265 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
266 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
268 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
269 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
270 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
271 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
272 |
+
"model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
273 |
+
"model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
274 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
275 |
+
"model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
276 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
277 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
278 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
279 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
280 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
281 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
282 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
283 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
284 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
285 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
286 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
287 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
288 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
289 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
290 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
291 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
292 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
293 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
294 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
295 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
296 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
297 |
+
"model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
298 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
299 |
+
"model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
300 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
301 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
302 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
303 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
304 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
305 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
306 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
307 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
308 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
309 |
+
"model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
310 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
311 |
+
"model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
312 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
313 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
314 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
315 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
316 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
317 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
318 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
319 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
320 |
+
"model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
321 |
+
"model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
322 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
323 |
+
"model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
324 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
325 |
+
"model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
326 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
327 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
328 |
+
"model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
329 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
330 |
+
"model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
331 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
332 |
+
"model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
333 |
+
"model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
334 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
335 |
+
"model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
336 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
337 |
+
"model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
338 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
339 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
340 |
+
"model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
341 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
342 |
+
"model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
343 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
344 |
+
"model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
345 |
+
"model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
346 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
347 |
+
"model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
348 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
349 |
+
"model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
350 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
351 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
352 |
+
"model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
353 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
354 |
+
"model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
355 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
356 |
+
"model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
357 |
+
"model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
358 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
359 |
+
"model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
360 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
361 |
+
"model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
362 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
363 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
364 |
+
"model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
365 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
366 |
+
"model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
367 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
368 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
369 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
370 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
371 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
372 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
373 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
374 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
375 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
376 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
377 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
378 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
379 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
380 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
381 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
382 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
383 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
384 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
385 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
386 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
387 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
388 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
389 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
390 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
391 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
392 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
393 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
394 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
395 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
396 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
397 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
398 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
399 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
400 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
401 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
402 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
403 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
404 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
405 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
406 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
407 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
408 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
409 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
410 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
411 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
412 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
413 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
414 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
415 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
416 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
417 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
418 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
419 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
420 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
421 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
422 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
423 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
424 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
425 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
426 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
427 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
428 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
429 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
430 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
431 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
432 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
433 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
434 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
435 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
436 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
437 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
438 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
439 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
440 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
441 |
+
}
|
442 |
+
}
|
checkpoint-488/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3dcb161b22b2558dbf7e3f8c871050cec383d11a40423fab11f18d5e630639bf
|
3 |
+
size 14512
|
checkpoint-488/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d50af6aef769414a6f28fa1b1bc51ce707dc8ecd15474e03f99a2f10fde086be
|
3 |
+
size 14512
|
checkpoint-488/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d8b2a59c30f5e09b1d7ce944fea889fdfc7000e147a68a8ad08ea9263213eb2
|
3 |
+
size 1064
|
checkpoint-488/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
checkpoint-488/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
3 |
+
size 11421896
|
checkpoint-488/tokenizer_config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|im_end|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"extra_special_tokens": {},
|
203 |
+
"model_max_length": 131072,
|
204 |
+
"pad_token": "<|endoftext|>",
|
205 |
+
"split_special_tokens": false,
|
206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
207 |
+
"unk_token": null
|
208 |
+
}
|
checkpoint-488/trainer_state.json
ADDED
@@ -0,0 +1,3497 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.996935648621042,
|
5 |
+
"eval_steps": 82,
|
6 |
+
"global_step": 488,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0040858018386108275,
|
13 |
+
"grad_norm": 4.75867223739624,
|
14 |
+
"learning_rate": 6.666666666666667e-07,
|
15 |
+
"loss": 1.3989,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.0040858018386108275,
|
20 |
+
"eval_loss": 1.7111468315124512,
|
21 |
+
"eval_runtime": 5.4436,
|
22 |
+
"eval_samples_per_second": 14.512,
|
23 |
+
"eval_steps_per_second": 1.837,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.008171603677221655,
|
28 |
+
"grad_norm": 4.975377559661865,
|
29 |
+
"learning_rate": 1.3333333333333334e-06,
|
30 |
+
"loss": 1.4837,
|
31 |
+
"step": 2
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.012257405515832482,
|
35 |
+
"grad_norm": 5.219729900360107,
|
36 |
+
"learning_rate": 2.0000000000000003e-06,
|
37 |
+
"loss": 1.5181,
|
38 |
+
"step": 3
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.01634320735444331,
|
42 |
+
"grad_norm": 4.57335901260376,
|
43 |
+
"learning_rate": 2.666666666666667e-06,
|
44 |
+
"loss": 1.4106,
|
45 |
+
"step": 4
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.020429009193054137,
|
49 |
+
"grad_norm": 3.840559720993042,
|
50 |
+
"learning_rate": 3.3333333333333333e-06,
|
51 |
+
"loss": 1.3763,
|
52 |
+
"step": 5
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.024514811031664963,
|
56 |
+
"grad_norm": 3.2056212425231934,
|
57 |
+
"learning_rate": 4.000000000000001e-06,
|
58 |
+
"loss": 1.1876,
|
59 |
+
"step": 6
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.028600612870275793,
|
63 |
+
"grad_norm": 2.6987595558166504,
|
64 |
+
"learning_rate": 4.666666666666667e-06,
|
65 |
+
"loss": 1.2154,
|
66 |
+
"step": 7
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.03268641470888662,
|
70 |
+
"grad_norm": 2.378502130508423,
|
71 |
+
"learning_rate": 5.333333333333334e-06,
|
72 |
+
"loss": 1.1594,
|
73 |
+
"step": 8
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.03677221654749745,
|
77 |
+
"grad_norm": 1.7688865661621094,
|
78 |
+
"learning_rate": 6e-06,
|
79 |
+
"loss": 0.8435,
|
80 |
+
"step": 9
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.04085801838610827,
|
84 |
+
"grad_norm": 1.3263744115829468,
|
85 |
+
"learning_rate": 6.666666666666667e-06,
|
86 |
+
"loss": 0.7219,
|
87 |
+
"step": 10
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.0449438202247191,
|
91 |
+
"grad_norm": 1.3509997129440308,
|
92 |
+
"learning_rate": 7.333333333333333e-06,
|
93 |
+
"loss": 0.8172,
|
94 |
+
"step": 11
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.049029622063329927,
|
98 |
+
"grad_norm": 1.4541417360305786,
|
99 |
+
"learning_rate": 8.000000000000001e-06,
|
100 |
+
"loss": 0.7393,
|
101 |
+
"step": 12
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.05311542390194075,
|
105 |
+
"grad_norm": 1.181699275970459,
|
106 |
+
"learning_rate": 8.666666666666668e-06,
|
107 |
+
"loss": 0.664,
|
108 |
+
"step": 13
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.05720122574055159,
|
112 |
+
"grad_norm": 0.9503294825553894,
|
113 |
+
"learning_rate": 9.333333333333334e-06,
|
114 |
+
"loss": 0.6222,
|
115 |
+
"step": 14
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.06128702757916241,
|
119 |
+
"grad_norm": 0.7614471316337585,
|
120 |
+
"learning_rate": 1e-05,
|
121 |
+
"loss": 0.56,
|
122 |
+
"step": 15
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.06537282941777324,
|
126 |
+
"grad_norm": 0.9878801107406616,
|
127 |
+
"learning_rate": 1.0666666666666667e-05,
|
128 |
+
"loss": 0.5548,
|
129 |
+
"step": 16
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.06945863125638406,
|
133 |
+
"grad_norm": 0.8131901025772095,
|
134 |
+
"learning_rate": 1.1333333333333334e-05,
|
135 |
+
"loss": 0.4878,
|
136 |
+
"step": 17
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.0735444330949949,
|
140 |
+
"grad_norm": 0.7322743535041809,
|
141 |
+
"learning_rate": 1.2e-05,
|
142 |
+
"loss": 0.5159,
|
143 |
+
"step": 18
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.07763023493360573,
|
147 |
+
"grad_norm": 0.6428759098052979,
|
148 |
+
"learning_rate": 1.2666666666666667e-05,
|
149 |
+
"loss": 0.4575,
|
150 |
+
"step": 19
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.08171603677221655,
|
154 |
+
"grad_norm": 0.562318742275238,
|
155 |
+
"learning_rate": 1.3333333333333333e-05,
|
156 |
+
"loss": 0.4571,
|
157 |
+
"step": 20
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.08580183861082738,
|
161 |
+
"grad_norm": 0.5707699060440063,
|
162 |
+
"learning_rate": 1.4e-05,
|
163 |
+
"loss": 0.4592,
|
164 |
+
"step": 21
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.0898876404494382,
|
168 |
+
"grad_norm": 0.5272228717803955,
|
169 |
+
"learning_rate": 1.4666666666666666e-05,
