amphora commited on
Commit
55ccf2b
·
verified ·
1 Parent(s): ad1b65a

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. README.md +28 -28
  2. checkpoint-244/added_tokens.json +24 -0
  3. checkpoint-244/config.json +28 -0
  4. checkpoint-244/generation_config.json +14 -0
  5. checkpoint-244/latest +1 -0
  6. checkpoint-244/merges.txt +0 -0
  7. checkpoint-244/model-00001-of-00002.safetensors +3 -0
  8. checkpoint-244/model-00002-of-00002.safetensors +3 -0
  9. checkpoint-244/model.safetensors.index.json +442 -0
  10. checkpoint-244/rng_state_0.pth +3 -0
  11. checkpoint-244/rng_state_1.pth +3 -0
  12. checkpoint-244/scheduler.pt +3 -0
  13. checkpoint-244/special_tokens_map.json +31 -0
  14. checkpoint-244/tokenizer.json +3 -0
  15. checkpoint-244/tokenizer_config.json +208 -0
  16. checkpoint-244/trainer_state.json +1765 -0
  17. checkpoint-244/training_args.bin +3 -0
  18. checkpoint-244/vocab.json +0 -0
  19. checkpoint-244/zero_to_fp32.py +760 -0
  20. checkpoint-488/added_tokens.json +24 -0
  21. checkpoint-488/config.json +28 -0
  22. checkpoint-488/generation_config.json +14 -0
  23. checkpoint-488/latest +1 -0
  24. checkpoint-488/merges.txt +0 -0
  25. checkpoint-488/model-00001-of-00002.safetensors +3 -0
  26. checkpoint-488/model-00002-of-00002.safetensors +3 -0
  27. checkpoint-488/model.safetensors.index.json +442 -0
  28. checkpoint-488/rng_state_0.pth +3 -0
  29. checkpoint-488/rng_state_1.pth +3 -0
  30. checkpoint-488/scheduler.pt +3 -0
  31. checkpoint-488/special_tokens_map.json +31 -0
  32. checkpoint-488/tokenizer.json +3 -0
  33. checkpoint-488/tokenizer_config.json +208 -0
  34. checkpoint-488/trainer_state.json +3497 -0
  35. checkpoint-488/training_args.bin +3 -0
  36. checkpoint-488/vocab.json +0 -0
  37. checkpoint-488/zero_to_fp32.py +760 -0
  38. checkpoint-732/added_tokens.json +24 -0
  39. checkpoint-732/config.json +28 -0
  40. checkpoint-732/generation_config.json +14 -0
  41. checkpoint-732/latest +1 -0
  42. checkpoint-732/merges.txt +0 -0
  43. checkpoint-732/model-00001-of-00002.safetensors +3 -0
  44. checkpoint-732/model-00002-of-00002.safetensors +3 -0
  45. checkpoint-732/model.safetensors.index.json +442 -0
  46. checkpoint-732/rng_state_0.pth +3 -0
  47. checkpoint-732/rng_state_1.pth +3 -0
  48. checkpoint-732/scheduler.pt +3 -0
  49. checkpoint-732/special_tokens_map.json +31 -0
  50. checkpoint-732/tokenizer.json +3 -0
README.md CHANGED
@@ -1,7 +1,7 @@
1
  ---
2
  library_name: transformers
3
- license: apache-2.0
4
- base_model: Qwen/Qwen2.5-1.5B-Instruct
5
  tags:
6
  - generated_from_trainer
7
  datasets:
@@ -19,7 +19,7 @@ should probably proofread and complete it, then remove this comment. -->
19
 