|
170 |
+
"loss": 0.4457,
|
171 |
+
"step": 22
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.09397344228804903,
|
175 |
+
"grad_norm": 0.5120903253555298,
|
176 |
+
"learning_rate": 1.5333333333333334e-05,
|
177 |
+
"loss": 0.4034,
|
178 |
+
"step": 23
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.09805924412665985,
|
182 |
+
"grad_norm": 0.46359285712242126,
|
183 |
+
"learning_rate": 1.6000000000000003e-05,
|
184 |
+
"loss": 0.4037,
|
185 |
+
"step": 24
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.10214504596527069,
|
189 |
+
"grad_norm": 0.49431198835372925,
|
190 |
+
"learning_rate": 1.6666666666666667e-05,
|
191 |
+
"loss": 0.3875,
|
192 |
+
"step": 25
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.1062308478038815,
|
196 |
+
"grad_norm": 0.4450273811817169,
|
197 |
+
"learning_rate": 1.7333333333333336e-05,
|
198 |
+
"loss": 0.3797,
|
199 |
+
"step": 26
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.11031664964249234,
|
203 |
+
"grad_norm": 0.4551868140697479,
|
204 |
+
"learning_rate": 1.8e-05,
|
205 |
+
"loss": 0.3512,
|
206 |
+
"step": 27
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.11440245148110317,
|
210 |
+
"grad_norm": 0.5083736777305603,
|
211 |
+
"learning_rate": 1.866666666666667e-05,
|
212 |
+
"loss": 0.3906,
|
213 |
+
"step": 28
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.118488253319714,
|
217 |
+
"grad_norm": 0.47295963764190674,
|
218 |
+
"learning_rate": 1.9333333333333333e-05,
|
219 |
+
"loss": 0.3554,
|
220 |
+
"step": 29
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 0.12257405515832483,
|
224 |
+
"grad_norm": 0.4848616123199463,
|
225 |
+
"learning_rate": 2e-05,
|
226 |
+
"loss": 0.3712,
|
227 |
+
"step": 30
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 0.12665985699693566,
|
231 |
+
"grad_norm": 0.4398118555545807,
|
232 |
+
"learning_rate": 1.999989986294826e-05,
|
233 |
+
"loss": 0.3694,
|
234 |
+
"step": 31
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.13074565883554648,
|
238 |
+
"grad_norm": 0.41183602809906006,
|
239 |
+
"learning_rate": 1.9999599453798523e-05,
|
240 |
+
"loss": 0.3336,
|
241 |
+
"step": 32
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 0.1348314606741573,
|
245 |
+
"grad_norm": 0.492713987827301,
|
246 |
+
"learning_rate": 1.999909877856721e-05,
|
247 |
+
"loss": 0.3657,
|
248 |
+
"step": 33
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.13891726251276812,
|
252 |
+
"grad_norm": 0.4517015516757965,
|
253 |
+
"learning_rate": 1.9998397847281548e-05,
|
254 |
+
"loss": 0.367,
|
255 |
+
"step": 34
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.14300306435137897,
|
259 |
+
"grad_norm": 0.4641965627670288,
|
260 |
+
"learning_rate": 1.9997496673979375e-05,
|
261 |
+
"loss": 0.3565,
|
262 |
+
"step": 35
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"epoch": 0.1470888661899898,
|
266 |
+
"grad_norm": 0.4812065064907074,
|
267 |
+
"learning_rate": 1.9996395276708856e-05,
|
268 |
+
"loss": 0.3773,
|
269 |
+
"step": 36
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.1511746680286006,
|
273 |
+
"grad_norm": 0.42300987243652344,
|
274 |
+
"learning_rate": 1.999509367752813e-05,
|
275 |
+
"loss": 0.3643,
|
276 |
+
"step": 37
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 0.15526046986721145,
|
280 |
+
"grad_norm": 0.4512963593006134,
|
281 |
+
"learning_rate": 1.9993591902504854e-05,
|
282 |
+
"loss": 0.3409,
|
283 |
+
"step": 38
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"epoch": 0.15934627170582227,
|
287 |
+
"grad_norm": 0.41626426577568054,
|
288 |
+
"learning_rate": 1.9991889981715696e-05,
|
289 |
+
"loss": 0.3546,
|
290 |
+
"step": 39
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.1634320735444331,
|
294 |
+
"grad_norm": 0.43549367785453796,
|
295 |
+
"learning_rate": 1.9989987949245725e-05,
|
296 |
+
"loss": 0.3091,
|
297 |
+
"step": 40
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.1675178753830439,
|
301 |
+
"grad_norm": 0.4042600393295288,
|
302 |
+
"learning_rate": 1.9987885843187717e-05,
|
303 |
+
"loss": 0.3174,
|
304 |
+
"step": 41
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 0.17160367722165476,
|
308 |
+
"grad_norm": 0.4394363462924957,
|
309 |
+
"learning_rate": 1.9985583705641418e-05,
|
310 |
+
"loss": 0.3601,
|
311 |
+
"step": 42
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 0.17568947906026558,
|
315 |
+
"grad_norm": 0.4294170141220093,
|
316 |
+
"learning_rate": 1.9983081582712684e-05,
|
317 |
+
"loss": 0.3283,
|
318 |
+
"step": 43
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 0.1797752808988764,
|
322 |
+
"grad_norm": 0.44452300667762756,
|
323 |
+
"learning_rate": 1.998037952451255e-05,
|
324 |
+
"loss": 0.3367,
|
325 |
+
"step": 44
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"epoch": 0.18386108273748722,
|
329 |
+
"grad_norm": 0.4113090932369232,
|
330 |
+
"learning_rate": 1.9977477585156252e-05,
|
331 |
+
"loss": 0.2986,
|
332 |
+
"step": 45
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.18794688457609807,
|
336 |
+
"grad_norm": 0.44443050026893616,
|
337 |
+
"learning_rate": 1.9974375822762117e-05,
|
338 |
+
"loss": 0.3463,
|
339 |
+
"step": 46
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.1920326864147089,
|
343 |
+
"grad_norm": 0.4303809106349945,
|
344 |
+
"learning_rate": 1.9971074299450414e-05,
|
345 |
+
"loss": 0.3281,
|
346 |
+
"step": 47
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 0.1961184882533197,
|
350 |
+
"grad_norm": 0.4178621470928192,
|
351 |
+
"learning_rate": 1.9967573081342103e-05,
|
352 |
+
"loss": 0.3629,
|
353 |
+
"step": 48
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.20020429009193055,
|
357 |
+
"grad_norm": 0.38657113909721375,
|
358 |
+
"learning_rate": 1.9963872238557516e-05,
|
359 |
+
"loss": 0.3225,
|
360 |
+
"step": 49
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 0.20429009193054137,
|
364 |
+
"grad_norm": 0.5300270915031433,
|
365 |
+
"learning_rate": 1.9959971845214953e-05,
|
366 |
+
"loss": 0.3279,
|
367 |
+
"step": 50
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 0.2083758937691522,
|
371 |
+
"grad_norm": 0.4061177968978882,
|
372 |
+
"learning_rate": 1.9955871979429188e-05,
|
373 |
+
"loss": 0.3278,
|
374 |
+
"step": 51
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.212461695607763,
|
378 |
+
"grad_norm": 0.41504785418510437,
|
379 |
+
"learning_rate": 1.9951572723309918e-05,
|
380 |
+
"loss": 0.3096,
|
381 |
+
"step": 52
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.21654749744637386,
|
385 |
+
"grad_norm": 0.4208971858024597,
|
386 |
+
"learning_rate": 1.9947074162960113e-05,
|
387 |
+
"loss": 0.3187,
|
388 |
+
"step": 53
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 0.22063329928498468,
|
392 |
+
"grad_norm": 0.36819201707839966,
|
393 |
+
"learning_rate": 1.9942376388474282e-05,
|
394 |
+
"loss": 0.3167,
|
395 |
+
"step": 54
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.2247191011235955,
|
399 |
+
"grad_norm": 0.43327596783638,
|
400 |
+
"learning_rate": 1.993747949393668e-05,
|
401 |
+
"loss": 0.3188,
|
402 |
+
"step": 55
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 0.22880490296220635,
|
406 |
+
"grad_norm": 0.4377865791320801,
|
407 |
+
"learning_rate": 1.9932383577419432e-05,
|
408 |
+
"loss": 0.3478,
|
409 |
+
"step": 56
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 0.23289070480081717,
|
413 |
+
"grad_norm": 0.43336397409439087,
|
414 |
+
"learning_rate": 1.992708874098054e-05,
|
415 |
+
"loss": 0.3025,
|
416 |
+
"step": 57
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.236976506639428,
|
420 |
+
"grad_norm": 0.4399135410785675,
|
421 |
+
"learning_rate": 1.9921595090661872e-05,
|
422 |
+
"loss": 0.3098,
|
423 |
+
"step": 58
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.2410623084780388,
|
427 |
+
"grad_norm": 0.4253901243209839,
|
428 |
+
"learning_rate": 1.991590273648702e-05,
|
429 |
+
"loss": 0.3303,
|
430 |
+
"step": 59
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"epoch": 0.24514811031664965,
|
434 |
+
"grad_norm": 0.39254307746887207,
|
435 |
+
"learning_rate": 1.9910011792459086e-05,
|
436 |
+
"loss": 0.3018,
|
437 |
+
"step": 60
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.24923391215526047,
|
441 |
+
"grad_norm": 0.4217659831047058,
|
442 |
+
"learning_rate": 1.9903922376558432e-05,
|
443 |
+
"loss": 0.285,
|
444 |
+
"step": 61
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 0.2533197139938713,
|
448 |
+
"grad_norm": 0.48558109998703003,
|
449 |
+
"learning_rate": 1.989763461074029e-05,
|
450 |
+
"loss": 0.3221,
|
451 |
+
"step": 62
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 0.2574055158324821,
|
455 |
+
"grad_norm": 0.47454214096069336,
|
456 |
+
"learning_rate": 1.989114862093232e-05,
|
457 |
+
"loss": 0.3056,
|
458 |
+
"step": 63
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.26149131767109296,
|
462 |
+
"grad_norm": 0.4013993442058563,
|
463 |
+
"learning_rate": 1.9884464537032103e-05,
|
464 |
+
"loss": 0.3376,
|
465 |
+
"step": 64
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.26557711950970375,
|
469 |
+
"grad_norm": 0.4264606237411499,
|
470 |
+
"learning_rate": 1.9877582492904533e-05,
|
471 |
+
"loss": 0.3158,
|
472 |
+
"step": 65
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"epoch": 0.2696629213483146,
|
476 |
+
"grad_norm": 0.5440453886985779,
|
477 |
+
"learning_rate": 1.9870502626379127e-05,
|
478 |
+
"loss": 0.3056,
|
479 |
+
"step": 66
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.27374872318692545,
|
483 |
+
"grad_norm": 0.40003377199172974,
|
484 |
+
"learning_rate": 1.9863225079247286e-05,
|
485 |
+
"loss": 0.3357,
|
486 |
+
"step": 67
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"epoch": 0.27783452502553624,
|
490 |
+
"grad_norm": 0.39155763387680054,
|
491 |
+
"learning_rate": 1.985574999725943e-05,
|
492 |
+
"loss": 0.2819,
|
493 |
+
"step": 68
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"epoch": 0.2819203268641471,
|
497 |
+
"grad_norm": 0.4461009204387665,
|
498 |
+
"learning_rate": 1.9848077530122083e-05,
|
499 |
+
"loss": 0.2732,
|
500 |
+
"step": 69
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.28600612870275793,
|
504 |
+
"grad_norm": 0.38970062136650085,
|
505 |
+
"learning_rate": 1.9840207831494903e-05,
|
506 |
+
"loss": 0.2957,
|
507 |
+
"step": 70
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.2900919305413687,
|
511 |
+
"grad_norm": 0.4369664788246155,
|
512 |
+
"learning_rate": 1.983214105898757e-05,
|
513 |
+
"loss": 0.3158,
|
514 |
+
"step": 71
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"epoch": 0.2941777323799796,
|
518 |
+
"grad_norm": 0.4734659492969513,
|
519 |
+
"learning_rate": 1.9823877374156647e-05,
|
520 |
+
"loss": 0.3054,
|
521 |
+
"step": 72
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 0.2982635342185904,
|
525 |
+
"grad_norm": 0.3933468461036682,
|
526 |
+
"learning_rate": 1.9815416942502346e-05,
|
527 |
+
"loss": 0.286,
|
528 |
+
"step": 73
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"epoch": 0.3023493360572012,
|
532 |
+
"grad_norm": 0.4472273290157318,
|
533 |
+
"learning_rate": 1.98067599334652e-05,
|
534 |
+
"loss": 0.3149,
|
535 |
+
"step": 74
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"epoch": 0.30643513789581206,
|
539 |
+
"grad_norm": 0.43143752217292786,
|
540 |
+
"learning_rate": 1.979790652042268e-05,
|
541 |
+
"loss": 0.2792,
|
542 |
+
"step": 75
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.3105209397344229,
|
546 |
+
"grad_norm": 0.4325246512889862,
|
547 |
+
"learning_rate": 1.978885688068572e-05,
|
548 |
+
"loss": 0.3024,
|
549 |
+
"step": 76
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.3146067415730337,
|
553 |
+
"grad_norm": 0.48796600103378296,
|
554 |
+
"learning_rate": 1.9779611195495177e-05,
|
555 |
+
"loss": 0.3343,
|
556 |
+
"step": 77
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 0.31869254341164455,
|
560 |
+
"grad_norm": 0.40505748987197876,
|
561 |
+
"learning_rate": 1.977016965001817e-05,
|
562 |
+
"loss": 0.2753,
|
563 |
+
"step": 78
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 0.32277834525025534,
|
567 |
+
"grad_norm": 0.40753036737442017,
|
568 |
+
"learning_rate": 1.976053243334442e-05,
|
569 |
+
"loss": 0.3073,
|
570 |
+
"step": 79
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 0.3268641470888662,
|
574 |
+
"grad_norm": 0.4000149071216583,
|
575 |
+
"learning_rate": 1.9750699738482403e-05,
|
576 |
+
"loss": 0.284,
|
577 |
+
"step": 80
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"epoch": 0.33094994892747703,
|
581 |
+
"grad_norm": 0.42099907994270325,
|
582 |
+
"learning_rate": 1.9740671762355548e-05,
|
583 |
+
"loss": 0.2881,
|
584 |
+
"step": 81
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.3350357507660878,
|
588 |
+
"grad_norm": 0.4155902564525604,
|
589 |
+
"learning_rate": 1.973044870579824e-05,
|
590 |
+
"loss": 0.2969,
|
591 |
+
"step": 82
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.3350357507660878,
|
595 |
+
"eval_loss": 0.31923907995224,
|
596 |
+
"eval_runtime": 5.81,
|
597 |
+
"eval_samples_per_second": 13.597,
|
598 |
+
"eval_steps_per_second": 1.721,
|
599 |
+
"step": 82
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"epoch": 0.3391215526046987,
|
603 |
+
"grad_norm": 0.39282551407814026,
|
604 |
+
"learning_rate": 1.972003077355183e-05,
|
605 |
+
"loss": 0.2948,
|
606 |
+
"step": 83
|
607 |
+
},
|
608 |
+
{
|
609 |
+
"epoch": 0.3432073544433095,
|
610 |
+
"grad_norm": 0.4381943643093109,
|
611 |
+
"learning_rate": 1.9709418174260523e-05,
|
612 |
+
"loss": 0.3454,
|
613 |
+
"step": 84
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"epoch": 0.3472931562819203,
|
617 |
+
"grad_norm": 0.4093382954597473,
|
618 |
+
"learning_rate": 1.9698611120467196e-05,
|
619 |
+
"loss": 0.2962,
|
620 |
+
"step": 85
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 0.35137895812053116,
|
624 |
+
"grad_norm": 0.450135737657547,
|
625 |
+
"learning_rate": 1.9687609828609156e-05,
|
626 |
+
"loss": 0.3243,
|
627 |
+
"step": 86
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 0.355464759959142,
|
631 |
+
"grad_norm": 0.4139018654823303,
|
632 |
+
"learning_rate": 1.9676414519013782e-05,
|
633 |
+
"loss": 0.2996,
|
634 |
+
"step": 87
|
635 |
+
},
|
636 |
+
{
|
637 |
+
"epoch": 0.3595505617977528,
|
638 |
+
"grad_norm": 0.40026575326919556,
|
639 |
+
"learning_rate": 1.966502541589414e-05,
|
640 |
+
"loss": 0.2788,
|
641 |
+
"step": 88
|
642 |
+
},
|
643 |
+
{
|
644 |
+
"epoch": 0.36363636363636365,
|
645 |
+
"grad_norm": 0.36627820134162903,
|
646 |
+
"learning_rate": 1.965344274734447e-05,
|
647 |
+
"loss": 0.2857,
|
648 |
+
"step": 89
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"epoch": 0.36772216547497444,
|
652 |
+
"grad_norm": 0.42685478925704956,
|
653 |
+
"learning_rate": 1.9641666745335626e-05,
|
654 |
+
"loss": 0.2995,
|
655 |
+
"step": 90
|
656 |
+
},
|
657 |
+
{
|
658 |
+
"epoch": 0.3718079673135853,
|
659 |
+
"grad_norm": 0.374288946390152,
|
660 |
+
"learning_rate": 1.9629697645710432e-05,
|
661 |
+
"loss": 0.3056,
|
662 |
+
"step": 91
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 0.37589376915219613,
|
666 |
+
"grad_norm": 0.3649786114692688,
|
667 |
+
"learning_rate": 1.961753568817896e-05,
|
668 |
+
"loss": 0.2854,
|
669 |
+
"step": 92
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 0.3799795709908069,
|
673 |
+
"grad_norm": 0.38573023676872253,
|
674 |
+
"learning_rate": 1.9605181116313725e-05,
|
675 |
+
"loss": 0.2667,
|
676 |
+
"step": 93
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 0.3840653728294178,
|
680 |
+
"grad_norm": 0.37577807903289795,
|
681 |
+
"learning_rate": 1.9592634177544803e-05,
|
682 |
+
"loss": 0.2815,
|
683 |
+
"step": 94
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"epoch": 0.3881511746680286,
|
687 |
+
"grad_norm": 0.4320047199726105,
|
688 |
+
"learning_rate": 1.957989512315489e-05,
|
689 |
+
"loss": 0.3094,
|
690 |
+
"step": 95
|
691 |
+
},
|
692 |
+
{
|
693 |
+
"epoch": 0.3922369765066394,
|
694 |
+
"grad_norm": 0.3816889524459839,
|
695 |
+
"learning_rate": 1.9566964208274254e-05,
|
696 |
+
"loss": 0.292,
|
697 |
+
"step": 96
|
698 |
+
},
|
699 |
+
{
|
700 |
+
"epoch": 0.39632277834525026,
|
701 |
+
"grad_norm": 0.3946669399738312,
|
702 |
+
"learning_rate": 1.9553841691875632e-05,
|
703 |
+
"loss": 0.3002,
|
704 |
+
"step": 97
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 0.4004085801838611,
|
708 |
+
"grad_norm": 0.36885613203048706,
|
709 |
+
"learning_rate": 1.9540527836769047e-05,
|
710 |
+
"loss": 0.2583,
|
711 |
+
"step": 98
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 0.4044943820224719,
|
715 |
+
"grad_norm": 0.37865176796913147,
|
716 |
+
"learning_rate": 1.9527022909596537e-05,
|
717 |
+
"loss": 0.2787,
|
718 |
+
"step": 99
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"epoch": 0.40858018386108275,
|
722 |
+
"grad_norm": 0.4429585337638855,
|
723 |
+
"learning_rate": 1.951332718082682e-05,
|
724 |
+
"loss": 0.3226,
|
725 |
+
"step": 100
|
726 |
+
},
|
727 |
+
{
|
728 |
+
"epoch": 0.41266598569969354,
|
729 |
+
"grad_norm": 0.3926009237766266,
|
730 |
+
"learning_rate": 1.9499440924749878e-05,
|
731 |
+
"loss": 0.2914,
|
732 |
+
"step": 101
|
733 |
+
},
|
734 |
+
{
|
735 |
+
"epoch": 0.4167517875383044,
|
736 |
+
"grad_norm": 0.3467339277267456,
|
737 |
+
"learning_rate": 1.9485364419471454e-05,
|
738 |
+
"loss": 0.266,
|
739 |
+
"step": 102
|
740 |
+
},
|
741 |
+
{
|
742 |
+
"epoch": 0.42083758937691523,
|
743 |
+
"grad_norm": 0.4126642644405365,
|
744 |
+
"learning_rate": 1.9471097946907506e-05,
|
745 |
+
"loss": 0.2775,
|
746 |
+
"step": 103
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 0.424923391215526,
|
750 |
+
"grad_norm": 0.44586020708084106,
|
751 |
+
"learning_rate": 1.9456641792778527e-05,
|
752 |
+
"loss": 0.2884,
|
753 |
+
"step": 104
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 0.4290091930541369,
|
757 |
+
"grad_norm": 0.3969588279724121,
|
758 |
+
"learning_rate": 1.9441996246603848e-05,
|
759 |
+
"loss": 0.2835,
|
760 |
+
"step": 105
|
761 |
+
},
|
762 |
+
{
|
763 |
+
"epoch": 0.4330949948927477,
|
764 |
+
"grad_norm": 0.38928356766700745,
|
765 |
+
"learning_rate": 1.9427161601695833e-05,
|
766 |
+
"loss": 0.2826,
|
767 |
+
"step": 106
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"epoch": 0.4371807967313585,
|
771 |
+
"grad_norm": 0.4089799225330353,
|
772 |
+
"learning_rate": 1.9412138155154e-05,
|
773 |
+
"loss": 0.2817,
|
774 |
+
"step": 107
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 0.44126659856996936,
|
778 |
+
"grad_norm": 0.375505656003952,
|
779 |
+
"learning_rate": 1.9396926207859085e-05,
|
780 |
+
"loss": 0.2882,
|
781 |
+
"step": 108
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 0.4453524004085802,
|
785 |
+
"grad_norm": 0.406118780374527,
|
786 |
+
"learning_rate": 1.9381526064466995e-05,
|
787 |
+
"loss": 0.2861,
|
788 |
+
"step": 109
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 0.449438202247191,
|
792 |
+
"grad_norm": 0.3882409334182739,
|
793 |
+
"learning_rate": 1.9365938033402715e-05,
|
794 |
+
"loss": 0.261,
|
795 |
+
"step": 110
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 0.45352400408580185,
|
799 |
+
"grad_norm": 0.4351583421230316,
|
800 |
+
"learning_rate": 1.9350162426854152e-05,
|
801 |
+
"loss": 0.3014,
|
802 |
+
"step": 111
|
803 |
+
},
|
804 |
+
{
|
805 |
+
"epoch": 0.4576098059244127,
|
806 |
+
"grad_norm": 0.3621097505092621,
|
807 |
+
"learning_rate": 1.933419956076584e-05,
|
808 |
+
"loss": 0.2728,
|
809 |
+
"step": 112
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"epoch": 0.4616956077630235,
|
813 |
+
"grad_norm": 0.3881032466888428,
|
814 |
+
"learning_rate": 1.9318049754832656e-05,
|
815 |
+
"loss": 0.2736,
|
816 |
+
"step": 113
|
817 |
+
},
|
818 |
+
{
|
819 |
+
"epoch": 0.46578140960163433,
|
820 |
+
"grad_norm": 0.37627285718917847,
|
821 |
+
"learning_rate": 1.9301713332493386e-05,
|
822 |
+
"loss": 0.2707,
|
823 |
+
"step": 114
|
824 |
+
},
|
825 |
+
{
|
826 |
+
"epoch": 0.4698672114402451,
|
827 |
+
"grad_norm": 0.4285913109779358,
|
828 |
+
"learning_rate": 1.9285190620924267e-05,
|
829 |
+
"loss": 0.2815,
|
830 |
+
"step": 115
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"epoch": 0.473953013278856,
|
834 |
+
"grad_norm": 0.35718926787376404,
|
835 |
+
"learning_rate": 1.926848195103242e-05,
|
836 |
+
"loss": 0.2621,
|
837 |
+
"step": 116
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 0.4780388151174668,
|
841 |
+
"grad_norm": 0.3852044641971588,
|
842 |
+
"learning_rate": 1.925158765744924e-05,
|
843 |
+
"loss": 0.283,
|
844 |
+
"step": 117
|
845 |
+
},
|
846 |
+
{
|
847 |
+
"epoch": 0.4821246169560776,
|
848 |
+
"grad_norm": 0.3884032368659973,
|
849 |
+
"learning_rate": 1.923450807852367e-05,
|
850 |
+
"loss": 0.2711,
|
851 |
+
"step": 118
|
852 |
+
},
|
853 |
+
{
|
854 |
+
"epoch": 0.48621041879468846,
|
855 |
+
"grad_norm": 0.4398249685764313,
|
856 |
+
"learning_rate": 1.9217243556315445e-05,
|
857 |
+
"loss": 0.2757,
|
858 |
+
"step": 119
|
859 |
+
},
|
860 |
+
{
|
861 |
+
"epoch": 0.4902962206332993,
|
862 |
+
"grad_norm": 0.36689624190330505,
|
863 |
+
"learning_rate": 1.9199794436588244e-05,
|
864 |
+
"loss": 0.2669,
|
865 |
+
"step": 120
|
866 |
+
},
|
867 |
+
{
|
868 |
+
"epoch": 0.4943820224719101,
|
869 |
+
"grad_norm": 0.46398666501045227,
|
870 |
+
"learning_rate": 1.9182161068802742e-05,
|
871 |
+
"loss": 0.2683,
|
872 |
+
"step": 121
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 0.49846782431052095,
|
876 |
+
"grad_norm": 0.40020987391471863,
|
877 |
+
"learning_rate": 1.916434380610963e-05,
|
878 |
+
"loss": 0.2927,
|
879 |
+
"step": 122
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 0.5025536261491318,
|
883 |
+
"grad_norm": 0.4032459259033203,
|
884 |
+
"learning_rate": 1.9146343005342546e-05,
|
885 |
+
"loss": 0.31,
|
886 |
+
"step": 123
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"epoch": 0.5066394279877426,
|
890 |
+
"grad_norm": 0.44166550040245056,
|
891 |
+
"learning_rate": 1.912815902701091e-05,
|
892 |
+
"loss": 0.2842,
|
893 |
+
"step": 124
|
894 |
+
},
|
895 |
+
{
|
896 |
+
"epoch": 0.5107252298263534,
|
897 |
+
"grad_norm": 0.39895153045654297,
|
898 |
+
"learning_rate": 1.9109792235292715e-05,
|
899 |
+
"loss": 0.2766,
|
900 |
+
"step": 125
|
901 |
+
},
|
902 |
+
{
|
903 |
+
"epoch": 0.5148110316649642,
|
904 |
+
"grad_norm": 0.3415013253688812,
|
905 |
+
"learning_rate": 1.909124299802724e-05,
|
906 |
+
"loss": 0.2761,
|
907 |
+
"step": 126
|
908 |
+
},
|
909 |
+
{
|
910 |
+
"epoch": 0.5188968335035751,
|
911 |
+
"grad_norm": 0.3837663531303406,
|
912 |
+
"learning_rate": 1.9072511686707663e-05,
|
913 |
+
"loss": 0.2797,
|
914 |
+
"step": 127
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 0.5229826353421859,
|
918 |
+
"grad_norm": 0.4030819833278656,
|
919 |
+
"learning_rate": 1.9053598676473656e-05,
|
920 |
+
"loss": 0.2932,
|
921 |
+
"step": 128
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"epoch": 0.5270684371807968,
|
925 |
+
"grad_norm": 0.40120938420295715,
|
926 |
+
"learning_rate": 1.9034504346103825e-05,
|
927 |
+
"loss": 0.2698,
|
928 |
+
"step": 129
|
929 |
+
},
|
930 |
+
{
|
931 |
+
"epoch": 0.5311542390194075,
|
932 |
+
"grad_norm": 0.3621327579021454,
|
933 |
+
"learning_rate": 1.9015229078008163e-05,
|
934 |
+
"loss": 0.298,
|
935 |
+
"step": 130
|
936 |
+
},
|
937 |
+
{
|
938 |
+
"epoch": 0.5352400408580184,
|
939 |
+
"grad_norm": 0.33476150035858154,
|
940 |
+
"learning_rate": 1.8995773258220374e-05,
|
941 |
+
"loss": 0.2612,
|
942 |
+
"step": 131
|
943 |
+
},
|
944 |
+
{
|
945 |
+
"epoch": 0.5393258426966292,
|
946 |
+
"grad_norm": 0.3523140549659729,
|
947 |
+
"learning_rate": 1.8976137276390145e-05,
|
948 |
+
"loss": 0.2671,
|
949 |
+
"step": 132
|
950 |
+
},
|
951 |
+
{
|
952 |
+
"epoch": 0.54341164453524,
|
953 |
+
"grad_norm": 0.3624558746814728,
|
954 |
+
"learning_rate": 1.8956321525775337e-05,
|
955 |
+
"loss": 0.2687,
|
956 |
+
"step": 133
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"epoch": 0.5474974463738509,
|
960 |
+
"grad_norm": 0.35892072319984436,
|
961 |
+
"learning_rate": 1.8936326403234125e-05,
|
962 |
+
"loss": 0.2755,
|
963 |
+
"step": 134
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"epoch": 0.5515832482124617,
|
967 |
+
"grad_norm": 0.3678256869316101,
|
968 |
+
"learning_rate": 1.891615230921703e-05,
|
969 |
+
"loss": 0.278,
|
970 |
+
"step": 135
|
971 |
+
},
|
972 |
+
{
|
973 |
+
"epoch": 0.5556690500510725,
|
974 |
+
"grad_norm": 0.38125160336494446,
|
975 |
+
"learning_rate": 1.8895799647758912e-05,
|
976 |
+
"loss": 0.2765,
|
977 |
+
"step": 136
|
978 |
+
},
|
979 |
+
{
|
980 |
+
"epoch": 0.5597548518896833,
|
981 |
+
"grad_norm": 0.40152257680892944,
|
982 |
+
"learning_rate": 1.8875268826470875e-05,
|
983 |
+
"loss": 0.3239,
|
984 |
+
"step": 137
|
985 |
+
},
|
986 |
+
{
|
987 |
+
"epoch": 0.5638406537282942,
|
988 |
+
"grad_norm": 0.3935178816318512,
|
989 |
+
"learning_rate": 1.8854560256532098e-05,
|
990 |
+
"loss": 0.2956,
|
991 |
+
"step": 138
|
992 |
+
},
|
993 |
+
{
|
994 |
+
"epoch": 0.567926455566905,
|
995 |
+
"grad_norm": 0.4389478266239166,
|
996 |
+
"learning_rate": 1.8833674352681613e-05,
|
997 |
+
"loss": 0.2968,
|
998 |
+
"step": 139
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 0.5720122574055159,
|
1002 |
+
"grad_norm": 0.3884355127811432,
|
1003 |
+
"learning_rate": 1.881261153320999e-05,
|
1004 |
+
"loss": 0.3074,
|
1005 |
+
"step": 140
|
1006 |
+
},
|
1007 |
+
{
|
1008 |
+
"epoch": 0.5760980592441267,
|
1009 |
+
"grad_norm": 0.4054373502731323,
|
1010 |
+
"learning_rate": 1.879137221995095e-05,
|
1011 |
+
"loss": 0.2996,
|
1012 |
+
"step": 141
|
1013 |
+
},
|
1014 |
+
{
|
1015 |
+
"epoch": 0.5801838610827375,
|
1016 |
+
"grad_norm": 0.4423893690109253,
|
1017 |
+
"learning_rate": 1.8769956838272937e-05,
|
1018 |
+
"loss": 0.3082,
|
1019 |
+
"step": 142
|
1020 |
+
},
|
1021 |
+
{
|
1022 |
+
"epoch": 0.5842696629213483,
|
1023 |
+
"grad_norm": 0.42978307604789734,
|
1024 |
+
"learning_rate": 1.8748365817070586e-05,
|
1025 |
+
"loss": 0.2878,
|
1026 |
+
"step": 143
|
1027 |
+
},
|
1028 |
+
{
|
1029 |
+
"epoch": 0.5883554647599591,
|
1030 |
+
"grad_norm": 0.38182228803634644,
|
1031 |
+
"learning_rate": 1.8726599588756144e-05,
|
1032 |
+
"loss": 0.2649,
|
1033 |
+
"step": 144
|
1034 |
+
},
|
1035 |
+
{
|
1036 |
+
"epoch": 0.59244126659857,
|
1037 |
+
"grad_norm": 0.43477413058280945,
|
1038 |
+
"learning_rate": 1.8704658589250795e-05,
|
1039 |
+
"loss": 0.271,
|
1040 |
+
"step": 145
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 0.5965270684371808,
|
1044 |
+
"grad_norm": 0.3876926898956299,
|
1045 |
+
"learning_rate": 1.868254325797594e-05,
|
1046 |
+
"loss": 0.2804,
|
1047 |
+
"step": 146
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"epoch": 0.6006128702757916,
|
1051 |
+
"grad_norm": 0.39310601353645325,
|
1052 |
+
"learning_rate": 1.866025403784439e-05,
|
1053 |
+
"loss": 0.2767,
|
1054 |
+
"step": 147
|
1055 |
+
},
|
1056 |
+
{
|
1057 |
+
"epoch": 0.6046986721144024,
|
1058 |
+
"grad_norm": 0.421290785074234,
|
1059 |
+
"learning_rate": 1.8637791375251505e-05,
|
1060 |
+
"loss": 0.2668,
|
1061 |
+
"step": 148
|
1062 |
+
},
|
1063 |
+
{
|
1064 |
+
"epoch": 0.6087844739530133,
|
1065 |
+
"grad_norm": 0.450023353099823,
|
1066 |
+
"learning_rate": 1.8615155720066247e-05,
|
1067 |
+
"loss": 0.2888,
|
1068 |
+
"step": 149
|
1069 |
+
},
|
1070 |
+
{
|
1071 |
+
"epoch": 0.6128702757916241,
|
1072 |
+
"grad_norm": 0.3645341396331787,
|
1073 |
+
"learning_rate": 1.859234752562217e-05,
|
1074 |
+
"loss": 0.2828,
|
1075 |
+
"step": 150
|
1076 |
+
},
|
1077 |
+
{
|
1078 |
+
"epoch": 0.616956077630235,
|
1079 |
+
"grad_norm": 0.41853606700897217,
|
1080 |
+
"learning_rate": 1.8569367248708343e-05,
|
1081 |
+
"loss": 0.284,
|
1082 |
+
"step": 151
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 0.6210418794688458,
|
1086 |
+
"grad_norm": 0.3675737679004669,
|
1087 |
+
"learning_rate": 1.8546215349560204e-05,
|
1088 |
+
"loss": 0.2933,
|
1089 |
+
"step": 152
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 0.6251276813074566,
|
1093 |
+
"grad_norm": 0.3668256998062134,
|
1094 |
+
"learning_rate": 1.8522892291850335e-05,
|
1095 |
+
"loss": 0.2729,
|
1096 |
+
"step": 153
|
1097 |
+
},
|
1098 |
+
{
|
1099 |
+
"epoch": 0.6292134831460674,
|
1100 |
+
"grad_norm": 0.34576019644737244,
|
1101 |
+
"learning_rate": 1.849939854267919e-05,
|
1102 |
+
"loss": 0.2612,
|
1103 |
+
"step": 154
|
1104 |
+
},
|
1105 |
+
{
|
1106 |
+
"epoch": 0.6332992849846782,
|
1107 |
+
"grad_norm": 0.41370126605033875,
|
1108 |
+
"learning_rate": 1.847573457256571e-05,
|
1109 |
+
"loss": 0.2693,
|
1110 |
+
"step": 155
|
1111 |
+
},
|
1112 |
+
{
|
1113 |
+
"epoch": 0.6373850868232891,
|
1114 |
+
"grad_norm": 0.4205566644668579,
|
1115 |
+
"learning_rate": 1.845190085543795e-05,
|
1116 |
+
"loss": 0.2746,
|
1117 |
+
"step": 156
|
1118 |
+
},
|
1119 |
+
{
|
1120 |
+
"epoch": 0.6414708886618999,
|
1121 |
+
"grad_norm": 0.3997614085674286,
|
1122 |
+
"learning_rate": 1.8427897868623535e-05,
|
1123 |
+
"loss": 0.2813,
|
1124 |
+
"step": 157
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"epoch": 0.6455566905005107,
|
1128 |
+
"grad_norm": 0.41005200147628784,
|
1129 |
+
"learning_rate": 1.840372609284013e-05,
|
1130 |
+
"loss": 0.2647,
|
1131 |
+
"step": 158
|
1132 |
+
},
|
1133 |
+
{
|
1134 |
+
"epoch": 0.6496424923391215,
|
1135 |
+
"grad_norm": 0.4547550678253174,
|
1136 |
+
"learning_rate": 1.8379386012185813e-05,
|
1137 |
+
"loss": 0.2791,
|
1138 |
+
"step": 159
|
1139 |
+
},
|
1140 |
+
{
|
1141 |
+
"epoch": 0.6537282941777324,
|
1142 |
+
"grad_norm": 0.4075047969818115,
|
1143 |
+
"learning_rate": 1.8354878114129368e-05,
|
1144 |
+
"loss": 0.2769,
|
1145 |
+
"step": 160
|
1146 |
+
},
|
1147 |
+
{
|
1148 |
+
"epoch": 0.6578140960163432,
|
1149 |
+
"grad_norm": 0.37060046195983887,
|
1150 |
+
"learning_rate": 1.8330202889500518e-05,
|
1151 |
+
"loss": 0.3028,
|
1152 |
+
"step": 161
|
1153 |
+
},
|
1154 |
+
{
|
1155 |
+
"epoch": 0.6618998978549541,
|
1156 |
+
"grad_norm": 0.35541340708732605,
|
1157 |
+
"learning_rate": 1.8305360832480118e-05,
|
1158 |
+
"loss": 0.2981,
|
1159 |
+
"step": 162
|
1160 |
+
},
|
1161 |
+
{
|
1162 |
+
"epoch": 0.6659856996935649,
|
1163 |
+
"grad_norm": 0.3970625400543213,
|
1164 |
+
"learning_rate": 1.8280352440590236e-05,
|
1165 |
+
"loss": 0.2634,
|
1166 |
+
"step": 163
|
1167 |
+
},
|
1168 |
+
{
|
1169 |
+
"epoch": 0.6700715015321757,
|
1170 |
+
"grad_norm": 0.4075865149497986,
|
1171 |
+
"learning_rate": 1.82551782146842e-05,
|
1172 |
+
"loss": 0.3027,
|
1173 |
+
"step": 164
|
1174 |
+
},
|
1175 |
+
{
|
1176 |
+
"epoch": 0.6700715015321757,
|
1177 |
+
"eval_loss": 0.291363924741745,
|
1178 |
+
"eval_runtime": 5.7936,
|
1179 |
+
"eval_samples_per_second": 13.636,
|
1180 |
+
"eval_steps_per_second": 1.726,
|
1181 |
+
"step": 164
|
1182 |
+
},
|
1183 |
+
{
|
1184 |
+
"epoch": 0.6741573033707865,
|
1185 |
+
"grad_norm": 0.34390076994895935,
|
1186 |
+
"learning_rate": 1.8229838658936566e-05,
|
1187 |
+
"loss": 0.2536,
|
1188 |
+
"step": 165
|
1189 |
+
},
|
1190 |
+
{
|
1191 |
+
"epoch": 0.6782431052093973,
|
1192 |
+
"grad_norm": 0.3729197084903717,
|
1193 |
+
"learning_rate": 1.8204334280833005e-05,
|
1194 |
+
"loss": 0.2739,
|
1195 |
+
"step": 166
|
1196 |
+
},
|
1197 |
+
{
|
1198 |
+
"epoch": 0.6823289070480082,
|
1199 |
+
"grad_norm": 0.3974601924419403,
|
1200 |
+
"learning_rate": 1.817866559116017e-05,
|
1201 |
+
"loss": 0.2858,
|
1202 |
+
"step": 167
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 0.686414708886619,
|
1206 |
+
"grad_norm": 0.3424644470214844,
|
1207 |
+
"learning_rate": 1.8152833103995443e-05,
|
1208 |
+
"loss": 0.2305,
|
1209 |
+
"step": 168
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 0.6905005107252298,
|
1213 |
+
"grad_norm": 0.4293709397315979,
|
1214 |
+
"learning_rate": 1.8126837336696645e-05,
|
1215 |
+
"loss": 0.3179,
|
1216 |
+
"step": 169
|
1217 |
+
},
|
1218 |
+
{
|
1219 |
+
"epoch": 0.6945863125638406,
|
1220 |
+
"grad_norm": 0.3259459435939789,
|
1221 |
+
"learning_rate": 1.8100678809891668e-05,
|
1222 |
+
"loss": 0.2589,
|
1223 |
+
"step": 170
|
1224 |
+
},
|
1225 |
+
{
|
1226 |
+
"epoch": 0.6986721144024515,
|
1227 |
+
"grad_norm": 0.40771302580833435,
|
1228 |
+
"learning_rate": 1.807435804746807e-05,
|
1229 |
+
"loss": 0.2637,
|
1230 |
+
"step": 171
|
1231 |
+
},
|
1232 |
+
{
|
1233 |
+
"epoch": 0.7027579162410623,
|
1234 |
+
"grad_norm": 0.3847212493419647,
|
1235 |
+
"learning_rate": 1.8047875576562556e-05,
|
1236 |
+
"loss": 0.2782,
|
1237 |
+
"step": 172
|
1238 |
+
},
|
1239 |
+
{
|
1240 |
+
"epoch": 0.7068437180796732,
|
1241 |
+
"grad_norm": 0.35547974705696106,