20
  axolotl version: `0.6.0`
21
  ```yaml
22
- base_model: Qwen/Qwen2.5-1.5B-Instruct
23
  model_type: AutoModelForCausalLM
24
  tokenizer_type: AutoTokenizer
25
  trust_remote_code: false
@@ -29,10 +29,7 @@ load_in_4bit: false
29
  strict: false
30
 
31
  output_dir: ./outputs/out
32
- remove_unused_columns: false
33
-
34
  chat_template: qwen_25
35
- # chat_template: qwen_25
36
  datasets:
37
  - path: train.jsonl
38
  type: chat_template
@@ -40,17 +37,19 @@ datasets:
40
  message_field_role: role
41
  message_field_content: content
42
  roles:
 
 
43
  user:
44
  - user
45
  assistant:
46
  - assistant
47
 
48
- dataset_prepared_path: mr1-sft-1
49
- # dataset_prepared_path: ko_r1
50
  val_set_size: 0.005
 
51
  eval_sample_packing: False
52
 
53
- sequence_len: 512
54
  sample_packing: False
55
  pad_to_sequence_len: False
56
 
@@ -59,6 +58,7 @@ wandb_entity:
59
  wandb_watch:
60
  wandb_name:
61
  wandb_log_model:
 
62
 
63
  plugins:
64
  - axolotl.integrations.liger.LigerPlugin
@@ -67,8 +67,8 @@ liger_rms_norm: true
67
  liger_swiglu: true
68
  liger_fused_linear_cross_entropy: true
69
 
70
- gradient_accumulation_steps: 1
71
- micro_batch_size: 128
72
  eval_batch_size: 4
73
  num_epochs: 3
74
  optimizer: paged_adamw_8bit
@@ -78,7 +78,7 @@ learning_rate: 2e-5
78
  train_on_inputs: false
79
  group_by_length: false
80
  bf16: auto
81
- fp16:
82
  tf32: false
83
 
84
  gradient_checkpointing: true
@@ -90,7 +90,7 @@ logging_steps: 1
90
  xformers_attention:
91
  flash_attention: true
92
 
93
- warmup_steps: 10
94
  evals_per_epoch: 3
95
  eval_max_new_tokens: 128
96
  eval_table_size:
@@ -101,16 +101,15 @@ weight_decay: 0.01
101
  fsdp:
102
  fsdp_config:
103
  special_tokens:
104
- eos_token:
105
  ```
106
 
107
  </details><br>
108
 
109
  # outputs/out
110
 
111
- This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the train.jsonl dataset.
112
  It achieves the following results on the evaluation set:
113
- - Loss: 0.3103
114
 
115
  ## Model description
116
 
@@ -130,31 +129,32 @@ More information needed
130
 
131
  The following hyperparameters were used during training:
132
  - learning_rate: 2e-05
133
- - train_batch_size: 128
134
  - eval_batch_size: 4
135
  - seed: 42
136
  - distributed_type: multi-GPU
137
  - num_devices: 2
138
- - total_train_batch_size: 256
 
139
  - total_eval_batch_size: 8
140
  - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
141
  - lr_scheduler_type: cosine
142
- - lr_scheduler_warmup_steps: 10
143
  - num_epochs: 3.0
144
 
145
  ### Training results
146
 
147
  | Training Loss | Epoch | Step | Validation Loss |
148
  |:-------------:|:------:|:----:|:---------------:|
149
- | 4.6099 | 0.0079 | 1 | 3.1001 |
150
- | 0.0071 | 0.3386 | 43 | 0.3896 |
151
- | 0.0098 | 0.6772 | 86 | 0.3527 |
152
- | 0.0026 | 1.0157 | 129 | 0.3306 |
153
- | 0.0128 | 1.3543 | 172 | 0.3166 |
154
- | 0.0042 | 1.6929 | 215 | 0.3484 |
155
- | 0.0019 | 2.0315 | 258 | 0.2931 |
156
- | 0.0039 | 2.3701 | 301 | 0.3032 |
157
- | 0.0 | 2.7087 | 344 | 0.3103 |
158
 
159
 
160
  ### Framework versions
 
1
  ---
2
  library_name: transformers
3
+ license: other
4
+ base_model: Qwen/Qwen2.5-3B-Instruct
5
  tags:
6
  - generated_from_trainer
7
  datasets:
 
19
 
20
  axolotl version: `0.6.0`
21
  ```yaml
22
+ base_model: Qwen/Qwen2.5-3B-Instruct
23
  model_type: AutoModelForCausalLM
24
  tokenizer_type: AutoTokenizer
25
  trust_remote_code: false
 
29
  strict: false
30
 
31
  output_dir: ./outputs/out
 
 
32
  chat_template: qwen_25
 
33
  datasets:
34
  - path: train.jsonl
35
  type: chat_template
 
37
  message_field_role: role
38
  message_field_content: content
39
  roles:
40
+ system:
41
+ - system
42
  user:
43
  - user
44
  assistant:
45
  - assistant
46
 
47
+ dataset_prepared_path: last_run_prepared
 
48
  val_set_size: 0.005
49
+ output_dir: ./outputs/out
50
  eval_sample_packing: False
51
 
52
+ sequence_len: 8192
53
  sample_packing: False
54
  pad_to_sequence_len: False
55
 
 
58
  wandb_watch:
59
  wandb_name:
60
  wandb_log_model:
61
+ # hub_model_id: amphora/merged-bench-qwen-full
62
 
63
  plugins:
64
  - axolotl.integrations.liger.LigerPlugin
 
67
  liger_swiglu: true
68
  liger_fused_linear_cross_entropy: true
69
 
70
+ gradient_accumulation_steps: 4
71
+ micro_batch_size: 8
72
  eval_batch_size: 4
73
  num_epochs: 3
74
  optimizer: paged_adamw_8bit
 
78
  train_on_inputs: false
79
  group_by_length: false
80
  bf16: auto
81
+ fp16:
82
  tf32: false
83
 
84
  gradient_checkpointing: true
 
90
  xformers_attention:
91
  flash_attention: true
92
 
93
+ warmup_steps: 30
94
  evals_per_epoch: 3
95
  eval_max_new_tokens: 128
96
  eval_table_size:
 
101
  fsdp:
102
  fsdp_config:
103
  special_tokens:
 
104
  ```
105
 