|
1242 |
+
"learning_rate": 1.802123192755044e-05,
|
1243 |
+
"loss": 0.2695,
|
1244 |
+
"step": 173
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"epoch": 0.710929519918284,
|
1248 |
+
"grad_norm": 0.3954298198223114,
|
1249 |
+
"learning_rate": 1.7994427634035016e-05,
|
1250 |
+
"loss": 0.3005,
|
1251 |
+
"step": 174
|
1252 |
+
},
|
1253 |
+
{
|
1254 |
+
"epoch": 0.7150153217568948,
|
1255 |
+
"grad_norm": 0.3506409525871277,
|
1256 |
+
"learning_rate": 1.796746323283686e-05,
|
1257 |
+
"loss": 0.2716,
|
1258 |
+
"step": 175
|
1259 |
+
},
|
1260 |
+
{
|
1261 |
+
"epoch": 0.7191011235955056,
|
1262 |
+
"grad_norm": 0.42227277159690857,
|
1263 |
+
"learning_rate": 1.7940339263983112e-05,
|
1264 |
+
"loss": 0.2915,
|
1265 |
+
"step": 176
|
1266 |
+
},
|
1267 |
+
{
|
1268 |
+
"epoch": 0.7231869254341164,
|
1269 |
+
"grad_norm": 0.3948259949684143,
|
1270 |
+
"learning_rate": 1.791305627069662e-05,
|
1271 |
+
"loss": 0.2883,
|
1272 |
+
"step": 177
|
1273 |
+
},
|
1274 |
+
{
|
1275 |
+
"epoch": 0.7272727272727273,
|
1276 |
+
"grad_norm": 0.3580792248249054,
|
1277 |
+
"learning_rate": 1.7885614799385086e-05,
|
1278 |
+
"loss": 0.2782,
|
1279 |
+
"step": 178
|
1280 |
+
},
|
1281 |
+
{
|
1282 |
+
"epoch": 0.7313585291113381,
|
1283 |
+
"grad_norm": 0.39698660373687744,
|
1284 |
+
"learning_rate": 1.785801539963012e-05,
|
1285 |
+
"loss": 0.2657,
|
1286 |
+
"step": 179
|
1287 |
+
},
|
1288 |
+
{
|
1289 |
+
"epoch": 0.7354443309499489,
|
1290 |
+
"grad_norm": 0.3663792610168457,
|
1291 |
+
"learning_rate": 1.7830258624176224e-05,
|
1292 |
+
"loss": 0.2686,
|
1293 |
+
"step": 180
|
1294 |
+
},
|
1295 |
+
{
|
1296 |
+
"epoch": 0.7395301327885597,
|
1297 |
+
"grad_norm": 0.38216930627822876,
|
1298 |
+
"learning_rate": 1.7802345028919728e-05,
|
1299 |
+
"loss": 0.2706,
|
1300 |
+
"step": 181
|
1301 |
+
},
|
1302 |
+
{
|
1303 |
+
"epoch": 0.7436159346271706,
|
1304 |
+
"grad_norm": 0.4187450706958771,
|
1305 |
+
"learning_rate": 1.777427517289766e-05,
|
1306 |
+
"loss": 0.2573,
|
1307 |
+
"step": 182
|
1308 |
+
},
|
1309 |
+
{
|
1310 |
+
"epoch": 0.7477017364657814,
|
1311 |
+
"grad_norm": 0.34619036316871643,
|
1312 |
+
"learning_rate": 1.7746049618276545e-05,
|
1313 |
+
"loss": 0.269,
|
1314 |
+
"step": 183
|
1315 |
+
},
|
1316 |
+
{
|
1317 |
+
"epoch": 0.7517875383043923,
|
1318 |
+
"grad_norm": 0.35370582342147827,
|
1319 |
+
"learning_rate": 1.7717668930341152e-05,
|
1320 |
+
"loss": 0.2552,
|
1321 |
+
"step": 184
|
1322 |
+
},
|
1323 |
+
{
|
1324 |
+
"epoch": 0.7558733401430031,
|
1325 |
+
"grad_norm": 0.4264880418777466,
|
1326 |
+
"learning_rate": 1.768913367748316e-05,
|
1327 |
+
"loss": 0.2952,
|
1328 |
+
"step": 185
|
1329 |
+
},
|
1330 |
+
{
|
1331 |
+
"epoch": 0.7599591419816139,
|
1332 |
+
"grad_norm": 0.39135676622390747,
|
1333 |
+
"learning_rate": 1.766044443118978e-05,
|
1334 |
+
"loss": 0.2661,
|
1335 |
+
"step": 186
|
1336 |
+
},
|
1337 |
+
{
|
1338 |
+
"epoch": 0.7640449438202247,
|
1339 |
+
"grad_norm": 0.39061596989631653,
|
1340 |
+
"learning_rate": 1.7631601766032337e-05,
|
1341 |
+
"loss": 0.2737,
|
1342 |
+
"step": 187
|
1343 |
+
},
|
1344 |
+
{
|
1345 |
+
"epoch": 0.7681307456588355,
|
1346 |
+
"grad_norm": 0.3799816966056824,
|
1347 |
+
"learning_rate": 1.7602606259654704e-05,
|
1348 |
+
"loss": 0.2767,
|
1349 |
+
"step": 188
|
1350 |
+
},
|
1351 |
+
{
|
1352 |
+
"epoch": 0.7722165474974464,
|
1353 |
+
"grad_norm": 0.3592148721218109,
|
1354 |
+
"learning_rate": 1.7573458492761802e-05,
|
1355 |
+
"loss": 0.2448,
|
1356 |
+
"step": 189
|
1357 |
+
},
|
1358 |
+
{
|
1359 |
+
"epoch": 0.7763023493360572,
|
1360 |
+
"grad_norm": 0.39084604382514954,
|
1361 |
+
"learning_rate": 1.7544159049107902e-05,
|
1362 |
+
"loss": 0.275,
|
1363 |
+
"step": 190
|
1364 |
+
},
|
1365 |
+
{
|
1366 |
+
"epoch": 0.780388151174668,
|
1367 |
+
"grad_norm": 0.36443451046943665,
|
1368 |
+
"learning_rate": 1.7514708515485002e-05,
|
1369 |
+
"loss": 0.2645,
|
1370 |
+
"step": 191
|
1371 |
+
},
|
1372 |
+
{
|
1373 |
+
"epoch": 0.7844739530132788,
|
1374 |
+
"grad_norm": 0.4001200497150421,
|
1375 |
+
"learning_rate": 1.7485107481711014e-05,
|
1376 |
+
"loss": 0.2724,
|
1377 |
+
"step": 192
|
1378 |
+
},
|
1379 |
+
{
|
1380 |
+
"epoch": 0.7885597548518897,
|
1381 |
+
"grad_norm": 0.39093396067619324,
|
1382 |
+
"learning_rate": 1.7455356540617988e-05,
|
1383 |
+
"loss": 0.2712,
|
1384 |
+
"step": 193
|
1385 |
+
},
|
1386 |
+
{
|
1387 |
+
"epoch": 0.7926455566905005,
|
1388 |
+
"grad_norm": 0.3430577218532562,
|
1389 |
+
"learning_rate": 1.7425456288040236e-05,
|
1390 |
+
"loss": 0.2489,
|
1391 |
+
"step": 194
|
1392 |
+
},
|
1393 |
+
{
|
1394 |
+
"epoch": 0.7967313585291114,
|
1395 |
+
"grad_norm": 0.3573733866214752,
|
1396 |
+
"learning_rate": 1.7395407322802374e-05,
|
1397 |
+
"loss": 0.2696,
|
1398 |
+
"step": 195
|
1399 |
+
},
|
1400 |
+
{
|
1401 |
+
"epoch": 0.8008171603677222,
|
1402 |
+
"grad_norm": 0.38158077001571655,
|
1403 |
+
"learning_rate": 1.736521024670737e-05,
|
1404 |
+
"loss": 0.2814,
|
1405 |
+
"step": 196
|
1406 |
+
},
|
1407 |
+
{
|
1408 |
+
"epoch": 0.804902962206333,
|
1409 |
+
"grad_norm": 0.366470068693161,
|
1410 |
+
"learning_rate": 1.733486566452446e-05,
|
1411 |
+
"loss": 0.2529,
|
1412 |
+
"step": 197
|
1413 |
+
},
|
1414 |
+
{
|
1415 |
+
"epoch": 0.8089887640449438,
|
1416 |
+
"grad_norm": 0.3718278408050537,
|
1417 |
+
"learning_rate": 1.7304374183977032e-05,
|
1418 |
+
"loss": 0.2747,
|
1419 |
+
"step": 198
|
1420 |
+
},
|
1421 |
+
{
|
1422 |
+
"epoch": 0.8130745658835546,
|
1423 |
+
"grad_norm": 0.3395809233188629,
|
1424 |
+
"learning_rate": 1.7273736415730488e-05,
|
1425 |
+
"loss": 0.2693,
|
1426 |
+
"step": 199
|
1427 |
+
},
|
1428 |
+
{
|
1429 |
+
"epoch": 0.8171603677221655,
|
1430 |
+
"grad_norm": 0.307731032371521,
|
1431 |
+
"learning_rate": 1.7242952973379983e-05,
|
1432 |
+
"loss": 0.2081,
|
1433 |
+
"step": 200
|
1434 |
+
},
|
1435 |
+
{
|
1436 |
+
"epoch": 0.8212461695607763,
|
1437 |
+
"grad_norm": 0.3522433936595917,
|
1438 |
+
"learning_rate": 1.7212024473438145e-05,
|
1439 |
+
"loss": 0.2495,
|
1440 |
+
"step": 201
|
1441 |
+
},
|
1442 |
+
{
|
1443 |
+
"epoch": 0.8253319713993871,
|
1444 |
+
"grad_norm": 0.35946980118751526,
|
1445 |
+
"learning_rate": 1.7180951535322742e-05,
|
1446 |
+
"loss": 0.2702,
|
1447 |
+
"step": 202
|
1448 |
+
},
|
1449 |
+
{
|
1450 |
+
"epoch": 0.8294177732379979,
|
1451 |
+
"grad_norm": 0.3933047950267792,
|
1452 |
+
"learning_rate": 1.7149734781344247e-05,
|
1453 |
+
"loss": 0.2629,
|
1454 |
+
"step": 203
|
1455 |
+
},
|
1456 |
+
{
|
1457 |
+
"epoch": 0.8335035750766088,
|
1458 |
+
"grad_norm": 0.3658384084701538,
|
1459 |
+
"learning_rate": 1.7118374836693407e-05,
|
1460 |
+
"loss": 0.2538,
|
1461 |
+
"step": 204
|
1462 |
+
},
|
1463 |
+
{
|
1464 |
+
"epoch": 0.8375893769152196,
|
1465 |
+
"grad_norm": 0.3532220423221588,
|
1466 |
+
"learning_rate": 1.7086872329428702e-05,
|
1467 |
+
"loss": 0.2587,
|
1468 |
+
"step": 205
|
1469 |
+
},
|
1470 |
+
{
|
1471 |
+
"epoch": 0.8416751787538305,
|
1472 |
+
"grad_norm": 0.3619686961174011,
|
1473 |
+
"learning_rate": 1.705522789046377e-05,
|
1474 |
+
"loss": 0.2658,
|
1475 |
+
"step": 206
|
1476 |
+
},
|
1477 |
+
{
|
1478 |
+
"epoch": 0.8457609805924413,
|
1479 |
+
"grad_norm": 0.4083801209926605,
|
1480 |
+
"learning_rate": 1.7023442153554776e-05,
|
1481 |
+
"loss": 0.2614,
|
1482 |
+
"step": 207
|
1483 |
+
},
|
1484 |
+
{
|
1485 |
+
"epoch": 0.849846782431052,
|
1486 |
+
"grad_norm": 0.3868924081325531,
|
1487 |
+
"learning_rate": 1.6991515755287715e-05,
|
1488 |
+
"loss": 0.2831,
|
1489 |
+
"step": 208
|
1490 |
+
},
|
1491 |
+
{
|
1492 |
+
"epoch": 0.8539325842696629,
|
1493 |
+
"grad_norm": 0.38413897156715393,
|
1494 |
+
"learning_rate": 1.695944933506567e-05,
|
1495 |
+
"loss": 0.2596,
|
1496 |
+
"step": 209
|
1497 |
+
},
|
1498 |
+
{
|
1499 |
+
"epoch": 0.8580183861082737,
|
1500 |
+
"grad_norm": 0.34999531507492065,
|
1501 |
+
"learning_rate": 1.6927243535095995e-05,
|
1502 |
+
"loss": 0.2842,
|
1503 |
+
"step": 210
|
1504 |
+
},
|
1505 |
+
{
|
1506 |
+
"epoch": 0.8621041879468846,
|
1507 |
+
"grad_norm": 0.328204482793808,
|
1508 |
+
"learning_rate": 1.6894899000377462e-05,
|
1509 |
+
"loss": 0.2332,
|
1510 |
+
"step": 211
|
1511 |
+
},
|
1512 |
+
{
|
1513 |
+
"epoch": 0.8661899897854954,
|
1514 |
+
"grad_norm": 0.3802552819252014,
|
1515 |
+
"learning_rate": 1.686241637868734e-05,
|
1516 |
+
"loss": 0.2709,
|
1517 |
+
"step": 212
|
1518 |
+
},
|
1519 |
+
{
|
1520 |
+
"epoch": 0.8702757916241062,
|
1521 |
+
"grad_norm": 0.35758858919143677,
|
1522 |
+
"learning_rate": 1.6829796320568416e-05,
|
1523 |
+
"loss": 0.279,
|
1524 |
+
"step": 213
|
1525 |
+
},
|
1526 |
+
{
|
1527 |
+
"epoch": 0.874361593462717,
|
1528 |
+
"grad_norm": 0.3561984896659851,
|
1529 |
+
"learning_rate": 1.6797039479315994e-05,
|
1530 |
+
"loss": 0.2868,
|
1531 |
+
"step": 214
|
1532 |
+
},
|
1533 |
+
{
|
1534 |
+
"epoch": 0.8784473953013279,
|
1535 |
+
"grad_norm": 0.32591065764427185,
|
1536 |
+
"learning_rate": 1.6764146510964762e-05,
|
1537 |
+
"loss": 0.2485,
|
1538 |
+
"step": 215
|
1539 |
+
},
|
1540 |
+
{
|
1541 |
+
"epoch": 0.8825331971399387,
|
1542 |
+
"grad_norm": 0.36409640312194824,
|
1543 |
+
"learning_rate": 1.67311180742757e-05,
|
1544 |
+
"loss": 0.2577,
|
1545 |
+
"step": 216
|
1546 |
+
},
|
1547 |
+
{
|
1548 |
+
"epoch": 0.8866189989785496,
|
1549 |
+
"grad_norm": 0.34685492515563965,
|
1550 |
+
"learning_rate": 1.669795483072287e-05,
|
1551 |
+
"loss": 0.247,
|
1552 |
+
"step": 217
|
1553 |
+
},
|
1554 |
+
{
|
1555 |
+
"epoch": 0.8907048008171604,
|
1556 |
+
"grad_norm": 0.3445712625980377,
|
1557 |
+
"learning_rate": 1.6664657444480145e-05,
|
1558 |
+
"loss": 0.2565,
|
1559 |
+
"step": 218
|
1560 |
+
},
|
1561 |
+
{
|
1562 |
+
"epoch": 0.8947906026557712,
|
1563 |
+
"grad_norm": 0.34710460901260376,
|
1564 |
+
"learning_rate": 1.6631226582407954e-05,
|
1565 |
+
"loss": 0.2363,
|
1566 |
+
"step": 219
|
1567 |
+
},
|
1568 |
+
{
|
1569 |
+
"epoch": 0.898876404494382,
|
1570 |
+
"grad_norm": 0.33726766705513,
|
1571 |
+
"learning_rate": 1.6597662914039885e-05,
|
1572 |
+
"loss": 0.2483,
|
1573 |
+
"step": 220
|
1574 |
+
},
|
1575 |
+
{
|
1576 |
+
"epoch": 0.9029622063329928,
|
1577 |
+
"grad_norm": 0.34024032950401306,
|
1578 |
+
"learning_rate": 1.65639671115693e-05,
|
1579 |
+
"loss": 0.2474,
|
1580 |
+
"step": 221
|
1581 |
+
},
|
1582 |
+
{
|
1583 |
+
"epoch": 0.9070480081716037,
|
1584 |
+
"grad_norm": 0.38807395100593567,
|
1585 |
+
"learning_rate": 1.653013984983585e-05,
|
1586 |
+
"loss": 0.2726,
|
1587 |
+
"step": 222
|
1588 |
+
},
|
1589 |
+
{
|
1590 |
+
"epoch": 0.9111338100102145,
|
1591 |
+
"grad_norm": 0.36375290155410767,
|
1592 |
+
"learning_rate": 1.6496181806312005e-05,
|
1593 |
+
"loss": 0.2726,
|
1594 |
+
"step": 223
|
1595 |
+
},
|
1596 |
+
{
|
1597 |
+
"epoch": 0.9152196118488254,
|
1598 |
+
"grad_norm": 0.36927178502082825,
|
1599 |
+
"learning_rate": 1.6462093661089432e-05,
|
1600 |
+
"loss": 0.2518,
|
1601 |
+
"step": 224
|
1602 |
+
},
|
1603 |
+
{
|
1604 |
+
"epoch": 0.9193054136874361,
|
1605 |
+
"grad_norm": 0.3809269070625305,
|
1606 |
+
"learning_rate": 1.6427876096865394e-05,
|
1607 |
+
"loss": 0.2449,
|
1608 |
+
"step": 225
|
1609 |
+
},
|
1610 |
+
{
|
1611 |
+
"epoch": 0.923391215526047,
|
1612 |
+
"grad_norm": 0.34634968638420105,
|
1613 |
+
"learning_rate": 1.6393529798929103e-05,
|
1614 |
+
"loss": 0.2575,
|
1615 |
+
"step": 226
|
1616 |
+
},
|
1617 |
+
{
|
1618 |
+
"epoch": 0.9274770173646578,
|
1619 |
+
"grad_norm": 0.33054831624031067,
|
1620 |
+
"learning_rate": 1.635905545514795e-05,
|
1621 |
+
"loss": 0.2639,
|
1622 |
+
"step": 227
|
1623 |
+
},
|
1624 |
+
{
|
1625 |
+
"epoch": 0.9315628192032687,
|
1626 |
+
"grad_norm": 0.35482174158096313,
|
1627 |
+
"learning_rate": 1.6324453755953772e-05,
|
1628 |
+
"loss": 0.2667,
|
1629 |
+
"step": 228
|
1630 |
+
},
|
1631 |
+
{
|
1632 |
+
"epoch": 0.9356486210418795,
|
1633 |
+
"grad_norm": 0.3657509684562683,
|
1634 |
+
"learning_rate": 1.6289725394328998e-05,
|
1635 |
+
"loss": 0.255,
|
1636 |
+
"step": 229
|
1637 |
+
},
|
1638 |
+
{
|
1639 |
+
"epoch": 0.9397344228804902,
|
1640 |
+
"grad_norm": 0.3343275785446167,
|
1641 |
+
"learning_rate": 1.6254871065792776e-05,
|
1642 |
+
"loss": 0.2336,
|
1643 |
+
"step": 230
|
1644 |
+
},
|
1645 |
+
{
|
1646 |
+
"epoch": 0.9438202247191011,
|
1647 |
+
"grad_norm": 0.3493170142173767,
|
1648 |
+
"learning_rate": 1.621989146838704e-05,
|
1649 |
+
"loss": 0.2649,
|
1650 |
+
"step": 231
|
1651 |
+
},
|
1652 |
+
{
|
1653 |
+
"epoch": 0.947906026557712,
|
1654 |
+
"grad_norm": 0.3305867612361908,
|
1655 |
+
"learning_rate": 1.618478730266255e-05,
|
1656 |
+
"loss": 0.2767,
|
1657 |
+
"step": 232
|
1658 |
+
},
|
1659 |
+
{
|
1660 |
+
"epoch": 0.9519918283963228,
|
1661 |
+
"grad_norm": 0.35817259550094604,
|
1662 |
+
"learning_rate": 1.6149559271664835e-05,
|
1663 |
+
"loss": 0.2817,
|
1664 |
+
"step": 233
|
1665 |
+
},
|
1666 |
+
{
|
1667 |
+
"epoch": 0.9560776302349336,
|
1668 |
+
"grad_norm": 0.37733370065689087,
|
1669 |
+
"learning_rate": 1.6114208080920125e-05,
|
1670 |
+
"loss": 0.2809,
|
1671 |
+
"step": 234
|
1672 |
+
},
|
1673 |
+
{
|
1674 |
+
"epoch": 0.9601634320735445,
|
1675 |
+
"grad_norm": 0.3227766156196594,
|
1676 |
+
"learning_rate": 1.607873443842122e-05,
|
1677 |
+
"loss": 0.2545,
|
1678 |
+
"step": 235
|
1679 |
+
},
|
1680 |
+
{
|
1681 |
+
"epoch": 0.9642492339121552,
|
1682 |
+
"grad_norm": 0.3445710241794586,
|
1683 |
+
"learning_rate": 1.6043139054613326e-05,
|
1684 |
+
"loss": 0.2476,
|
1685 |
+
"step": 236
|
1686 |
+
},
|
1687 |
+
{
|
1688 |
+
"epoch": 0.9683350357507661,
|
1689 |
+
"grad_norm": 0.3375508785247803,
|
1690 |
+
"learning_rate": 1.600742264237979e-05,
|
1691 |
+
"loss": 0.2502,
|
1692 |
+
"step": 237
|
1693 |
+
},
|
1694 |
+
{
|
1695 |
+
"epoch": 0.9724208375893769,
|
1696 |
+
"grad_norm": 0.356039434671402,
|
1697 |
+
"learning_rate": 1.5971585917027864e-05,
|
1698 |
+
"loss": 0.268,
|
1699 |
+
"step": 238
|
1700 |
+
},
|
1701 |
+
{
|
1702 |
+
"epoch": 0.9765066394279878,
|
1703 |
+
"grad_norm": 0.34852373600006104,
|
1704 |
+
"learning_rate": 1.5935629596274345e-05,
|
1705 |
+
"loss": 0.2605,
|
1706 |
+
"step": 239
|
1707 |
+
},
|
1708 |
+
{
|
1709 |
+
"epoch": 0.9805924412665986,
|
1710 |
+
"grad_norm": 0.3376101851463318,
|
1711 |
+
"learning_rate": 1.5899554400231233e-05,
|
1712 |
+
"loss": 0.2567,
|
1713 |
+
"step": 240
|
1714 |
+
},
|
1715 |
+
{
|
1716 |
+
"epoch": 0.9846782431052093,
|
1717 |
+
"grad_norm": 0.32361170649528503,
|
1718 |
+
"learning_rate": 1.586336105139127e-05,
|
1719 |
+
"loss": 0.2481,
|
1720 |
+
"step": 241
|
1721 |
+
},
|
1722 |
+
{
|
1723 |
+
"epoch": 0.9887640449438202,
|
1724 |
+
"grad_norm": 0.35558903217315674,
|
1725 |
+
"learning_rate": 1.5827050274613512e-05,
|
1726 |
+
"loss": 0.2514,
|
1727 |
+
"step": 242
|
1728 |
+
},
|
1729 |
+
{
|
1730 |
+
"epoch": 0.992849846782431,
|
1731 |
+
"grad_norm": 0.31636619567871094,
|
1732 |
+
"learning_rate": 1.579062279710879e-05,
|
1733 |
+
"loss": 0.2237,
|
1734 |
+
"step": 243
|
1735 |
+
},
|
1736 |
+
{
|
1737 |
+
"epoch": 0.9969356486210419,
|
1738 |
+
"grad_norm": 0.3540779948234558,
|
1739 |
+
"learning_rate": 1.5754079348425137e-05,
|
1740 |
+
"loss": 0.2381,
|
1741 |
+
"step": 244
|
1742 |
+
},
|
1743 |
+
{
|
1744 |
+
"epoch": 1.0040858018386107,
|
1745 |
+
"grad_norm": 0.7127255201339722,
|
1746 |
+
"learning_rate": 1.57174206604332e-05,
|
1747 |
+
"loss": 0.4477,
|
1748 |
+
"step": 245
|
1749 |
+
},
|
1750 |
+
{
|
1751 |
+
"epoch": 1.0081716036772217,
|
1752 |
+
"grad_norm": 0.21768411993980408,
|
1753 |
+
"learning_rate": 1.568064746731156e-05,
|
1754 |
+
"loss": 0.177,
|
1755 |
+
"step": 246
|
1756 |
+
},
|
1757 |
+
{
|
1758 |
+
"epoch": 1.0081716036772217,
|
1759 |
+
"eval_loss": 0.2854033410549164,
|
1760 |
+
"eval_runtime": 5.5756,
|
1761 |
+
"eval_samples_per_second": 14.169,
|
1762 |
+
"eval_steps_per_second": 1.794,
|
1763 |
+
"step": 246
|
1764 |
+
},
|
1765 |
+
{
|
1766 |
+
"epoch": 1.0122574055158324,
|
1767 |
+
"grad_norm": 0.24506381154060364,
|
1768 |
+
"learning_rate": 1.564376050553205e-05,
|
1769 |
+
"loss": 0.1647,
|
1770 |
+
"step": 247
|
1771 |
+
},
|
1772 |
+
{
|
1773 |
+
"epoch": 1.0163432073544434,
|
1774 |
+
"grad_norm": 0.24179627001285553,
|
1775 |
+
"learning_rate": 1.560676051384499e-05,
|
1776 |
+
"loss": 0.1908,
|
1777 |
+
"step": 248
|
1778 |
+
},
|
1779 |
+
{
|
1780 |
+
"epoch": 1.0204290091930541,
|
1781 |
+
"grad_norm": 0.2527990937232971,
|
1782 |
+
"learning_rate": 1.5569648233264395e-05,
|
1783 |
+
"loss": 0.1728,
|
1784 |
+
"step": 249
|
1785 |
+
},
|
1786 |
+
{
|
1787 |
+
"epoch": 1.0245148110316649,
|
1788 |
+
"grad_norm": 0.28597134351730347,
|
1789 |
+
"learning_rate": 1.553242440705314e-05,
|
1790 |
+
"loss": 0.1854,
|
1791 |
+
"step": 250
|
1792 |
+
},
|
1793 |
+
{
|
1794 |
+
"epoch": 1.0286006128702758,
|
1795 |
+
"grad_norm": 0.2613103985786438,
|
1796 |
+
"learning_rate": 1.5495089780708062e-05,
|
1797 |
+
"loss": 0.1762,
|
1798 |
+
"step": 251
|
1799 |
+
},
|
1800 |
+
{
|
1801 |
+
"epoch": 1.0326864147088866,
|
1802 |
+
"grad_norm": 0.2806336581707001,
|
1803 |
+
"learning_rate": 1.5457645101945046e-05,
|
1804 |
+
"loss": 0.1801,
|
1805 |
+
"step": 252
|
1806 |
+
},
|
1807 |
+
{
|
1808 |
+
"epoch": 1.0367722165474975,
|
1809 |
+
"grad_norm": 0.29933255910873413,
|
1810 |
+
"learning_rate": 1.5420091120684042e-05,
|
1811 |
+
"loss": 0.1869,
|
1812 |
+
"step": 253
|
1813 |
+
},
|
1814 |
+
{
|
1815 |
+
"epoch": 1.0408580183861083,
|
1816 |
+
"grad_norm": 0.2678683400154114,
|
1817 |
+
"learning_rate": 1.538242858903404e-05,
|
1818 |
+
"loss": 0.1684,
|
1819 |
+
"step": 254
|
1820 |
+
},
|
1821 |
+
{
|
1822 |
+
"epoch": 1.0449438202247192,
|
1823 |
+
"grad_norm": 0.27515852451324463,
|
1824 |
+
"learning_rate": 1.5344658261278013e-05,
|
1825 |
+
"loss": 0.1859,
|
1826 |
+
"step": 255
|
1827 |
+
},
|
1828 |
+
{
|
1829 |
+
"epoch": 1.04902962206333,
|
1830 |
+
"grad_norm": 0.2876634895801544,
|
1831 |
+
"learning_rate": 1.530678089385782e-05,
|
1832 |
+
"loss": 0.1705,
|
1833 |
+
"step": 256
|
1834 |
+
},
|
1835 |
+
{
|
1836 |
+
"epoch": 1.0531154239019407,
|
1837 |
+
"grad_norm": 0.2911262810230255,
|
1838 |
+
"learning_rate": 1.5268797245359035e-05,
|
1839 |
+
"loss": 0.1937,
|
1840 |
+
"step": 257
|
1841 |
+
},
|
1842 |
+
{
|
1843 |
+
"epoch": 1.0572012257405516,
|
1844 |
+
"grad_norm": 0.3048553466796875,
|
1845 |
+
"learning_rate": 1.5230708076495777e-05,
|
1846 |
+
"loss": 0.1882,
|
1847 |
+
"step": 258
|
1848 |
+
},
|
1849 |
+
{
|
1850 |
+
"epoch": 1.0612870275791624,
|
1851 |
+
"grad_norm": 0.28508955240249634,
|
1852 |
+
"learning_rate": 1.519251415009546e-05,
|
1853 |
+
"loss": 0.1767,
|
1854 |
+
"step": 259
|
1855 |
+
},
|
1856 |
+
{
|
1857 |
+
"epoch": 1.0653728294177733,
|
1858 |
+
"grad_norm": 0.266313374042511,
|
1859 |
+
"learning_rate": 1.5154216231083522e-05,
|
1860 |
+
"loss": 0.1647,
|
1861 |
+
"step": 260
|
1862 |
+
},
|
1863 |
+
{
|
1864 |
+
"epoch": 1.069458631256384,
|
1865 |
+
"grad_norm": 0.2724918723106384,
|
1866 |
+
"learning_rate": 1.5115815086468103e-05,
|
1867 |
+
"loss": 0.1685,
|
1868 |
+
"step": 261
|
1869 |
+
},
|
1870 |
+
{
|
1871 |
+
"epoch": 1.0735444330949948,
|
1872 |
+
"grad_norm": 0.2324502021074295,
|
1873 |
+
"learning_rate": 1.507731148532468e-05,
|
1874 |
+
"loss": 0.1632,
|
1875 |
+
"step": 262
|
1876 |
+
},
|
1877 |
+
{
|
1878 |
+
"epoch": 1.0776302349336058,
|
1879 |
+
"grad_norm": 0.26865899562835693,
|
1880 |
+
"learning_rate": 1.5038706198780673e-05,
|
1881 |
+
"loss": 0.1802,
|
1882 |
+
"step": 263
|
1883 |
+
},
|
1884 |
+
{
|
1885 |
+
"epoch": 1.0817160367722165,
|
1886 |
+
"grad_norm": 0.29491883516311646,
|
1887 |
+
"learning_rate": 1.5000000000000002e-05,
|
1888 |
+
"loss": 0.1803,
|
1889 |
+
"step": 264
|
1890 |
+
},
|
1891 |
+
{
|
1892 |
+
"epoch": 1.0858018386108275,
|
1893 |
+
"grad_norm": 0.28987348079681396,
|
1894 |
+
"learning_rate": 1.496119366416759e-05,
|
1895 |
+
"loss": 0.1862,
|
1896 |
+
"step": 265
|
1897 |
+
},
|
1898 |
+
{
|
1899 |
+
"epoch": 1.0898876404494382,
|
1900 |
+
"grad_norm": 0.27755048871040344,
|
1901 |
+
"learning_rate": 1.492228796847385e-05,
|
1902 |
+
"loss": 0.1741,
|
1903 |
+
"step": 266
|
1904 |
+
},
|
1905 |
+
{
|
1906 |
+
"epoch": 1.093973442288049,
|
1907 |
+
"grad_norm": 0.2608552873134613,
|
1908 |
+
"learning_rate": 1.4883283692099114e-05,
|
1909 |
+
"loss": 0.1693,
|
1910 |
+
"step": 267
|
1911 |
+
},
|
1912 |
+
{
|
1913 |
+
"epoch": 1.09805924412666,
|
1914 |
+
"grad_norm": 0.27284783124923706,
|
1915 |
+
"learning_rate": 1.4844181616198028e-05,
|
1916 |
+
"loss": 0.1878,
|
1917 |
+
"step": 268
|
1918 |
+
},
|
1919 |
+
{
|
1920 |
+
"epoch": 1.1021450459652706,
|
1921 |
+
"grad_norm": 0.24481667578220367,
|
1922 |
+
"learning_rate": 1.4804982523883915e-05,
|
1923 |
+
"loss": 0.1589,
|
1924 |
+
"step": 269
|
1925 |
+
},
|
1926 |
+
{
|
1927 |
+
"epoch": 1.1062308478038816,
|
1928 |
+
"grad_norm": 0.2996629774570465,
|
1929 |
+
"learning_rate": 1.4765687200213079e-05,
|
1930 |
+
"loss": 0.1823,
|
1931 |
+
"step": 270
|
1932 |
+
},
|
1933 |
+
{
|
1934 |
+
"epoch": 1.1103166496424923,
|
1935 |
+
"grad_norm": 0.2922385632991791,
|
1936 |
+
"learning_rate": 1.4726296432169095e-05,
|
1937 |
+
"loss": 0.1769,
|
1938 |
+
"step": 271
|
1939 |
+
},
|
1940 |
+
{
|
1941 |
+
"epoch": 1.1144024514811033,
|
1942 |
+
"grad_norm": 0.3046974241733551,
|
1943 |
+
"learning_rate": 1.4686811008647037e-05,
|
1944 |
+
"loss": 0.1823,
|
1945 |
+
"step": 272
|
1946 |
+
},
|
1947 |
+
{
|
1948 |
+
"epoch": 1.118488253319714,
|
1949 |
+
"grad_norm": 0.2792796790599823,
|
1950 |
+
"learning_rate": 1.4647231720437687e-05,
|
1951 |
+
"loss": 0.1717,
|
1952 |
+
"step": 273
|
1953 |
+
},
|
1954 |
+
{
|
1955 |
+
"epoch": 1.1225740551583248,
|
1956 |
+
"grad_norm": 0.27251774072647095,
|
1957 |
+
"learning_rate": 1.4607559360211688e-05,
|
1958 |
+
"loss": 0.1652,
|
1959 |
+
"step": 274
|
1960 |
+
},
|
1961 |
+
{
|
1962 |
+
"epoch": 1.1266598569969357,
|
1963 |
+
"grad_norm": 0.2751109302043915,
|
1964 |
+
"learning_rate": 1.456779472250368e-05,
|
1965 |
+
"loss": 0.1713,
|
1966 |
+
"step": 275
|
1967 |
+
},
|
1968 |
+
{
|
1969 |
+
"epoch": 1.1307456588355465,
|
1970 |
+
"grad_norm": 0.2737586796283722,
|
1971 |
+
"learning_rate": 1.4527938603696376e-05,
|
1972 |
+
"loss": 0.162,
|
1973 |
+
"step": 276
|
1974 |
+
},
|
1975 |
+
{
|
1976 |
+
"epoch": 1.1348314606741572,
|
1977 |
+
"grad_norm": 0.24653682112693787,
|
1978 |
+
"learning_rate": 1.4487991802004625e-05,
|
1979 |
+
"loss": 0.1626,
|
1980 |
+
"step": 277
|
1981 |
+
},
|
1982 |
+
{
|
1983 |
+
"epoch": 1.1389172625127681,
|
1984 |
+
"grad_norm": 0.46106576919555664,
|
1985 |
+
"learning_rate": 1.4447955117459414e-05,
|
1986 |
+
"loss": 0.1609,
|
1987 |
+
"step": 278
|
1988 |
+
},
|
1989 |
+
{
|
1990 |
+
"epoch": 1.1430030643513789,
|
1991 |
+
"grad_norm": 0.27714091539382935,
|
1992 |
+
"learning_rate": 1.4407829351891858e-05,
|
1993 |
+
"loss": 0.1759,
|
1994 |
+
"step": 279
|
1995 |
+
},
|
1996 |
+
{
|
1997 |
+
"epoch": 1.1470888661899898,
|
1998 |
+
"grad_norm": 0.2678029537200928,
|
1999 |
+
"learning_rate": 1.436761530891713e-05,
|
2000 |
+
"loss": 0.1753,
|
2001 |
+
"step": 280
|
2002 |
+
},
|
2003 |
+
{
|
2004 |
+
"epoch": 1.1511746680286006,
|
2005 |
+
"grad_norm": 0.2559642791748047,
|
2006 |
+
"learning_rate": 1.4327313793918362e-05,
|
2007 |
+
"loss": 0.1778,
|
2008 |
+
"step": 281
|
2009 |
+
},
|
2010 |
+
{
|
2011 |
+
"epoch": 1.1552604698672115,
|
2012 |
+
"grad_norm": 0.3033258616924286,
|
2013 |
+
"learning_rate": 1.4286925614030542e-05,
|
2014 |
+
"loss": 0.1871,
|
2015 |
+
"step": 282
|
2016 |
+
},
|
2017 |
+
{
|
2018 |
+
"epoch": 1.1593462717058223,
|
2019 |
+
"grad_norm": 0.2658158540725708,
|
2020 |
+
"learning_rate": 1.4246451578124321e-05,
|
2021 |
+
"loss": 0.1782,
|
2022 |
+
"step": 283
|
2023 |
+
},
|
2024 |
+
{
|
2025 |
+
"epoch": 1.163432073544433,
|
2026 |
+
"grad_norm": 0.2901168465614319,
|
2027 |
+
"learning_rate": 1.4205892496789816e-05,
|
2028 |
+
"loss": 0.174,
|
2029 |
+
"step": 284
|
2030 |
+
},
|
2031 |
+
{
|
2032 |
+
"epoch": 1.167517875383044,
|
2033 |
+
"grad_norm": 0.23054322600364685,
|
2034 |
+
"learning_rate": 1.4165249182320401e-05,
|
2035 |
+
"loss": 0.1553,
|
2036 |
+
"step": 285
|
2037 |
+
},
|
2038 |
+
{
|
2039 |
+
"epoch": 1.1716036772216547,
|
2040 |
+
"grad_norm": 0.267805278301239,
|
2041 |
+
"learning_rate": 1.4124522448696407e-05,
|
2042 |
+
"loss": 0.168,
|
2043 |
+
"step": 286
|
2044 |
+
},
|
2045 |
+
{
|
2046 |
+
"epoch": 1.1756894790602657,
|
2047 |
+
"grad_norm": 0.26580214500427246,
|
2048 |
+
"learning_rate": 1.4083713111568841e-05,
|
2049 |
+
"loss": 0.167,
|
2050 |
+
"step": 287
|
2051 |
+
},
|
2052 |
+
{
|
2053 |
+
"epoch": 1.1797752808988764,
|
2054 |
+
"grad_norm": 0.2736794948577881,
|
2055 |
+
"learning_rate": 1.404282198824305e-05,
|
2056 |
+
"loss": 0.1623,
|
2057 |
+
"step": 288
|
2058 |
+
},
|
2059 |
+
{
|
2060 |
+
"epoch": 1.1838610827374871,
|
2061 |
+
"grad_norm": 0.25851017236709595,
|
2062 |
+
"learning_rate": 1.4001849897662337e-05,
|
2063 |
+
"loss": 0.1646,
|
2064 |
+
"step": 289
|
2065 |
+
},
|
2066 |
+
{
|
2067 |
+
"epoch": 1.187946884576098,
|
2068 |
+
"grad_norm": 0.26858997344970703,
|
2069 |
+
"learning_rate": 1.396079766039157e-05,
|
2070 |
+
"loss": 0.1768,
|
2071 |
+
"step": 290
|
2072 |
+
},
|
2073 |
+
{
|
2074 |
+
"epoch": 1.1920326864147088,
|
2075 |
+
"grad_norm": 0.2878361940383911,
|
2076 |
+
"learning_rate": 1.3919666098600753e-05,
|
2077 |
+
"loss": 0.1712,
|
2078 |
+
"step": 291
|
2079 |
+
},
|
2080 |
+
{
|
2081 |
+
"epoch": 1.1961184882533198,
|
2082 |
+
"grad_norm": 0.23014627397060394,
|
2083 |
+
"learning_rate": 1.387845603604855e-05,
|
2084 |
+
"loss": 0.1595,
|
2085 |
+
"step": 292
|
2086 |
+
},
|
2087 |
+
{
|
2088 |
+
"epoch": 1.2002042900919305,
|
2089 |
+
"grad_norm": 0.27550917863845825,
|
2090 |
+
"learning_rate": 1.3837168298065798e-05,
|
2091 |
+
"loss": 0.1639,
|
2092 |
+
"step": 293
|
2093 |
+
},
|
2094 |
+
{
|
2095 |
+
"epoch": 1.2042900919305413,
|
2096 |
+
"grad_norm": 0.2697204053401947,
|
2097 |
+
"learning_rate": 1.3795803711538966e-05,
|
2098 |
+
"loss": 0.1619,
|
2099 |
+
"step": 294
|
2100 |
+
},
|
2101 |
+
{
|
2102 |
+
"epoch": 1.2083758937691522,
|
2103 |
+
"grad_norm": 0.29666051268577576,
|
2104 |
+
"learning_rate": 1.37543631048936e-05,
|
2105 |
+
"loss": 0.1815,
|
2106 |
+
"step": 295
|
2107 |
+
},
|
2108 |
+
{
|
2109 |
+
"epoch": 1.212461695607763,
|
2110 |
+
"grad_norm": 0.25596365332603455,
|
2111 |
+
"learning_rate": 1.3712847308077737e-05,
|
2112 |
+
"loss": 0.1629,
|
2113 |
+
"step": 296
|
2114 |
+
},
|
2115 |
+
{
|
2116 |
+
"epoch": 1.216547497446374,
|
2117 |
+
"grad_norm": 0.25550931692123413,
|
2118 |
+
"learning_rate": 1.3671257152545277e-05,
|
2119 |
+
"loss": 0.1635,
|
2120 |
+
"step": 297
|
2121 |
+
},
|
2122 |
+
{
|
2123 |
+
"epoch": 1.2206332992849847,
|
2124 |
+
"grad_norm": 0.2615107297897339,
|
2125 |
+
"learning_rate": 1.3629593471239328e-05,
|
2126 |
+
"loss": 0.1547,
|
2127 |
+
"step": 298
|
2128 |
+
},
|
2129 |
+
{
|
2130 |
+
"epoch": 1.2247191011235956,
|
2131 |
+
"grad_norm": 0.2814185917377472,
|
2132 |
+
"learning_rate": 1.3587857098575534e-05,
|
2133 |
+
"loss": 0.1713,
|
2134 |
+
"step": 299
|
2135 |
+
},
|
2136 |
+
{
|
2137 |
+
"epoch": 1.2288049029622063,
|
2138 |
+
"grad_norm": 0.2644117772579193,
|
2139 |
+
"learning_rate": 1.3546048870425356e-05,
|
2140 |
+
"loss": 0.1703,
|
2141 |
+
"step": 300
|
2142 |
+
},
|
2143 |
+
{
|
2144 |
+
"epoch": 1.232890704800817,
|
2145 |
+
"grad_norm": 0.2645355463027954,
|
2146 |
+
"learning_rate": 1.350416962409934e-05,
|
2147 |
+
"loss": 0.159,
|
2148 |
+
"step": 301
|
2149 |
+
},
|
2150 |
+
{
|
2151 |
+
"epoch": 1.236976506639428,
|
2152 |
+
"grad_norm": 0.2637065351009369,
|
2153 |
+
"learning_rate": 1.346222019833033e-05,
|
2154 |
+
"loss": 0.1647,
|
2155 |
+
"step": 302
|
2156 |
+
},
|
2157 |
+
{
|
2158 |
+
"epoch": 1.2410623084780388,
|
2159 |
+
"grad_norm": 0.24007368087768555,
|
2160 |
+
"learning_rate": 1.342020143325669e-05,
|
2161 |
+
"loss": 0.1569,
|
2162 |
+
"step": 303
|
2163 |
+
},
|
2164 |
+
{
|
2165 |
+
"epoch": 1.2451481103166497,
|
2166 |
+
"grad_norm": 0.2273741364479065,
|
2167 |
+
"learning_rate": 1.3378114170405473e-05,
|
2168 |
+
"loss": 0.1645,
|
2169 |
+
"step": 304
|
2170 |
+
},
|
2171 |
+
{
|
2172 |
+
"epoch": 1.2492339121552605,
|
2173 |
+
"grad_norm": 0.2602927088737488,
|
2174 |
+
"learning_rate": 1.3335959252675566e-05,
|
2175 |
+
"loss": 0.1723,
|
2176 |
+
"step": 305
|
2177 |
+
},
|
2178 |
+
{
|
2179 |
+
"epoch": 1.2533197139938714,
|
2180 |
+
"grad_norm": 0.28329333662986755,
|
2181 |
+
"learning_rate": 1.3293737524320798e-05,
|
2182 |
+
"loss": 0.1704,
|
2183 |
+
"step": 306
|
2184 |
+
},
|
2185 |
+
{
|
2186 |
+
"epoch": 1.2574055158324822,
|
2187 |
+
"grad_norm": 0.270916610956192,
|
2188 |
+
"learning_rate": 1.3251449830933052e-05,
|
2189 |
+
"loss": 0.1621,
|
2190 |
+
"step": 307
|
2191 |
+
},
|
2192 |
+
{
|
2193 |
+
"epoch": 1.261491317671093,
|
2194 |
+
"grad_norm": 0.268443763256073,
|
2195 |
+
"learning_rate": 1.3209097019425317e-05,
|
2196 |
+
"loss": 0.177,
|
2197 |
+
"step": 308
|
2198 |
+
},
|
2199 |
+
{
|
2200 |
+
"epoch": 1.2655771195097039,
|
2201 |
+
"grad_norm": 0.2811964750289917,
|
2202 |
+
"learning_rate": 1.3166679938014728e-05,
|
2203 |
+
"loss": 0.1581,
|
2204 |
+
"step": 309
|
2205 |
+
},
|
2206 |
+
{
|
2207 |
+
"epoch": 1.2696629213483146,
|
2208 |
+
"grad_norm": 0.2809509038925171,
|
2209 |
+
"learning_rate": 1.3124199436205575e-05,
|
2210 |
+
"loss": 0.1625,
|
2211 |
+
"step": 310
|
2212 |
+
},
|
2213 |
+
{
|
2214 |
+
"epoch": 1.2737487231869253,
|
2215 |
+
"grad_norm": 0.27429160475730896,
|
2216 |
+
"learning_rate": 1.3081656364772308e-05,
|
2217 |
+
"loss": 0.1796,
|
2218 |
+
"step": 311
|
2219 |
+
},
|
2220 |
+
{
|
2221 |
+
"epoch": 1.2778345250255363,
|
2222 |
+
"grad_norm": 0.2557787299156189,
|
2223 |
+
"learning_rate": 1.303905157574247e-05,
|
2224 |
+
"loss": 0.1664,
|
2225 |
+
"step": 312
|
2226 |
+
},
|
2227 |
+
{
|
2228 |
+
"epoch": 1.281920326864147,
|
2229 |
+
"grad_norm": 0.3070502281188965,
|
2230 |
+
"learning_rate": 1.2996385922379657e-05,
|
2231 |
+
"loss": 0.1884,
|
2232 |
+
"step": 313
|
2233 |
+
},
|
2234 |
+
{
|
2235 |
+
"epoch": 1.286006128702758,
|
2236 |
+
"grad_norm": 0.2685239315032959,
|
2237 |
+
"learning_rate": 1.2953660259166413e-05,
|
2238 |
+
"loss": 0.1728,
|
2239 |
+
"step": 314
|
2240 |
+
},
|
2241 |
+
{
|
2242 |
+
"epoch": 1.2900919305413687,
|
2243 |
+
"grad_norm": 0.2761296331882477,
|
2244 |
+
"learning_rate": 1.291087544178713e-05,
|
2245 |
+
"loss": 0.1754,
|
2246 |
+
"step": 315
|
2247 |
+
},
|
2248 |
+
{
|
2249 |
+
"epoch": 1.2941777323799797,
|
2250 |
+
"grad_norm": 0.29421859979629517,
|
2251 |
+
"learning_rate": 1.2868032327110904e-05,
|
2252 |
+
"loss": 0.1566,
|
2253 |
+
"step": 316
|
2254 |
+
},
|
2255 |
+
{
|
2256 |
+
"epoch": 1.2982635342185904,
|
2257 |
+
"grad_norm": 0.2753983736038208,
|
2258 |
+
"learning_rate": 1.2825131773174371e-05,
|
2259 |
+
"loss": 0.1722,
|
2260 |
+
"step": 317
|
2261 |
+
},
|
2262 |
+
{
|
2263 |
+
"epoch": 1.3023493360572012,
|
2264 |
+
"grad_norm": 0.280300498008728,
|
2265 |
+
"learning_rate": 1.2782174639164528e-05,
|
2266 |
+
"loss": 0.1743,
|
2267 |
+
"step": 318
|
2268 |
+
},
|
2269 |
+
{
|
2270 |
+
"epoch": 1.3064351378958121,
|
2271 |
+
"grad_norm": 0.28724053502082825,
|
2272 |
+
"learning_rate": 1.2739161785401525e-05,
|
2273 |
+
"loss": 0.1727,
|
2274 |
+
"step": 319
|
2275 |
+
},
|
2276 |
+
{
|
2277 |
+
"epoch": 1.3105209397344229,
|
2278 |
+
"grad_norm": 0.24978399276733398,
|
2279 |
+
"learning_rate": 1.269609407332144e-05,
|
2280 |
+
"loss": 0.1654,
|
2281 |
+
"step": 320
|
2282 |
+
},
|
2283 |
+
{
|
2284 |
+
"epoch": 1.3146067415730336,
|
2285 |
+
"grad_norm": 0.2458401620388031,
|
2286 |
+
"learning_rate": 1.2652972365459008e-05,
|
2287 |
+
"loss": 0.1558,
|
2288 |
+
"step": 321
|
2289 |
+
},
|
2290 |
+
{
|
2291 |
+
"epoch": 1.3186925434116445,
|
2292 |
+
"grad_norm": 0.29217007756233215,
|
2293 |
+
"learning_rate": 1.2609797525430374e-05,
|
2294 |
+
"loss": 0.1749,
|
2295 |
+
"step": 322
|
2296 |
+
},
|
2297 |
+
{
|
2298 |
+
"epoch": 1.3227783452502553,
|
2299 |
+
"grad_norm": 0.2738885283470154,
|
2300 |
+
"learning_rate": 1.2566570417915769e-05,
|
2301 |
+
"loss": 0.1598,
|
2302 |
+
"step": 323
|
2303 |
+
},
|
2304 |
+
{
|
2305 |
+
"epoch": 1.3268641470888662,
|
2306 |
+
"grad_norm": 0.23460422456264496,
|
2307 |
+
"learning_rate": 1.2523291908642219e-05,
|
2308 |
+
"loss": 0.1586,
|
2309 |
+
"step": 324
|
2310 |
+
},
|
2311 |
+
{
|
2312 |
+
"epoch": 1.330949948927477,
|
2313 |
+
"grad_norm": 0.2899508476257324,
|
2314 |
+
"learning_rate": 1.2479962864366186e-05,
|
2315 |
+
"loss": 0.1698,
|
2316 |
+
"step": 325
|
2317 |
+
},
|
2318 |
+
{
|
2319 |
+
"epoch": 1.335035750766088,