106
  </details><br>
107
 
108
  # outputs/out
109
 
110
+ This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the train.jsonl dataset.
111
  It achieves the following results on the evaluation set:
112
+ - Loss: 0.2783
113
 
114
  ## Model description
115
 
 
129
 
130
  The following hyperparameters were used during training:
131
  - learning_rate: 2e-05
132
+ - train_batch_size: 8
133
  - eval_batch_size: 4
134
  - seed: 42
135
  - distributed_type: multi-GPU
136
  - num_devices: 2
137
+ - gradient_accumulation_steps: 4
138
+ - total_train_batch_size: 64
139
  - total_eval_batch_size: 8
140
  - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
141
  - lr_scheduler_type: cosine
142
+ - lr_scheduler_warmup_steps: 30
143
  - num_epochs: 3.0
144
 
145
  ### Training results
146
 
147
  | Training Loss | Epoch | Step | Validation Loss |
148
  |:-------------:|:------:|:----:|:---------------:|
149
+ | 1.3989 | 0.0041 | 1 | 1.7111 |
150
+ | 0.2969 | 0.3350 | 82 | 0.3192 |
151
+ | 0.3027 | 0.6701 | 164 | 0.2914 |
152
+ | 0.177 | 1.0082 | 246 | 0.2854 |
153
+ | 0.1735 | 1.3432 | 328 | 0.2857 |
154
+ | 0.1684 | 1.6782 | 410 | 0.2805 |
155
+ | 0.1109 | 2.0163 | 492 | 0.2741 |
156
+ | 0.0946 | 2.3514 | 574 | 0.2828 |
157
+ | 0.0968 | 2.6864 | 656 | 0.2783 |
158
 