|
2320 |
+
"grad_norm": 0.2744244933128357,
|
2321 |
+
"learning_rate": 1.243658415285622e-05,
|
2322 |
+
"loss": 0.167,
|
2323 |
+
"step": 326
|
2324 |
+
},
|
2325 |
+
{
|
2326 |
+
"epoch": 1.3391215526046987,
|
2327 |
+
"grad_norm": 0.3147677183151245,
|
2328 |
+
"learning_rate": 1.2393156642875579e-05,
|
2329 |
+
"loss": 0.1592,
|
2330 |
+
"step": 327
|
2331 |
+
},
|
2332 |
+
{
|
2333 |
+
"epoch": 1.3432073544433094,
|
2334 |
+
"grad_norm": 0.26883426308631897,
|
2335 |
+
"learning_rate": 1.2349681204164823e-05,
|
2336 |
+
"loss": 0.1735,
|
2337 |
+
"step": 328
|
2338 |
+
},
|
2339 |
+
{
|
2340 |
+
"epoch": 1.3432073544433094,
|
2341 |
+
"eval_loss": 0.2857210040092468,
|
2342 |
+
"eval_runtime": 5.8046,
|
2343 |
+
"eval_samples_per_second": 13.61,
|
2344 |
+
"eval_steps_per_second": 1.723,
|
2345 |
+
"step": 328
|
2346 |
+
},
|
2347 |
+
{
|
2348 |
+
"epoch": 1.3472931562819204,
|
2349 |
+
"grad_norm": 0.26572638750076294,
|
2350 |
+
"learning_rate": 1.2306158707424402e-05,
|
2351 |
+
"loss": 0.172,
|
2352 |
+
"step": 329
|
2353 |
+
},
|
2354 |
+
{
|
2355 |
+
"epoch": 1.351378958120531,
|
2356 |
+
"grad_norm": 0.3158324062824249,
|
2357 |
+
"learning_rate": 1.2262590024297226e-05,
|
2358 |
+
"loss": 0.184,
|
2359 |
+
"step": 330
|
2360 |
+
},
|
2361 |
+
{
|
2362 |
+
"epoch": 1.355464759959142,
|
2363 |
+
"grad_norm": 0.2606561779975891,
|
2364 |
+
"learning_rate": 1.2218976027351177e-05,
|
2365 |
+
"loss": 0.1681,
|
2366 |
+
"step": 331
|
2367 |
+
},
|
2368 |
+
{
|
2369 |
+
"epoch": 1.3595505617977528,
|
2370 |
+
"grad_norm": 0.2860865592956543,
|
2371 |
+
"learning_rate": 1.2175317590061676e-05,
|
2372 |
+
"loss": 0.1768,
|
2373 |
+
"step": 332
|
2374 |
+
},
|
2375 |
+
{
|
2376 |
+
"epoch": 1.3636363636363638,
|
2377 |
+
"grad_norm": 0.2928154766559601,
|
2378 |
+
"learning_rate": 1.2131615586794162e-05,
|
2379 |
+
"loss": 0.1654,
|
2380 |
+
"step": 333
|
2381 |
+
},
|
2382 |
+
{
|
2383 |
+
"epoch": 1.3677221654749745,
|
2384 |
+
"grad_norm": 0.2754892110824585,
|
2385 |
+
"learning_rate": 1.2087870892786588e-05,
|
2386 |
+
"loss": 0.1679,
|
2387 |
+
"step": 334
|
2388 |
+
},
|
2389 |
+
{
|
2390 |
+
"epoch": 1.3718079673135852,
|
2391 |
+
"grad_norm": 0.25418567657470703,
|
2392 |
+
"learning_rate": 1.2044084384131891e-05,
|
2393 |
+
"loss": 0.1692,
|
2394 |
+
"step": 335
|
2395 |
+
},
|
2396 |
+
{
|
2397 |
+
"epoch": 1.3758937691521962,
|
2398 |
+
"grad_norm": 0.29680415987968445,
|
2399 |
+
"learning_rate": 1.2000256937760446e-05,
|
2400 |
+
"loss": 0.1835,
|
2401 |
+
"step": 336
|
2402 |
+
},
|
2403 |
+
{
|
2404 |
+
"epoch": 1.379979570990807,
|
2405 |
+
"grad_norm": 0.25421565771102905,
|
2406 |
+
"learning_rate": 1.1956389431422508e-05,
|
2407 |
+
"loss": 0.1628,
|
2408 |
+
"step": 337
|
2409 |
+
},
|
2410 |
+
{
|
2411 |
+
"epoch": 1.3840653728294177,
|
2412 |
+
"grad_norm": 0.26102015376091003,
|
2413 |
+
"learning_rate": 1.1912482743670624e-05,
|
2414 |
+
"loss": 0.1587,
|
2415 |
+
"step": 338
|
2416 |
+
},
|
2417 |
+
{
|
2418 |
+
"epoch": 1.3881511746680286,
|
2419 |
+
"grad_norm": 0.2658519744873047,
|
2420 |
+
"learning_rate": 1.1868537753842052e-05,
|
2421 |
+
"loss": 0.1622,
|
2422 |
+
"step": 339
|
2423 |
+
},
|
2424 |
+
{
|
2425 |
+
"epoch": 1.3922369765066394,
|
2426 |
+
"grad_norm": 0.25693395733833313,
|
2427 |
+
"learning_rate": 1.1824555342041129e-05,
|
2428 |
+
"loss": 0.1611,
|
2429 |
+
"step": 340
|
2430 |
+
},
|
2431 |
+
{
|
2432 |
+
"epoch": 1.3963227783452503,
|
2433 |
+
"grad_norm": 0.24095548689365387,
|
2434 |
+
"learning_rate": 1.1780536389121668e-05,
|
2435 |
+
"loss": 0.1566,
|
2436 |
+
"step": 341
|
2437 |
+
},
|
2438 |
+
{
|
2439 |
+
"epoch": 1.400408580183861,
|
2440 |
+
"grad_norm": 0.25440356135368347,
|
2441 |
+
"learning_rate": 1.1736481776669307e-05,
|
2442 |
+
"loss": 0.1646,
|
2443 |
+
"step": 342
|
2444 |
+
},
|
2445 |
+
{
|
2446 |
+
"epoch": 1.404494382022472,
|
2447 |
+
"grad_norm": 0.23900751769542694,
|
2448 |
+
"learning_rate": 1.1692392386983837e-05,
|
2449 |
+
"loss": 0.1567,
|
2450 |
+
"step": 343
|
2451 |
+
},
|
2452 |
+
{
|
2453 |
+
"epoch": 1.4085801838610827,
|
2454 |
+
"grad_norm": 0.2516697645187378,
|
2455 |
+
"learning_rate": 1.1648269103061567e-05,
|
2456 |
+
"loss": 0.1693,
|
2457 |
+
"step": 344
|
2458 |
+
},
|
2459 |
+
{
|
2460 |
+
"epoch": 1.4126659856996935,
|
2461 |
+
"grad_norm": 0.23285552859306335,
|
2462 |
+
"learning_rate": 1.1604112808577603e-05,
|
2463 |
+
"loss": 0.1565,
|
2464 |
+
"step": 345
|
2465 |
+
},
|
2466 |
+
{
|
2467 |
+
"epoch": 1.4167517875383044,
|
2468 |
+
"grad_norm": 0.22535811364650726,
|
2469 |
+
"learning_rate": 1.155992438786818e-05,
|
2470 |
+
"loss": 0.1519,
|
2471 |
+
"step": 346
|
2472 |
+
},
|
2473 |
+
{
|
2474 |
+
"epoch": 1.4208375893769152,
|
2475 |
+
"grad_norm": 0.2757152020931244,
|
2476 |
+
"learning_rate": 1.1515704725912926e-05,
|
2477 |
+
"loss": 0.1824,
|
2478 |
+
"step": 347
|
2479 |
+
},
|
2480 |
+
{
|
2481 |
+
"epoch": 1.424923391215526,
|
2482 |
+
"grad_norm": 0.25517934560775757,
|
2483 |
+
"learning_rate": 1.1471454708317163e-05,
|
2484 |
+
"loss": 0.1524,
|
2485 |
+
"step": 348
|
2486 |
+
},
|
2487 |
+
{
|
2488 |
+
"epoch": 1.4290091930541369,
|
2489 |
+
"grad_norm": 0.26882752776145935,
|
2490 |
+
"learning_rate": 1.1427175221294145e-05,
|
2491 |
+
"loss": 0.1653,
|
2492 |
+
"step": 349
|
2493 |
+
},
|
2494 |
+
{
|
2495 |
+
"epoch": 1.4330949948927478,
|
2496 |
+
"grad_norm": 0.2248525470495224,
|
2497 |
+
"learning_rate": 1.1382867151647333e-05,
|
2498 |
+
"loss": 0.1458,
|
2499 |
+
"step": 350
|
2500 |
+
},
|
2501 |
+
{
|
2502 |
+
"epoch": 1.4371807967313586,
|
2503 |
+
"grad_norm": 0.2648623585700989,
|
2504 |
+
"learning_rate": 1.1338531386752618e-05,
|
2505 |
+
"loss": 0.1663,
|
2506 |
+
"step": 351
|
2507 |
+
},
|
2508 |
+
{
|
2509 |
+
"epoch": 1.4412665985699693,
|
2510 |
+
"grad_norm": 0.2239081859588623,
|
2511 |
+
"learning_rate": 1.1294168814540554e-05,
|
2512 |
+
"loss": 0.1488,
|
2513 |
+
"step": 352
|
2514 |
+
},
|
2515 |
+
{
|
2516 |
+
"epoch": 1.4453524004085803,
|
2517 |
+
"grad_norm": 0.2529364824295044,
|
2518 |
+
"learning_rate": 1.1249780323478585e-05,
|
2519 |
+
"loss": 0.1633,
|
2520 |
+
"step": 353
|
2521 |
+
},
|
2522 |
+
{
|
2523 |
+
"epoch": 1.449438202247191,
|
2524 |
+
"grad_norm": 0.22921797633171082,
|
2525 |
+
"learning_rate": 1.1205366802553231e-05,
|
2526 |
+
"loss": 0.1648,
|
2527 |
+
"step": 354
|
2528 |
+
},
|
2529 |
+
{
|
2530 |
+
"epoch": 1.4535240040858017,
|
2531 |
+
"grad_norm": 0.29341360926628113,
|
2532 |
+
"learning_rate": 1.1160929141252303e-05,
|
2533 |
+
"loss": 0.1657,
|
2534 |
+
"step": 355
|
2535 |
+
},
|
2536 |
+
{
|
2537 |
+
"epoch": 1.4576098059244127,
|
2538 |
+
"grad_norm": 0.2699342966079712,
|
2539 |
+
"learning_rate": 1.1116468229547079e-05,
|
2540 |
+
"loss": 0.1726,
|
2541 |
+
"step": 356
|
2542 |
+
},
|
2543 |
+
{
|
2544 |
+
"epoch": 1.4616956077630234,
|
2545 |
+
"grad_norm": 0.22347010672092438,
|
2546 |
+
"learning_rate": 1.107198495787448e-05,
|
2547 |
+
"loss": 0.1549,
|
2548 |
+
"step": 357
|
2549 |
+
},
|
2550 |
+
{
|
2551 |
+
"epoch": 1.4657814096016344,
|
2552 |
+
"grad_norm": 0.2765299677848816,
|
2553 |
+
"learning_rate": 1.1027480217119245e-05,
|
2554 |
+
"loss": 0.1567,
|
2555 |
+
"step": 358
|
2556 |
+
},
|
2557 |
+
{
|
2558 |
+
"epoch": 1.4698672114402451,
|
2559 |
+
"grad_norm": 0.2796229422092438,
|
2560 |
+
"learning_rate": 1.0982954898596072e-05,
|
2561 |
+
"loss": 0.1673,
|
2562 |
+
"step": 359
|
2563 |
+
},
|
2564 |
+
{
|
2565 |
+
"epoch": 1.473953013278856,
|
2566 |
+
"grad_norm": 0.2708180546760559,
|
2567 |
+
"learning_rate": 1.0938409894031793e-05,
|
2568 |
+
"loss": 0.1608,
|
2569 |
+
"step": 360
|
2570 |
+
},
|
2571 |
+
{
|
2572 |
+
"epoch": 1.4780388151174668,
|
2573 |
+
"grad_norm": 0.26708030700683594,
|
2574 |
+
"learning_rate": 1.0893846095547493e-05,
|
2575 |
+
"loss": 0.1672,
|
2576 |
+
"step": 361
|
2577 |
+
},
|
2578 |
+
{
|
2579 |
+
"epoch": 1.4821246169560776,
|
2580 |
+
"grad_norm": 0.25234729051589966,
|
2581 |
+
"learning_rate": 1.084926439564065e-05,
|
2582 |
+
"loss": 0.1695,
|
2583 |
+
"step": 362
|
2584 |
+
},
|
2585 |
+
{
|
2586 |
+
"epoch": 1.4862104187946885,
|
2587 |
+
"grad_norm": 0.23701204359531403,
|
2588 |
+
"learning_rate": 1.0804665687167262e-05,
|
2589 |
+
"loss": 0.1478,
|
2590 |
+
"step": 363
|
2591 |
+
},
|
2592 |
+
{
|
2593 |
+
"epoch": 1.4902962206332993,
|
2594 |
+
"grad_norm": 0.23572878539562225,
|
2595 |
+
"learning_rate": 1.0760050863323961e-05,
|
2596 |
+
"loss": 0.1518,
|
2597 |
+
"step": 364
|
2598 |
+
},
|
2599 |
+
{
|
2600 |
+
"epoch": 1.49438202247191,
|
2601 |
+
"grad_norm": 0.26712414622306824,
|
2602 |
+
"learning_rate": 1.0715420817630137e-05,
|
2603 |
+
"loss": 0.1641,
|
2604 |
+
"step": 365
|
2605 |
+
},
|
2606 |
+
{
|
2607 |
+
"epoch": 1.498467824310521,
|
2608 |
+
"grad_norm": 0.2618795931339264,
|
2609 |
+
"learning_rate": 1.0670776443910024e-05,
|
2610 |
+
"loss": 0.1584,
|
2611 |
+
"step": 366
|
2612 |
+
},
|
2613 |
+
{
|
2614 |
+
"epoch": 1.502553626149132,
|
2615 |
+
"grad_norm": 0.24355687201023102,
|
2616 |
+
"learning_rate": 1.062611863627482e-05,
|
2617 |
+
"loss": 0.155,
|
2618 |
+
"step": 367
|
2619 |
+
},
|
2620 |
+
{
|
2621 |
+
"epoch": 1.5066394279877426,
|
2622 |
+
"grad_norm": 0.28303593397140503,
|
2623 |
+
"learning_rate": 1.0581448289104759e-05,
|
2624 |
+
"loss": 0.1699,
|
2625 |
+
"step": 368
|
2626 |
+
},
|
2627 |
+
{
|
2628 |
+
"epoch": 1.5107252298263534,
|
2629 |
+
"grad_norm": 0.2682429254055023,
|
2630 |
+
"learning_rate": 1.0536766297031216e-05,
|
2631 |
+
"loss": 0.1638,
|
2632 |
+
"step": 369
|
2633 |
+
},
|
2634 |
+
{
|
2635 |
+
"epoch": 1.5148110316649643,
|
2636 |
+
"grad_norm": 0.2611052095890045,
|
2637 |
+
"learning_rate": 1.0492073554918782e-05,
|
2638 |
+
"loss": 0.162,
|
2639 |
+
"step": 370
|
2640 |
+
},
|
2641 |
+
{
|
2642 |
+
"epoch": 1.518896833503575,
|
2643 |
+
"grad_norm": 0.2545654773712158,
|
2644 |
+
"learning_rate": 1.0447370957847343e-05,
|
2645 |
+
"loss": 0.171,
|
2646 |
+
"step": 371
|
2647 |
+
},
|
2648 |
+
{
|
2649 |
+
"epoch": 1.5229826353421858,
|
2650 |
+
"grad_norm": 0.2540684640407562,
|
2651 |
+
"learning_rate": 1.0402659401094154e-05,
|
2652 |
+
"loss": 0.1609,
|
2653 |
+
"step": 372
|
2654 |
+
},
|
2655 |
+
{
|
2656 |
+
"epoch": 1.5270684371807968,
|
2657 |
+
"grad_norm": 0.29473230242729187,
|
2658 |
+
"learning_rate": 1.0357939780115906e-05,
|
2659 |
+
"loss": 0.1739,
|
2660 |
+
"step": 373
|
2661 |
+
},
|
2662 |
+
{
|
2663 |
+
"epoch": 1.5311542390194075,
|
2664 |
+
"grad_norm": 0.23088738322257996,
|
2665 |
+
"learning_rate": 1.0313212990530804e-05,
|
2666 |
+
"loss": 0.1396,
|
2667 |
+
"step": 374
|
2668 |
+
},
|
2669 |
+
{
|
2670 |
+
"epoch": 1.5352400408580182,
|
2671 |
+
"grad_norm": 0.2865520119667053,
|
2672 |
+
"learning_rate": 1.0268479928100615e-05,
|
2673 |
+
"loss": 0.1587,
|
2674 |
+
"step": 375
|
2675 |
+
},
|
2676 |
+
{
|
2677 |
+
"epoch": 1.5393258426966292,
|
2678 |
+
"grad_norm": 0.26724815368652344,
|
2679 |
+
"learning_rate": 1.0223741488712732e-05,
|
2680 |
+
"loss": 0.1643,
|
2681 |
+
"step": 376
|
2682 |
+
},
|
2683 |
+
{
|
2684 |
+
"epoch": 1.5434116445352402,
|
2685 |
+
"grad_norm": 0.2568652033805847,
|
2686 |
+
"learning_rate": 1.0178998568362243e-05,
|
2687 |
+
"loss": 0.1502,
|
2688 |
+
"step": 377
|
2689 |
+
},
|
2690 |
+
{
|
2691 |
+
"epoch": 1.547497446373851,
|
2692 |
+
"grad_norm": 0.25489166378974915,
|
2693 |
+
"learning_rate": 1.0134252063133976e-05,
|
2694 |
+
"loss": 0.1551,
|
2695 |
+
"step": 378
|
2696 |
+
},
|
2697 |
+
{
|
2698 |
+
"epoch": 1.5515832482124616,
|
2699 |
+
"grad_norm": 0.2938600480556488,
|
2700 |
+
"learning_rate": 1.0089502869184549e-05,
|
2701 |
+
"loss": 0.1721,
|
2702 |
+
"step": 379
|
2703 |
+
},
|
2704 |
+
{
|
2705 |
+
"epoch": 1.5556690500510726,
|
2706 |
+
"grad_norm": 0.2571638822555542,
|
2707 |
+
"learning_rate": 1.0044751882724436e-05,
|
2708 |
+
"loss": 0.1596,
|
2709 |
+
"step": 380
|
2710 |
+
},
|
2711 |
+
{
|
2712 |
+
"epoch": 1.5597548518896833,
|
2713 |
+
"grad_norm": 0.2504737079143524,
|
2714 |
+
"learning_rate": 1e-05,
|
2715 |
+
"loss": 0.1652,
|
2716 |
+
"step": 381
|
2717 |
+
},
|
2718 |
+
{
|
2719 |
+
"epoch": 1.563840653728294,
|
2720 |
+
"grad_norm": 0.25643548369407654,
|
2721 |
+
"learning_rate": 9.955248117275566e-06,
|
2722 |
+
"loss": 0.1646,
|
2723 |
+
"step": 382
|
2724 |
+
},
|
2725 |
+
{
|
2726 |
+
"epoch": 1.567926455566905,
|
2727 |
+
"grad_norm": 0.24690495431423187,
|
2728 |
+
"learning_rate": 9.910497130815454e-06,
|
2729 |
+
"loss": 0.1692,
|
2730 |
+
"step": 383
|
2731 |
+
},
|
2732 |
+
{
|
2733 |
+
"epoch": 1.572012257405516,
|
2734 |
+
"grad_norm": 0.23503315448760986,
|
2735 |
+
"learning_rate": 9.865747936866027e-06,
|
2736 |
+
"loss": 0.1614,
|
2737 |
+
"step": 384
|
2738 |
+
},
|
2739 |
+
{
|
2740 |
+
"epoch": 1.5760980592441267,
|
2741 |
+
"grad_norm": 0.2600212097167969,
|
2742 |
+
"learning_rate": 9.821001431637759e-06,
|
2743 |
+
"loss": 0.1843,
|
2744 |
+
"step": 385
|
2745 |
+
},
|
2746 |
+
{
|
2747 |
+
"epoch": 1.5801838610827375,
|
2748 |
+
"grad_norm": 0.24049755930900574,
|
2749 |
+
"learning_rate": 9.776258511287271e-06,
|
2750 |
+
"loss": 0.1939,
|
2751 |
+
"step": 386
|
2752 |
+
},
|
2753 |
+
{
|
2754 |
+
"epoch": 1.5842696629213484,
|
2755 |
+
"grad_norm": 0.26995447278022766,
|
2756 |
+
"learning_rate": 9.73152007189939e-06,
|
2757 |
+
"loss": 0.1608,
|
2758 |
+
"step": 387
|
2759 |
+
},
|
2760 |
+
{
|
2761 |
+
"epoch": 1.5883554647599591,
|
2762 |
+
"grad_norm": 0.25705352425575256,
|
2763 |
+
"learning_rate": 9.6867870094692e-06,
|
2764 |
+
"loss": 0.1503,
|
2765 |
+
"step": 388
|
2766 |
+
},
|
2767 |
+
{
|
2768 |
+
"epoch": 1.5924412665985699,
|
2769 |
+
"grad_norm": 0.2591187059879303,
|
2770 |
+
"learning_rate": 9.642060219884096e-06,
|
2771 |
+
"loss": 0.1601,
|
2772 |
+
"step": 389
|
2773 |
+
},
|
2774 |
+
{
|
2775 |
+
"epoch": 1.5965270684371808,
|
2776 |
+
"grad_norm": 0.26638317108154297,
|
2777 |
+
"learning_rate": 9.597340598905851e-06,
|
2778 |
+
"loss": 0.1525,
|
2779 |
+
"step": 390
|
2780 |
+
},
|
2781 |
+
{
|
2782 |
+
"epoch": 1.6006128702757916,
|
2783 |
+
"grad_norm": 0.27399975061416626,
|
2784 |
+
"learning_rate": 9.55262904215266e-06,
|
2785 |
+
"loss": 0.1571,
|
2786 |
+
"step": 391
|
2787 |
+
},
|
2788 |
+
{
|
2789 |
+
"epoch": 1.6046986721144023,
|
2790 |
+
"grad_norm": 0.298513263463974,
|
2791 |
+
"learning_rate": 9.50792644508122e-06,
|
2792 |
+
"loss": 0.1734,
|
2793 |
+
"step": 392
|
2794 |
+
},
|
2795 |
+
{
|
2796 |
+
"epoch": 1.6087844739530133,
|
2797 |
+
"grad_norm": 0.2932952344417572,
|
2798 |
+
"learning_rate": 9.463233702968784e-06,
|
2799 |
+
"loss": 0.1595,
|
2800 |
+
"step": 393
|
2801 |
+
},
|
2802 |
+
{
|
2803 |
+
"epoch": 1.6128702757916242,
|
2804 |
+
"grad_norm": 0.2699350118637085,
|
2805 |
+
"learning_rate": 9.418551710895243e-06,
|
2806 |
+
"loss": 0.1513,
|
2807 |
+
"step": 394
|
2808 |
+
},
|
2809 |
+
{
|
2810 |
+
"epoch": 1.616956077630235,
|
2811 |
+
"grad_norm": 0.2710689902305603,
|
2812 |
+
"learning_rate": 9.373881363725182e-06,
|
2813 |
+
"loss": 0.1558,
|
2814 |
+
"step": 395
|
2815 |
+
},
|
2816 |
+
{
|
2817 |
+
"epoch": 1.6210418794688457,
|
2818 |
+
"grad_norm": 0.26967060565948486,
|
2819 |
+
"learning_rate": 9.329223556089976e-06,
|
2820 |
+
"loss": 0.1532,
|
2821 |
+
"step": 396
|
2822 |
+
},
|
2823 |
+
{
|
2824 |
+
"epoch": 1.6251276813074567,
|
2825 |
+
"grad_norm": 0.26783767342567444,
|
2826 |
+
"learning_rate": 9.284579182369868e-06,
|
2827 |
+
"loss": 0.167,
|
2828 |
+
"step": 397
|
2829 |
+
},
|
2830 |
+
{
|
2831 |
+
"epoch": 1.6292134831460674,
|
2832 |
+
"grad_norm": 0.2573103606700897,
|
2833 |
+
"learning_rate": 9.239949136676042e-06,
|
2834 |
+
"loss": 0.1675,
|
2835 |
+
"step": 398
|
2836 |
+
},
|
2837 |
+
{
|
2838 |
+
"epoch": 1.6332992849846781,
|
2839 |
+
"grad_norm": 0.2554529905319214,
|
2840 |
+
"learning_rate": 9.195334312832742e-06,
|
2841 |
+
"loss": 0.1653,
|
2842 |
+
"step": 399
|
2843 |
+
},
|
2844 |
+
{
|
2845 |
+
"epoch": 1.637385086823289,
|
2846 |
+
"grad_norm": 0.2697620391845703,
|
2847 |
+
"learning_rate": 9.15073560435935e-06,
|
2848 |
+
"loss": 0.1754,
|
2849 |
+
"step": 400
|
2850 |
+
},
|
2851 |
+
{
|
2852 |
+
"epoch": 1.6414708886619,
|
2853 |
+
"grad_norm": 0.2908802032470703,
|
2854 |
+
"learning_rate": 9.10615390445251e-06,
|
2855 |
+
"loss": 0.1694,
|
2856 |
+
"step": 401
|
2857 |
+
},
|
2858 |
+
{
|
2859 |
+
"epoch": 1.6455566905005106,
|
2860 |
+
"grad_norm": 0.28988802433013916,
|
2861 |
+
"learning_rate": 9.061590105968208e-06,
|
2862 |
+
"loss": 0.1596,
|
2863 |
+
"step": 402
|
2864 |
+
},
|
2865 |
+
{
|
2866 |
+
"epoch": 1.6496424923391215,
|
2867 |
+
"grad_norm": 0.27670571208000183,
|
2868 |
+
"learning_rate": 9.01704510140393e-06,
|
2869 |
+
"loss": 0.1486,
|
2870 |
+
"step": 403
|
2871 |
+
},
|
2872 |
+
{
|
2873 |
+
"epoch": 1.6537282941777325,
|
2874 |
+
"grad_norm": 0.29919058084487915,
|
2875 |
+
"learning_rate": 8.97251978288076e-06,
|
2876 |
+
"loss": 0.1668,
|
2877 |
+
"step": 404
|
2878 |
+
},
|
2879 |
+
{
|
2880 |
+
"epoch": 1.6578140960163432,
|
2881 |
+
"grad_norm": 0.2605692446231842,
|
2882 |
+
"learning_rate": 8.928015042125523e-06,
|
2883 |
+
"loss": 0.1533,
|
2884 |
+
"step": 405
|
2885 |
+
},
|
2886 |
+
{
|
2887 |
+
"epoch": 1.661899897854954,
|
2888 |
+
"grad_norm": 0.27188801765441895,
|
2889 |
+
"learning_rate": 8.883531770452924e-06,
|
2890 |
+
"loss": 0.1591,
|
2891 |
+
"step": 406
|
2892 |
+
},
|
2893 |
+
{
|
2894 |
+
"epoch": 1.665985699693565,
|
2895 |
+
"grad_norm": 0.2607693374156952,
|
2896 |
+
"learning_rate": 8.839070858747697e-06,
|
2897 |
+
"loss": 0.1631,
|
2898 |
+
"step": 407
|
2899 |
+
},
|
2900 |
+
{
|
2901 |
+
"epoch": 1.6700715015321757,
|
2902 |
+
"grad_norm": 0.26251208782196045,
|
2903 |
+
"learning_rate": 8.79463319744677e-06,
|
2904 |
+
"loss": 0.1669,
|
2905 |
+
"step": 408
|
2906 |
+
},
|
2907 |
+
{
|
2908 |
+
"epoch": 1.6741573033707864,
|
2909 |
+
"grad_norm": 0.27655109763145447,
|
2910 |
+
"learning_rate": 8.750219676521417e-06,
|
2911 |
+
"loss": 0.1797,
|
2912 |
+
"step": 409
|
2913 |
+
},
|
2914 |
+
{
|
2915 |
+
"epoch": 1.6782431052093973,
|
2916 |
+
"grad_norm": 0.2489909827709198,
|
2917 |
+
"learning_rate": 8.705831185459446e-06,
|
2918 |
+
"loss": 0.1684,
|
2919 |
+
"step": 410
|
2920 |
+
},
|
2921 |
+
{
|
2922 |
+
"epoch": 1.6782431052093973,
|
2923 |
+
"eval_loss": 0.2804652154445648,
|
2924 |
+
"eval_runtime": 5.3248,
|
2925 |
+
"eval_samples_per_second": 14.836,
|
2926 |
+
"eval_steps_per_second": 1.878,
|
2927 |
+
"step": 410
|
2928 |
+
},
|
2929 |
+
{
|
2930 |
+
"epoch": 1.6823289070480083,
|
2931 |
+
"grad_norm": 0.2541872560977936,
|
2932 |
+
"learning_rate": 8.661468613247387e-06,
|
2933 |
+
"loss": 0.1738,
|
2934 |
+
"step": 411
|
2935 |
+
},
|
2936 |
+
{
|
2937 |
+
"epoch": 1.686414708886619,
|
2938 |
+
"grad_norm": 0.26432761549949646,
|
2939 |
+
"learning_rate": 8.617132848352672e-06,
|
2940 |
+
"loss": 0.1523,
|
2941 |
+
"step": 412
|
2942 |
+
},
|
2943 |
+
{
|
2944 |
+
"epoch": 1.6905005107252298,
|
2945 |
+
"grad_norm": 0.24682320654392242,
|
2946 |
+
"learning_rate": 8.572824778705858e-06,
|
2947 |
+
"loss": 0.1685,
|
2948 |
+
"step": 413
|
2949 |
+
},
|
2950 |
+
{
|
2951 |
+
"epoch": 1.6945863125638407,
|
2952 |
+
"grad_norm": 0.255575567483902,
|
2953 |
+
"learning_rate": 8.528545291682839e-06,
|
2954 |
+
"loss": 0.1603,
|
2955 |
+
"step": 414
|
2956 |
+
},
|
2957 |
+
{
|
2958 |
+
"epoch": 1.6986721144024515,
|
2959 |
+
"grad_norm": 0.27255284786224365,
|
2960 |
+
"learning_rate": 8.484295274087077e-06,
|
2961 |
+
"loss": 0.1649,
|
2962 |
+
"step": 415
|
2963 |
+
},
|
2964 |
+
{
|
2965 |
+
"epoch": 1.7027579162410622,
|
2966 |
+
"grad_norm": 0.2935710549354553,
|
2967 |
+
"learning_rate": 8.440075612131823e-06,
|
2968 |
+
"loss": 0.1824,
|
2969 |
+
"step": 416
|
2970 |
+
},
|
2971 |
+
{
|
2972 |
+
"epoch": 1.7068437180796732,
|
2973 |
+
"grad_norm": 0.28145232796669006,
|
2974 |
+
"learning_rate": 8.395887191422397e-06,
|
2975 |
+
"loss": 0.1664,
|
2976 |
+
"step": 417
|
2977 |
+
},
|
2978 |
+
{
|
2979 |
+
"epoch": 1.7109295199182841,
|
2980 |
+
"grad_norm": 0.2540966272354126,
|
2981 |
+
"learning_rate": 8.351730896938438e-06,
|
2982 |
+
"loss": 0.139,
|
2983 |
+
"step": 418
|
2984 |
+
},
|
2985 |
+
{
|
2986 |
+
"epoch": 1.7150153217568946,
|
2987 |
+
"grad_norm": 0.2761797606945038,
|
2988 |
+
"learning_rate": 8.307607613016166e-06,
|
2989 |
+
"loss": 0.1468,
|
2990 |
+
"step": 419
|
2991 |
+
},
|
2992 |
+
{
|
2993 |
+
"epoch": 1.7191011235955056,
|
2994 |
+
"grad_norm": 0.26004406809806824,
|
2995 |
+
"learning_rate": 8.263518223330698e-06,
|
2996 |
+
"loss": 0.1791,
|
2997 |
+
"step": 420
|
2998 |
+
},
|
2999 |
+
{
|
3000 |
+
"epoch": 1.7231869254341166,
|
3001 |
+
"grad_norm": 0.26706498861312866,
|
3002 |
+
"learning_rate": 8.219463610878336e-06,
|
3003 |
+
"loss": 0.1767,
|
3004 |
+
"step": 421
|
3005 |
+
},
|
3006 |
+
{
|
3007 |
+
"epoch": 1.7272727272727273,
|
3008 |
+
"grad_norm": 0.25433361530303955,
|
3009 |
+
"learning_rate": 8.175444657958875e-06,
|
3010 |
+
"loss": 0.1641,
|
3011 |
+
"step": 422
|
3012 |
+
},
|
3013 |
+
{
|
3014 |
+
"epoch": 1.731358529111338,
|
3015 |
+
"grad_norm": 0.28011849522590637,
|
3016 |
+
"learning_rate": 8.131462246157953e-06,
|
3017 |
+
"loss": 0.1667,
|
3018 |
+
"step": 423
|
3019 |
+
},
|
3020 |
+
{
|
3021 |
+
"epoch": 1.735444330949949,
|
3022 |
+
"grad_norm": 0.24411511421203613,
|
3023 |
+
"learning_rate": 8.087517256329376e-06,
|
3024 |
+
"loss": 0.1484,
|
3025 |
+
"step": 424
|
3026 |
+
},
|
3027 |
+
{
|
3028 |
+
"epoch": 1.7395301327885597,
|
3029 |
+
"grad_norm": 0.2515384554862976,
|
3030 |
+
"learning_rate": 8.043610568577497e-06,
|
3031 |
+
"loss": 0.149,
|
3032 |
+
"step": 425
|
3033 |
+
},
|
3034 |
+
{
|
3035 |
+
"epoch": 1.7436159346271705,
|
3036 |
+
"grad_norm": 0.28085580468177795,
|
3037 |
+
"learning_rate": 7.999743062239557e-06,
|
3038 |
+
"loss": 0.1758,
|
3039 |
+
"step": 426
|
3040 |
+
},
|
3041 |
+
{
|
3042 |
+
"epoch": 1.7477017364657814,
|
3043 |
+
"grad_norm": 0.2542356848716736,
|
3044 |
+
"learning_rate": 7.95591561586811e-06,
|
3045 |
+
"loss": 0.1526,
|
3046 |
+
"step": 427
|
3047 |
+
},
|
3048 |
+
{
|
3049 |
+
"epoch": 1.7517875383043924,
|
3050 |
+
"grad_norm": 0.2624610960483551,
|
3051 |
+
"learning_rate": 7.912129107213417e-06,
|
3052 |
+
"loss": 0.1669,
|
3053 |
+
"step": 428
|
3054 |
+
},
|
3055 |
+
{
|
3056 |
+
"epoch": 1.7558733401430031,
|
3057 |
+
"grad_norm": 0.2531009316444397,
|
3058 |
+
"learning_rate": 7.868384413205842e-06,
|
3059 |
+
"loss": 0.1728,
|
3060 |
+
"step": 429
|
3061 |
+
},
|
3062 |
+
{
|
3063 |
+
"epoch": 1.7599591419816139,
|
3064 |
+
"grad_norm": 0.26832813024520874,
|
3065 |
+
"learning_rate": 7.824682409938328e-06,
|
3066 |
+
"loss": 0.1689,
|
3067 |
+
"step": 430
|
3068 |
+
},
|
3069 |
+
{
|
3070 |
+
"epoch": 1.7640449438202248,
|
3071 |
+
"grad_norm": 0.26647037267684937,
|
3072 |
+
"learning_rate": 7.781023972648826e-06,
|
3073 |
+
"loss": 0.1566,
|
3074 |
+
"step": 431
|
3075 |
+
},
|
3076 |
+
{
|
3077 |
+
"epoch": 1.7681307456588355,
|
3078 |
+
"grad_norm": 0.2441844940185547,
|
3079 |
+
"learning_rate": 7.73740997570278e-06,
|
3080 |
+
"loss": 0.1475,
|
3081 |
+
"step": 432
|
3082 |
+
},
|
3083 |
+
{
|
3084 |
+
"epoch": 1.7722165474974463,
|
3085 |
+
"grad_norm": 0.26222023367881775,
|
3086 |
+
"learning_rate": 7.6938412925756e-06,
|
3087 |
+
"loss": 0.1627,
|
3088 |
+
"step": 433
|
3089 |
+
},
|
3090 |
+
{
|
3091 |
+
"epoch": 1.7763023493360572,
|
3092 |
+
"grad_norm": 0.27849847078323364,
|
3093 |
+
"learning_rate": 7.650318795835179e-06,
|
3094 |
+
"loss": 0.1692,
|
3095 |
+
"step": 434
|
3096 |
+
},
|
3097 |
+
{
|
3098 |
+
"epoch": 1.780388151174668,
|
3099 |
+
"grad_norm": 0.23362480103969574,
|
3100 |
+
"learning_rate": 7.606843357124426e-06,
|
3101 |
+
"loss": 0.1486,
|
3102 |
+
"step": 435
|
3103 |
+
},
|
3104 |
+
{
|
3105 |
+
"epoch": 1.7844739530132787,
|
3106 |
+
"grad_norm": 0.25098103284835815,
|
3107 |
+
"learning_rate": 7.563415847143782e-06,
|
3108 |
+
"loss": 0.1586,
|
3109 |
+
"step": 436
|
3110 |
+
},
|
3111 |
+
{
|
3112 |
+
"epoch": 1.7885597548518897,
|
3113 |
+
"grad_norm": 0.2666711211204529,
|
3114 |
+
"learning_rate": 7.520037135633817e-06,
|
3115 |
+
"loss": 0.1631,
|
3116 |
+
"step": 437
|
3117 |
+
},
|
3118 |
+
{
|
3119 |
+
"epoch": 1.7926455566905006,
|
3120 |
+
"grad_norm": 0.25154757499694824,
|
3121 |
+
"learning_rate": 7.476708091357783e-06,
|
3122 |
+
"loss": 0.1496,
|
3123 |
+
"step": 438
|
3124 |
+
},
|
3125 |
+
{
|
3126 |
+
"epoch": 1.7967313585291114,
|
3127 |
+
"grad_norm": 0.2870493233203888,
|
3128 |
+
"learning_rate": 7.433429582084233e-06,
|
3129 |
+
"loss": 0.1718,
|
3130 |
+
"step": 439
|
3131 |
+
},
|
3132 |
+
{
|
3133 |
+
"epoch": 1.800817160367722,
|
3134 |
+
"grad_norm": 0.2450946867465973,
|
3135 |
+
"learning_rate": 7.39020247456963e-06,
|
3136 |
+
"loss": 0.1551,
|
3137 |
+
"step": 440
|
3138 |
+
},
|
3139 |
+
{
|
3140 |
+
"epoch": 1.804902962206333,
|
3141 |
+
"grad_norm": 0.2701391577720642,
|
3142 |
+
"learning_rate": 7.347027634540993e-06,
|
3143 |
+
"loss": 0.1611,
|
3144 |
+
"step": 441
|
3145 |
+
},
|
3146 |
+
{
|
3147 |
+
"epoch": 1.8089887640449438,
|
3148 |
+
"grad_norm": 0.25652557611465454,
|
3149 |
+
"learning_rate": 7.303905926678565e-06,
|
3150 |
+
"loss": 0.1571,
|
3151 |
+
"step": 442
|
3152 |
+
},
|
3153 |
+
{
|
3154 |
+
"epoch": 1.8130745658835545,
|
3155 |
+
"grad_norm": 0.24130114912986755,
|
3156 |
+
"learning_rate": 7.260838214598475e-06,
|
3157 |
+
"loss": 0.1525,
|
3158 |
+
"step": 443
|
3159 |
+
},
|
3160 |
+
{
|
3161 |
+
"epoch": 1.8171603677221655,
|
3162 |
+
"grad_norm": 0.2391010969877243,
|
3163 |
+
"learning_rate": 7.217825360835475e-06,
|
3164 |
+
"loss": 0.1478,
|
3165 |
+
"step": 444
|
3166 |
+
},
|
3167 |
+
{
|
3168 |
+
"epoch": 1.8212461695607765,
|
3169 |
+
"grad_norm": 0.24808183312416077,
|
3170 |
+
"learning_rate": 7.174868226825631e-06,
|
3171 |
+
"loss": 0.1449,
|
3172 |
+
"step": 445
|
3173 |
+
},
|
3174 |
+
{
|
3175 |
+
"epoch": 1.825331971399387,
|
3176 |
+
"grad_norm": 0.24367845058441162,
|
3177 |
+
"learning_rate": 7.131967672889101e-06,
|
3178 |
+
"loss": 0.1527,
|
3179 |
+
"step": 446
|
3180 |
+
},
|
3181 |
+
{
|
3182 |
+
"epoch": 1.829417773237998,
|
3183 |
+
"grad_norm": 0.24614740908145905,
|
3184 |
+
"learning_rate": 7.089124558212872e-06,
|
3185 |
+
"loss": 0.1473,
|
3186 |
+
"step": 447
|
3187 |
+
},
|
3188 |
+
{
|
3189 |
+
"epoch": 1.8335035750766089,
|
3190 |
+
"grad_norm": 0.23732498288154602,
|
3191 |
+
"learning_rate": 7.04633974083359e-06,
|
3192 |
+
"loss": 0.1676,
|
3193 |
+
"step": 448
|
3194 |
+
},
|
3195 |
+
{
|
3196 |
+
"epoch": 1.8375893769152196,
|
3197 |
+
"grad_norm": 0.26191797852516174,
|
3198 |
+
"learning_rate": 7.003614077620348e-06,
|
3199 |
+
"loss": 0.1625,
|
3200 |
+
"step": 449
|
3201 |
+
},
|
3202 |
+
{
|
3203 |
+
"epoch": 1.8416751787538304,
|
3204 |
+
"grad_norm": 0.22175060212612152,
|
3205 |
+
"learning_rate": 6.960948424257532e-06,
|
3206 |
+
"loss": 0.1417,
|
3207 |
+
"step": 450
|
3208 |
+
},
|
3209 |
+
{
|
3210 |
+
"epoch": 1.8457609805924413,
|
3211 |
+
"grad_norm": 0.2599637806415558,
|
3212 |
+
"learning_rate": 6.918343635227694e-06,
|
3213 |
+
"loss": 0.1542,
|
3214 |
+
"step": 451
|
3215 |
+
},
|
3216 |
+
{
|
3217 |
+
"epoch": 1.849846782431052,
|
3218 |
+
"grad_norm": 0.2902531325817108,
|
3219 |
+
"learning_rate": 6.8758005637944245e-06,
|
3220 |
+
"loss": 0.1673,
|
3221 |
+
"step": 452
|
3222 |
+
},
|
3223 |
+
{
|
3224 |
+
"epoch": 1.8539325842696628,
|
3225 |
+
"grad_norm": 0.26200827956199646,
|
3226 |
+
"learning_rate": 6.833320061985278e-06,
|
3227 |
+
"loss": 0.1507,
|
3228 |
+
"step": 453
|
3229 |
+
},
|
3230 |
+
{
|
3231 |
+
"epoch": 1.8580183861082737,
|
3232 |
+
"grad_norm": 0.22496499121189117,
|
3233 |
+
"learning_rate": 6.7909029805746855e-06,
|
3234 |
+
"loss": 0.1563,
|
3235 |
+
"step": 454
|
3236 |
+
},
|
3237 |
+
{
|
3238 |
+
"epoch": 1.8621041879468847,
|
3239 |
+
"grad_norm": 0.26499348878860474,
|
3240 |
+
"learning_rate": 6.7485501690669495e-06,
|
3241 |
+
"loss": 0.1588,
|
3242 |
+
"step": 455
|
3243 |
+
},
|
3244 |
+
{
|
3245 |
+
"epoch": 1.8661899897854954,
|
3246 |
+
"grad_norm": 0.21678292751312256,
|
3247 |
+
"learning_rate": 6.706262475679205e-06,
|
3248 |
+
"loss": 0.1446,
|
3249 |
+
"step": 456
|
3250 |
+
},
|
3251 |
+
{
|
3252 |
+
"epoch": 1.8702757916241062,
|
3253 |
+
"grad_norm": 0.249608114361763,
|
3254 |
+
"learning_rate": 6.664040747324437e-06,
|
3255 |
+
"loss": 0.1574,
|
3256 |
+
"step": 457
|
3257 |
+
},
|
3258 |
+
{
|
3259 |
+
"epoch": 1.8743615934627171,
|
3260 |
+
"grad_norm": 0.27170929312705994,
|
3261 |
+
"learning_rate": 6.62188582959453e-06,
|
3262 |
+
"loss": 0.1714,
|
3263 |
+
"step": 458
|
3264 |
+
},
|
3265 |
+
{
|
3266 |
+
"epoch": 1.8784473953013279,
|
3267 |
+
"grad_norm": 0.26091060042381287,
|
3268 |
+
"learning_rate": 6.579798566743314e-06,
|
3269 |
+
"loss": 0.153,
|
3270 |
+
"step": 459
|
3271 |
+
},
|
3272 |
+
{
|
3273 |
+
"epoch": 1.8825331971399386,
|
3274 |
+
"grad_norm": 0.2784002125263214,
|
3275 |
+
"learning_rate": 6.537779801669677e-06,
|
3276 |
+
"loss": 0.1594,
|
3277 |
+
"step": 460
|
3278 |
+
},
|
3279 |
+
{
|
3280 |
+
"epoch": 1.8866189989785496,
|
3281 |
+
"grad_norm": 0.2827843427658081,
|
3282 |
+
"learning_rate": 6.495830375900665e-06,
|
3283 |
+
"loss": 0.1713,
|
3284 |
+
"step": 461
|
3285 |
+
},
|
3286 |
+
{
|
3287 |
+
"epoch": 1.8907048008171605,
|
3288 |
+
"grad_norm": 0.24465838074684143,
|
3289 |
+
"learning_rate": 6.453951129574644e-06,
|
3290 |
+
"loss": 0.1398,
|
3291 |
+
"step": 462
|
3292 |
+
},
|
3293 |
+
{
|
3294 |
+
"epoch": 1.894790602655771,
|
3295 |
+
"grad_norm": 0.24695105850696564,
|
3296 |
+
"learning_rate": 6.41214290142447e-06,
|
3297 |
+
"loss": 0.1569,
|
3298 |
+
"step": 463
|
3299 |
+
},
|
3300 |
+
{
|
3301 |
+
"epoch": 1.898876404494382,
|
3302 |
+
"grad_norm": 0.23522843420505524,
|
3303 |
+
"learning_rate": 6.370406528760675e-06,
|
3304 |
+
"loss": 0.1572,
|
3305 |
+
"step": 464
|
3306 |
+
},
|
3307 |
+
{
|
3308 |
+
"epoch": 1.902962206332993,
|
3309 |
+
"grad_norm": 0.28958627581596375,
|
3310 |
+
"learning_rate": 6.3287428474547256e-06,
|
3311 |
+
"loss": 0.1576,
|
3312 |
+
"step": 465
|
3313 |
+
},
|
3314 |
+
{
|
3315 |
+
"epoch": 1.9070480081716037,
|
3316 |
+
"grad_norm": 0.22417336702346802,
|
3317 |
+
"learning_rate": 6.287152691922264e-06,
|
3318 |
+
"loss": 0.151,
|
3319 |
+
"step": 466
|
3320 |
+
},
|
3321 |
+
{
|
3322 |
+
"epoch": 1.9111338100102144,
|
3323 |
+
"grad_norm": 0.24010370671749115,
|
3324 |
+
"learning_rate": 6.245636895106403e-06,
|
3325 |
+
"loss": 0.1422,
|
3326 |
+
"step": 467
|
3327 |
+
},
|
3328 |
+
{
|
3329 |
+
"epoch": 1.9152196118488254,
|
3330 |
+
"grad_norm": 0.257285475730896,
|
3331 |
+
"learning_rate": 6.204196288461037e-06,
|
3332 |
+
"loss": 0.1541,
|
3333 |
+
"step": 468
|
3334 |
+
},
|
3335 |
+
{
|
3336 |
+
"epoch": 1.9193054136874361,
|
3337 |
+
"grad_norm": 0.2468208223581314,
|
3338 |
+
"learning_rate": 6.162831701934203e-06,
|
3339 |
+
"loss": 0.1618,
|
3340 |
+
"step": 469
|
3341 |
+
},
|
3342 |
+
{
|
3343 |
+
"epoch": 1.9233912155260469,
|
3344 |
+
"grad_norm": 0.2693644165992737,
|
3345 |
+
"learning_rate": 6.121543963951453e-06,
|
3346 |
+
"loss": 0.1597,
|
3347 |
+
"step": 470
|
3348 |
+
},
|
3349 |
+
{
|
3350 |
+
"epoch": 1.9274770173646578,
|
3351 |
+
"grad_norm": 0.22864265739917755,
|
3352 |
+
"learning_rate": 6.080333901399252e-06,
|
3353 |
+
"loss": 0.1447,
|
3354 |
+
"step": 471
|
3355 |
+
},
|
3356 |
+
{
|
3357 |
+
"epoch": 1.9315628192032688,
|
3358 |
+
"grad_norm": 0.2744729518890381,
|
3359 |
+
"learning_rate": 6.039202339608432e-06,
|
3360 |
+
"loss": 0.1649,
|
3361 |
+
"step": 472
|
3362 |
+
},
|
3363 |
+
{
|
3364 |
+
"epoch": 1.9356486210418795,
|
3365 |
+
"grad_norm": 0.2626800537109375,
|
3366 |
+
"learning_rate": 5.998150102337665e-06,
|
3367 |
+
"loss": 0.1465,
|
3368 |
+
"step": 473
|
3369 |
+
},
|
3370 |
+
{
|
3371 |
+
"epoch": 1.9397344228804902,
|
3372 |
+
"grad_norm": 0.24998779594898224,
|
3373 |
+
"learning_rate": 5.957178011756952e-06,
|
3374 |
+
"loss": 0.1314,
|
3375 |
+
"step": 474
|
3376 |
+
},
|
3377 |
+
{
|
3378 |
+
"epoch": 1.9438202247191012,
|
3379 |
+
"grad_norm": 0.25133228302001953,
|
3380 |
+
"learning_rate": 5.9162868884311596e-06,
|
3381 |
+
"loss": 0.1541,
|
3382 |
+
"step": 475
|
3383 |
+
},
|
3384 |
+
{
|
3385 |
+
"epoch": 1.947906026557712,
|
3386 |
+
"grad_norm": 0.27924278378486633,
|
3387 |
+
"learning_rate": 5.875477551303596e-06,
|
3388 |
+
"loss": 0.1588,
|
3389 |
+
"step": 476
|
3390 |
+
},
|
3391 |
+
{
|
3392 |
+
"epoch": 1.9519918283963227,
|
3393 |
+
"grad_norm": 0.23838290572166443,
|
3394 |
+
"learning_rate": 5.834750817679606e-06,
|
3395 |
+
"loss": 0.1559,
|
3396 |
+
"step": 477
|
3397 |
+
},
|
3398 |
+
{
|
3399 |
+
"epoch": 1.9560776302349336,