159
 
160
  ### Framework versions
checkpoint-244/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-244/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-3B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "eos_token_id": 151645,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 2048,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_position_embeddings": 32768,
13
+ "max_window_layers": 70,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 16,
16
+ "num_hidden_layers": 36,
17
+ "num_key_value_heads": 2,
18
+ "rms_norm_eps": 1e-06,
19
+ "rope_scaling": null,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": true,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.48.1",
25
+ "use_cache": false,
26
+ "use_sliding_window": false,
27
+ "vocab_size": 151665
28
+ }
checkpoint-244/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.48.1"
14
+ }
checkpoint-244/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step244
checkpoint-244/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-244/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b177b17305dfd0a160a85100c35a38e3ac87b207f8f13f906dd114b62534a2d
3
+ size 4956450288
checkpoint-244/model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb9ce7028d6aa2ffffc37212cb54fb4d943af4c4dad356c80f1621510f4f6a21
3
+ size 1835586736
checkpoint-244/model.safetensors.index.json ADDED
@@ -0,0 +1,442 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 6791987200
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
368
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
369
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
370
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
371
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
372
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
373
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
374
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
376
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
377
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
378
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
379
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
380
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
382
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
384
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
385
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
386
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
387
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
388
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
389
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
390
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
391
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
394
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
395
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
396
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
397
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
398
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
399
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
400
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
401
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
402
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
403
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
404
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
405
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
406
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
407
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
408
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
409
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
410
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
411
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
412
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
413
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
414
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
415
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
416
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
417
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
418
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
419
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
420
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
421
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
422
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
423
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
424
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
425
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
426
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
427
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
428
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
429
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
430
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
431
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
432
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
433
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
434
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
435
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
436
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
437
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
438
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
439
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
440
+ "model.norm.weight": "model-00002-of-00002.safetensors"
441
+ }
442
+ }
checkpoint-244/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9affc1541e7e94c18354d5173bc55400c5f07faf3d080c6d453d48e7a8d6ac3
3
+ size 14512
checkpoint-244/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4748c3ebf0e4c051c58b92e4a8c5b87cdb39d55cfdc2aec81a1baef0f02fc113
3
+ size 14512
checkpoint-244/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5cb186d02e42c19d881269361281b0d1dc724284e39baf6809ced6fd93070319
3
+ size 1064
checkpoint-244/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-244/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-244/tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
checkpoint-244/trainer_state.json ADDED
@@ -0,0 +1,1765 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9969356486210419,
5
+ "eval_steps": 82,
6
+ "global_step": 244,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0040858018386108275,
13
+ "grad_norm": 4.75867223739624,
14
+ "learning_rate": 6.666666666666667e-07,
15
+ "loss": 1.3989,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0040858018386108275,
20
+ "eval_loss": 1.7111468315124512,
21
+ "eval_runtime": 5.4436,
22
+ "eval_samples_per_second": 14.512,
23
+ "eval_steps_per_second": 1.837,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.008171603677221655,
28
+ "grad_norm": 4.975377559661865,
29
+ "learning_rate": 1.3333333333333334e-06,
30
+ "loss": 1.4837,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.012257405515832482,
35
+ "grad_norm": 5.219729900360107,
36
+ "learning_rate": 2.0000000000000003e-06,
37
+ "loss": 1.5181,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.01634320735444331,
42
+ "grad_norm": 4.57335901260376,
43
+ "learning_rate": 2.666666666666667e-06,
44
+ "loss": 1.4106,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.020429009193054137,
49
+ "grad_norm": 3.840559720993042,
50
+ "learning_rate": 3.3333333333333333e-06,
51
+ "loss": 1.3763,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.024514811031664963,
56
+ "grad_norm": 3.2056212425231934,
57
+ "learning_rate": 4.000000000000001e-06,
58
+ "loss": 1.1876,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.028600612870275793,
63
+ "grad_norm": 2.6987595558166504,
64
+ "learning_rate": 4.666666666666667e-06,
65
+ "loss": 1.2154,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.03268641470888662,
70
+ "grad_norm": 2.378502130508423,
71
+ "learning_rate": 5.333333333333334e-06,
72
+ "loss": 1.1594,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.03677221654749745,
77
+ "grad_norm": 1.7688865661621094,
78
+ "learning_rate": 6e-06,
79
+ "loss": 0.8435,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.04085801838610827,
84
+ "grad_norm": 1.3263744115829468,
85
+ "learning_rate": 6.666666666666667e-06,
86
+ "loss": 0.7219,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.0449438202247191,
91
+ "grad_norm": 1.3509997129440308,
92
+ "learning_rate": 7.333333333333333e-06,
93
+ "loss": 0.8172,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.049029622063329927,
98
+ "grad_norm": 1.4541417360305786,
99
+ "learning_rate": 8.000000000000001e-06,
100
+ "loss": 0.7393,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.05311542390194075,
105
+ "grad_norm": 1.181699275970459,
106
+ "learning_rate": 8.666666666666668e-06,
107
+ "loss": 0.664,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.05720122574055159,
112
+ "grad_norm": 0.9503294825553894,
113
+ "learning_rate": 9.333333333333334e-06,
114
+ "loss": 0.6222,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.06128702757916241,
119
+ "grad_norm": 0.7614471316337585,
120
+ "learning_rate": 1e-05,
121
+ "loss": 0.56,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.06537282941777324,
126
+ "grad_norm": 0.9878801107406616,
127
+ "learning_rate": 1.0666666666666667e-05,
128
+ "loss": 0.5548,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.06945863125638406,
133
+ "grad_norm": 0.8131901025772095,
134
+ "learning_rate": 1.1333333333333334e-05,
135
+ "loss": 0.4878,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.0735444330949949,
140
+ "grad_norm": 0.7322743535041809,
141
+ "learning_rate": 1.2e-05,
142
+ "loss": 0.5159,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.07763023493360573,
147