|
3400 |
+
"grad_norm": 0.20889320969581604,
|
3401 |
+
"learning_rate": 5.794107503210187e-06,
|
3402 |
+
"loss": 0.1376,
|
3403 |
+
"step": 478
|
3404 |
+
},
|
3405 |
+
{
|
3406 |
+
"epoch": 1.9601634320735446,
|
3407 |
+
"grad_norm": 0.24007071554660797,
|
3408 |
+
"learning_rate": 5.753548421875686e-06,
|
3409 |
+
"loss": 0.1641,
|
3410 |
+
"step": 479
|
3411 |
+
},
|
3412 |
+
{
|
3413 |
+
"epoch": 1.9642492339121551,
|
3414 |
+
"grad_norm": 0.25776174664497375,
|
3415 |
+
"learning_rate": 5.713074385969457e-06,
|
3416 |
+
"loss": 0.1486,
|
3417 |
+
"step": 480
|
3418 |
+
},
|
3419 |
+
{
|
3420 |
+
"epoch": 1.968335035750766,
|
3421 |
+
"grad_norm": 0.24709415435791016,
|
3422 |
+
"learning_rate": 5.672686206081638e-06,
|
3423 |
+
"loss": 0.1647,
|
3424 |
+
"step": 481
|
3425 |
+
},
|
3426 |
+
{
|
3427 |
+
"epoch": 1.972420837589377,
|
3428 |
+
"grad_norm": 0.2545711398124695,
|
3429 |
+
"learning_rate": 5.632384691082874e-06,
|
3430 |
+
"loss": 0.1558,
|
3431 |
+
"step": 482
|
3432 |
+
},
|
3433 |
+
{
|
3434 |
+
"epoch": 1.9765066394279878,
|
3435 |
+
"grad_norm": 0.25180289149284363,
|
3436 |
+
"learning_rate": 5.5921706481081405e-06,
|
3437 |
+
"loss": 0.1405,
|
3438 |
+
"step": 483
|
3439 |
+
},
|
3440 |
+
{
|
3441 |
+
"epoch": 1.9805924412665985,
|
3442 |
+
"grad_norm": 0.2353358417749405,
|
3443 |
+
"learning_rate": 5.55204488254059e-06,
|
3444 |
+
"loss": 0.1496,
|
3445 |
+
"step": 484
|
3446 |
+
},
|
3447 |
+
{
|
3448 |
+
"epoch": 1.9846782431052095,
|
3449 |
+
"grad_norm": 0.25672510266304016,
|
3450 |
+
"learning_rate": 5.512008197995379e-06,
|
3451 |
+
"loss": 0.1557,
|
3452 |
+
"step": 485
|
3453 |
+
},
|
3454 |
+
{
|
3455 |
+
"epoch": 1.9887640449438202,
|
3456 |
+
"grad_norm": 0.24256597459316254,
|
3457 |
+
"learning_rate": 5.47206139630363e-06,
|
3458 |
+
"loss": 0.1366,
|
3459 |
+
"step": 486
|
3460 |
+
},
|
3461 |
+
{
|
3462 |
+
"epoch": 1.992849846782431,
|
3463 |
+
"grad_norm": 0.2704496681690216,
|
3464 |
+
"learning_rate": 5.432205277496327e-06,
|
3465 |
+
"loss": 0.1492,
|
3466 |
+
"step": 487
|
3467 |
+
},
|
3468 |
+
{
|
3469 |
+
"epoch": 1.996935648621042,
|
3470 |
+
"grad_norm": 0.24868719279766083,
|
3471 |
+
"learning_rate": 5.3924406397883174e-06,
|
3472 |
+
"loss": 0.1632,
|
3473 |
+
"step": 488
|
3474 |
+
}
|
3475 |
+
],
|
3476 |
+
"logging_steps": 1,
|
3477 |
+
"max_steps": 732,
|
3478 |
+
"num_input_tokens_seen": 0,
|
3479 |
+
"num_train_epochs": 3,
|
3480 |
+
"save_steps": 244,
|
3481 |
+
"stateful_callbacks": {
|
3482 |
+
"TrainerControl": {
|
3483 |
+
"args": {
|
3484 |
+
"should_epoch_stop": false,
|
3485 |
+
"should_evaluate": false,
|
3486 |
+
"should_log": false,
|
3487 |
+
"should_save": true,
|
3488 |
+
"should_training_stop": false
|
3489 |
+
},
|
3490 |
+
"attributes": {}
|
3491 |
+
}
|
3492 |
+
},
|
3493 |
+
"total_flos": 8.264375507248742e+17,
|
3494 |
+
"train_batch_size": 8,
|
3495 |
+
"trial_name": null,
|
3496 |
+
"trial_params": null
|
3497 |
+
}
|
checkpoint-488/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d8a51e619db41bfecd4e2978f86e8cb848022d32d79a042203708d80062927ea
|
3 |
+
size 10744
|
checkpoint-488/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-488/zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
checkpoint-732/added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
checkpoint-732/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen2.5-3B-Instruct",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"eos_token_id": 151645,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 2048,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 11008,
|
12 |
+
"max_position_embeddings": 32768,
|
13 |
+
"max_window_layers": 70,
|
14 |
+
"model_type": "qwen2",
|
15 |
+
"num_attention_heads": 16,
|
16 |
+
"num_hidden_layers": 36,
|
17 |
+
"num_key_value_heads": 2,
|
18 |
+
"rms_norm_eps": 1e-06,
|
19 |
+
"rope_scaling": null,
|
20 |
+
"rope_theta": 1000000.0,
|
21 |
+
"sliding_window": null,
|
22 |
+
"tie_word_embeddings": true,
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"transformers_version": "4.48.1",
|
25 |
+
"use_cache": false,
|
26 |
+
"use_sliding_window": false,
|
27 |
+
"vocab_size": 151665
|
28 |
+
}
|
checkpoint-732/generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.05,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.48.1"
|
14 |
+
}
|
checkpoint-732/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step732
|
checkpoint-732/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-732/model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:94e77145585997322f3e99da879afe33d1189e28971acf742a4a46e57fb43e28
|
3 |
+
size 4956450288
|
checkpoint-732/model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b4416d56b700f372991da3e4f93be86ca790c88aec666652aa0d55ec0bfa11ce
|
3 |
+
size 1835586736
|
checkpoint-732/model.safetensors.index.json
ADDED
@@ -0,0 +1,442 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 6791987200
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
260 |
+
"model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
261 |
+
"model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
262 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
263 |
+
"model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
264 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
265 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
266 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
268 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
269 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
270 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
271 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
272 |
+
"model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
273 |
+
"model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
274 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
275 |
+
"model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
276 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
277 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
278 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
279 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
280 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
281 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
282 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
283 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
284 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
285 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
286 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
287 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
288 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
289 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
290 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
291 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
292 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
293 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
294 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
295 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
296 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
297 |
+
"model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
298 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
299 |
+
"model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
300 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
301 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
302 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
303 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
304 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
305 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
306 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
307 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
308 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
309 |
+
"model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
310 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
311 |
+
"model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
312 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
313 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
314 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
315 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
316 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
317 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
318 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
319 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
320 |
+
"model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
321 |
+
"model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
322 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
323 |
+
"model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
324 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
325 |
+
"model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
326 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
327 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
328 |
+
"model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
329 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
330 |
+
"model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
331 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
332 |
+
"model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
333 |
+
"model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
334 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
335 |
+
"model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
336 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
337 |
+
"model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
338 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
339 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
340 |
+
"model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
341 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
342 |
+
"model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
343 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
344 |
+
"model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
345 |
+
"model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
346 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
347 |
+
"model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
348 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
349 |
+
"model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
350 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
351 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
352 |
+
"model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
353 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
354 |
+
"model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
355 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
356 |
+
"model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
357 |
+
"model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
358 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
359 |
+
"model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
360 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
361 |
+
"model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
362 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
363 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
364 |
+
"model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
365 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
366 |
+
"model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
367 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
368 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
369 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
370 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
371 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
372 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
373 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
374 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
375 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
376 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
377 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
378 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
379 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
380 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
381 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
382 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
383 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
384 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
385 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
386 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
387 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
388 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
389 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
390 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
391 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
392 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
393 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
394 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
395 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
396 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
397 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
398 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
399 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
400 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
401 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
402 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
403 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
404 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
405 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
406 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
407 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
408 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
409 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
410 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
411 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
412 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
413 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
414 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
415 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
416 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
417 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
418 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
419 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
420 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
421 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
422 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
423 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
424 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
425 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
426 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
427 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
428 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
429 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
430 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
431 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
432 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
433 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
434 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
435 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
436 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
437 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
438 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
439 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
440 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
441 |
+
}
|
442 |
+
}
|
checkpoint-732/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f3803bff3f596c03b55881de967a825b5734e4a581739164f9cb9e7fd1aee89
|
3 |
+
size 14512
|
checkpoint-732/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d768a04b798e2ca42effbe096b8e4481f32a402a9125a2ced390586dab8eb29e
|
3 |
+
size 14512
|
checkpoint-732/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e3674e6d322bb18fac688dee98de72d6d1e9649274ab1079046232a9da36c9b5
|
3 |
+
size 1064
|
checkpoint-732/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
checkpoint-732/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
3 |
+
size 11421896
|