+ "grad_norm": 0.6428759098052979,
148
+ "learning_rate": 1.2666666666666667e-05,
149
+ "loss": 0.4575,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.08171603677221655,
154
+ "grad_norm": 0.562318742275238,
155
+ "learning_rate": 1.3333333333333333e-05,
156
+ "loss": 0.4571,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.08580183861082738,
161
+ "grad_norm": 0.5707699060440063,
162
+ "learning_rate": 1.4e-05,
163
+ "loss": 0.4592,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.0898876404494382,
168
+ "grad_norm": 0.5272228717803955,
169
+ "learning_rate": 1.4666666666666666e-05,
170
+ "loss": 0.4457,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.09397344228804903,
175
+ "grad_norm": 0.5120903253555298,
176
+ "learning_rate": 1.5333333333333334e-05,
177
+ "loss": 0.4034,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.09805924412665985,
182
+ "grad_norm": 0.46359285712242126,
183
+ "learning_rate": 1.6000000000000003e-05,
184
+ "loss": 0.4037,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.10214504596527069,
189
+ "grad_norm": 0.49431198835372925,
190
+ "learning_rate": 1.6666666666666667e-05,
191
+ "loss": 0.3875,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.1062308478038815,
196
+ "grad_norm": 0.4450273811817169,
197
+ "learning_rate": 1.7333333333333336e-05,
198
+ "loss": 0.3797,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.11031664964249234,
203
+ "grad_norm": 0.4551868140697479,
204
+ "learning_rate": 1.8e-05,
205
+ "loss": 0.3512,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.11440245148110317,
210
+ "grad_norm": 0.5083736777305603,
211
+ "learning_rate": 1.866666666666667e-05,
212
+ "loss": 0.3906,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.118488253319714,
217
+ "grad_norm": 0.47295963764190674,
218
+ "learning_rate": 1.9333333333333333e-05,
219
+ "loss": 0.3554,
220
+ "step": 29
221
+ },
222
+ {
223
+ "epoch": 0.12257405515832483,
224
+ "grad_norm": 0.4848616123199463,
225
+ "learning_rate": 2e-05,
226
+ "loss": 0.3712,
227
+ "step": 30
228
+ },
229
+ {
230
+ "epoch": 0.12665985699693566,
231
+ "grad_norm": 0.4398118555545807,
232
+ "learning_rate": 1.999989986294826e-05,
233
+ "loss": 0.3694,
234
+ "step": 31
235
+ },
236
+ {
237
+ "epoch": 0.13074565883554648,
238
+ "grad_norm": 0.41183602809906006,
239
+ "learning_rate": 1.9999599453798523e-05,
240
+ "loss": 0.3336,
241
+ "step": 32
242
+ },
243
+ {
244
+ "epoch": 0.1348314606741573,
245
+ "grad_norm": 0.492713987827301,
246
+ "learning_rate": 1.999909877856721e-05,
247
+ "loss": 0.3657,
248
+ "step": 33
249
+ },
250
+ {
251
+ "epoch": 0.13891726251276812,
252
+ "grad_norm": 0.4517015516757965,
253
+ "learning_rate": 1.9998397847281548e-05,
254
+ "loss": 0.367,
255
+ "step": 34
256
+ },
257
+ {
258
+ "epoch": 0.14300306435137897,
259
+ "grad_norm": 0.4641965627670288,
260
+ "learning_rate": 1.9997496673979375e-05,
261
+ "loss": 0.3565,
262
+ "step": 35
263
+ },
264
+ {
265
+ "epoch": 0.1470888661899898,
266
+ "grad_norm": 0.4812065064907074,
267
+ "learning_rate": 1.9996395276708856e-05,
268
+ "loss": 0.3773,
269
+ "step": 36
270
+ },
271
+ {
272
+ "epoch": 0.1511746680286006,
273
+ "grad_norm": 0.42300987243652344,
274
+ "learning_rate": 1.999509367752813e-05,
275
+ "loss": 0.3643,
276
+ "step": 37
277
+ },
278
+ {
279
+ "epoch": 0.15526046986721145,
280
+ "grad_norm": 0.4512963593006134,
281
+ "learning_rate": 1.9993591902504854e-05,
282
+ "loss": 0.3409,
283
+ "step": 38
284
+ },
285
+ {
286
+ "epoch": 0.15934627170582227,
287
+ "grad_norm": 0.41626426577568054,
288
+ "learning_rate": 1.9991889981715696e-05,
289
+ "loss": 0.3546,
290
+ "step": 39
291
+ },
292
+ {
293
+ "epoch": 0.1634320735444331,
294
+ "grad_norm": 0.43549367785453796,
295
+ "learning_rate": 1.9989987949245725e-05,
296
+ "loss": 0.3091,
297
+ "step": 40
298
+ },
299
+ {
300
+ "epoch": 0.1675178753830439,
301
+ "grad_norm": 0.4042600393295288,
302
+ "learning_rate": 1.9987885843187717e-05,
303
+ "loss": 0.3174,
304
+ "step": 41
305
+ },
306
+ {
307
+ "epoch": 0.17160367722165476,
308
+ "grad_norm": 0.4394363462924957,
309
+ "learning_rate": 1.9985583705641418e-05,
310
+ "loss": 0.3601,
311
+ "step": 42
312
+ },
313
+ {
314
+ "epoch": 0.17568947906026558,
315
+ "grad_norm": 0.4294170141220093,
316
+ "learning_rate": 1.9983081582712684e-05,
317
+ "loss": 0.3283,
318
+ "step": 43
319
+ },
320
+ {
321
+ "epoch": 0.1797752808988764,
322
+ "grad_norm": 0.44452300667762756,
323
+ "learning_rate": 1.998037952451255e-05,
324
+ "loss": 0.3367,
325
+ "step": 44
326
+ },
327
+ {
328
+ "epoch": 0.18386108273748722,
329
+ "grad_norm": 0.4113090932369232,
330
+ "learning_rate": 1.9977477585156252e-05,
331
+ "loss": 0.2986,
332
+ "step": 45
333
+ },
334
+ {
335
+ "epoch": 0.18794688457609807,
336
+ "grad_norm": 0.44443050026893616,
337
+ "learning_rate": 1.9974375822762117e-05,
338
+ "loss": 0.3463,
339
+ "step": 46
340
+ },
341
+ {
342
+ "epoch": 0.1920326864147089,
343
+ "grad_norm": 0.4303809106349945,
344
+ "learning_rate": 1.9971074299450414e-05,
345
+ "loss": 0.3281,
346
+ "step": 47
347
+ },
348
+ {
349
+ "epoch": 0.1961184882533197,
350
+ "grad_norm": 0.4178621470928192,
351
+ "learning_rate": 1.9967573081342103e-05,
352
+ "loss": 0.3629,
353
+ "step": 48
354
+ },
355
+ {
356
+ "epoch": 0.20020429009193055,
357
+ "grad_norm": 0.38657113909721375,
358
+ "learning_rate": 1.9963872238557516e-05,
359
+ "loss": 0.3225,
360
+ "step": 49
361
+ },
362
+ {
363
+ "epoch": 0.20429009193054137,
364
+ "grad_norm": 0.5300270915031433,
365
+ "learning_rate": 1.9959971845214953e-05,
366
+ "loss": 0.3279,
367
+ "step": 50
368
+ },
369
+ {
370
+ "epoch": 0.2083758937691522,
371
+ "grad_norm": 0.4061177968978882,
372
+ "learning_rate": 1.9955871979429188e-05,
373
+ "loss": 0.3278,
374
+ "step": 51
375
+ },
376
+ {
377
+ "epoch": 0.212461695607763,
378
+ "grad_norm": 0.41504785418510437,
379
+ "learning_rate": 1.9951572723309918e-05,
380
+ "loss": 0.3096,
381
+ "step": 52
382
+ },
383
+ {
384
+ "epoch": 0.21654749744637386,
385
+ "grad_norm": 0.4208971858024597,
386
+ "learning_rate": 1.9947074162960113e-05,
387
+ "loss": 0.3187,
388
+ "step": 53
389
+ },
390
+ {
391
+ "epoch": 0.22063329928498468,
392
+ "grad_norm": 0.36819201707839966,
393
+ "learning_rate": 1.9942376388474282e-05,
394
+ "loss": 0.3167,
395
+ "step": 54
396
+ },
397
+ {
398
+ "epoch": 0.2247191011235955,
399
+ "grad_norm": 0.43327596783638,
400
+ "learning_rate": 1.993747949393668e-05,
401
+ "loss": 0.3188,
402
+ "step": 55
403
+ },
404
+ {
405
+ "epoch": 0.22880490296220635,
406
+ "grad_norm": 0.4377865791320801,
407
+ "learning_rate": 1.9932383577419432e-05,
408
+ "loss": 0.3478,
409
+ "step": 56
410
+ },
411
+ {
412
+ "epoch": 0.23289070480081717,
413
+ "grad_norm": 0.43336397409439087,
414
+ "learning_rate": 1.992708874098054e-05,
415
+ "loss": 0.3025,
416
+ "step": 57
417
+ },
418
+ {
419
+ "epoch": 0.236976506639428,
420
+ "grad_norm": 0.4399135410785675,
421
+ "learning_rate": 1.9921595090661872e-05,
422
+ "loss": 0.3098,
423
+ "step": 58
424
+ },
425
+ {
426
+ "epoch": 0.2410623084780388,
427
+ "grad_norm": 0.4253901243209839,
428
+ "learning_rate": 1.991590273648702e-05,
429
+ "loss": 0.3303,
430
+ "step": 59
431
+ },
432
+ {
433
+ "epoch": 0.24514811031664965,
434
+ "grad_norm": 0.39254307746887207,
435
+ "learning_rate": 1.9910011792459086e-05,
436
+ "loss": 0.3018,
437
+ "step": 60
438
+ },
439
+ {
440
+ "epoch": 0.24923391215526047,
441
+ "grad_norm": 0.4217659831047058,
442
+ "learning_rate": 1.9903922376558432e-05,
443
+ "loss": 0.285,
444
+ "step": 61
445
+ },
446
+ {
447
+ "epoch": 0.2533197139938713,
448
+ "grad_norm": 0.48558109998703003,
449
+ "learning_rate": 1.989763461074029e-05,
450
+ "loss": 0.3221,
451
+ "step": 62
452
+ },
453
+ {
454
+ "epoch": 0.2574055158324821,
455
+ "grad_norm": 0.47454214096069336,
456
+ "learning_rate": 1.989114862093232e-05,
457
+ "loss": 0.3056,
458
+ "step": 63
459
+ },
460
+ {
461
+ "epoch": 0.26149131767109296,
462
+ "grad_norm": 0.4013993442058563,
463
+ "learning_rate": 1.9884464537032103e-05,
464
+ "loss": 0.3376,
465
+ "step": 64
466
+ },
467
+ {
468
+ "epoch": 0.26557711950970375,
469
+ "grad_norm": 0.4264606237411499,
470
+ "learning_rate": 1.9877582492904533e-05,
471
+ "loss": 0.3158,
472
+ "step": 65
473
+ },
474
+ {
475
+ "epoch": 0.2696629213483146,
476
+ "grad_norm": 0.5440453886985779,
477
+ "learning_rate": 1.9870502626379127e-05,
478
+ "loss": 0.3056,
479
+ "step": 66
480
+ },
481
+ {
482
+ "epoch": 0.27374872318692545,
483
+ "grad_norm": 0.40003377199172974,
484
+ "learning_rate": 1.9863225079247286e-05,
485
+ "loss": 0.3357,
486
+ "step": 67
487
+ },
488
+ {
489
+ "epoch": 0.27783452502553624,
490
+ "grad_norm": 0.39155763387680054,
491
+ "learning_rate": 1.985574999725943e-05,
492
+ "loss": 0.2819,
493
+ "step": 68
494
+ },
495
+ {
496
+ "epoch": 0.2819203268641471,
497
+ "grad_norm": 0.4461009204387665,
498
+ "learning_rate": 1.9848077530122083e-05,
499
+ "loss": 0.2732,
500
+ "step": 69
501
+ },
502
+ {
503
+ "epoch": 0.28600612870275793,
504
+ "grad_norm": 0.38970062136650085,
505
+ "learning_rate": 1.9840207831494903e-05,
506
+ "loss": 0.2957,
507
+ "step": 70
508
+ },
509
+ {
510
+ "epoch": 0.2900919305413687,
511
+ "grad_norm": 0.4369664788246155,
512
+ "learning_rate": 1.983214105898757e-05,
513
+ "loss": 0.3158,
514
+ "step": 71
515
+ },
516
+ {
517
+ "epoch": 0.2941777323799796,
518
+ "grad_norm": 0.4734659492969513,
519
+ "learning_rate": 1.9823877374156647e-05,
520
+ "loss": 0.3054,
521
+ "step": 72
522
+ },
523
+ {
524
+ "epoch": 0.2982635342185904,
525
+ "grad_norm": 0.3933468461036682,
526
+ "learning_rate": 1.9815416942502346e-05,
527
+ "loss": 0.286,
528
+ "step": 73
529
+ },
530
+ {
531
+ "epoch": 0.3023493360572012,
532
+ "grad_norm": 0.4472273290157318,
533
+ "learning_rate": 1.98067599334652e-05,
534
+ "loss": 0.3149,
535
+ "step": 74
536
+ },
537
+ {
538
+ "epoch": 0.30643513789581206,
539
+ "grad_norm": 0.43143752217292786,
540
+ "learning_rate": 1.979790652042268e-05,
541
+ "loss": 0.2792,
542
+ "step": 75
543
+ },
544
+ {
545
+ "epoch": 0.3105209397344229,
546
+ "grad_norm": 0.4325246512889862,
547
+ "learning_rate": 1.978885688068572e-05,
548
+ "loss": 0.3024,
549
+ "step": 76
550
+ },
551
+ {
552
+ "epoch": 0.3146067415730337,
553
+ "grad_norm": 0.48796600103378296,
554
+ "learning_rate": 1.9779611195495177e-05,
555
+ "loss": 0.3343,
556
+ "step": 77
557
+ },
558
+ {
559
+ "epoch": 0.31869254341164455,
560
+ "grad_norm": 0.40505748987197876,
561
+ "learning_rate": 1.977016965001817e-05,
562
+ "loss": 0.2753,
563
+ "step": 78
564
+ },
565
+ {
566
+ "epoch": 0.32277834525025534,
567
+ "grad_norm": 0.40753036737442017,
568
+ "learning_rate": 1.976053243334442e-05,
569
+ "loss": 0.3073,
570
+ "step": 79
571
+ },
572
+ {
573
+ "epoch": 0.3268641470888662,
574
+ "grad_norm": 0.4000149071216583,
575
+ "learning_rate": 1.9750699738482403e-05,
576
+ "loss": 0.284,
577
+ "step": 80
578
+ },
579
+ {
580
+ "epoch": 0.33094994892747703,
581
+ "grad_norm": 0.42099907994270325,
582
+ "learning_rate": 1.9740671762355548e-05,
583
+ "loss": 0.2881,
584
+ "step": 81
585
+ },
586
+ {
587
+ "epoch": 0.3350357507660878,
588
+ "grad_norm": 0.4155902564525604,
589
+ "learning_rate": 1.973044870579824e-05,
590
+ "loss": 0.2969,
591
+ "step": 82
592
+ },
593
+ {
594
+ "epoch": 0.3350357507660878,
595
+ "eval_loss": 0.31923907995224,
596
+ "eval_runtime": 5.81,
597
+ "eval_samples_per_second": 13.597,
598
+ "eval_steps_per_second": 1.721,
599
+ "step": 82
600
+ },
601
+ {
602
+ "epoch": 0.3391215526046987,
603
+ "grad_norm": 0.39282551407814026,
604
+ "learning_rate": 1.972003077355183e-05,
605
+ "loss": 0.2948,
606
+ "step": 83
607
+ },
608
+ {
609
+ "epoch": 0.3432073544433095,
610
+ "grad_norm": 0.4381943643093109,
611
+ "learning_rate": 1.9709418174260523e-05,
612
+ "loss": 0.3454,
613
+ "step": 84
614
+ },
615
+ {
616
+ "epoch": 0.3472931562819203,
617
+ "grad_norm": 0.4093382954597473,
618
+ "learning_rate": 1.9698611120467196e-05,
619
+ "loss": 0.2962,
620
+ "step": 85
621
+ },
622
+ {
623
+ "epoch": 0.35137895812053116,
624
+ "grad_norm": 0.450135737657547,
625
+ "learning_rate": 1.9687609828609156e-05,
626
+ "loss": 0.3243,
627
+ "step": 86
628
+ },
629
+ {
630
+ "epoch": 0.355464759959142,
631
+ "grad_norm": 0.4139018654823303,
632
+ "learning_rate": 1.9676414519013782e-05,
633
+ "loss": 0.2996,
634
+ "step": 87
635
+ },
636
+ {
637
+ "epoch": 0.3595505617977528,
638
+ "grad_norm": 0.40026575326919556,
639
+ "learning_rate": 1.966502541589414e-05,
640
+ "loss": 0.2788,
641
+ "step": 88
642
+ },
643
+ {
644
+ "epoch": 0.36363636363636365,
645
+ "grad_norm": 0.36627820134162903,
646
+ "learning_rate": 1.965344274734447e-05,
647
+ "loss": 0.2857,
648
+ "step": 89
649
+ },
650
+ {
651
+ "epoch": 0.36772216547497444,
652
+ "grad_norm": 0.42685478925704956,
653
+ "learning_rate": 1.9641666745335626e-05,
654
+ "loss": 0.2995,
655
+ "step": 90
656
+ },
657
+ {
658
+ "epoch": 0.3718079673135853,
659
+ "grad_norm": 0.374288946390152,
660
+ "learning_rate": 1.9629697645710432e-05,
661
+ "loss": 0.3056,
662
+ "step": 91
663
+ },
664
+ {
665
+ "epoch": 0.37589376915219613,
666
+ "grad_norm": 0.3649786114692688,
667
+ "learning_rate": 1.961753568817896e-05,
668
+ "loss": 0.2854,
669
+ "step": 92
670
+ },
671
+ {
672
+ "epoch": 0.3799795709908069,
673
+ "grad_norm": 0.38573023676872253,
674
+ "learning_rate": 1.9605181116313725e-05,
675
+ "loss": 0.2667,
676
+ "step": 93
677
+ },
678
+ {
679
+ "epoch": 0.3840653728294178,
680
+ "grad_norm": 0.37577807903289795,
681
+ "learning_rate": 1.9592634177544803e-05,
682
+ "loss": 0.2815,
683
+ "step": 94
684
+ },
685
+ {
686
+ "epoch": 0.3881511746680286,
687
+ "grad_norm": 0.4320047199726105,
688
+ "learning_rate": 1.957989512315489e-05,
689
+ "loss": 0.3094,
690
+ "step": 95
691
+ },
692
+ {
693
+ "epoch": 0.3922369765066394,
694
+ "grad_norm": 0.3816889524459839,
695
+ "learning_rate": 1.9566964208274254e-05,
696
+ "loss": 0.292,
697
+ "step": 96
698
+ },
699
+ {
700
+ "epoch": 0.39632277834525026,
701
+ "grad_norm": 0.3946669399738312,
702
+ "learning_rate": 1.9553841691875632e-05,
703
+ "loss": 0.3002,
704
+ "step": 97
705
+ },
706
+ {
707
+ "epoch": 0.4004085801838611,
708
+ "grad_norm": 0.36885613203048706,
709
+ "learning_rate": 1.9540527836769047e-05,
710
+ "loss": 0.2583,
711
+ "step": 98
712
+ },
713
+ {
714
+ "epoch": 0.4044943820224719,
715
+ "grad_norm": 0.37865176796913147,
716
+ "learning_rate": 1.9527022909596537e-05,
717
+ "loss": 0.2787,
718
+ "step": 99
719
+ },
720
+ {
721
+ "epoch": 0.40858018386108275,
722
+ "grad_norm": 0.4429585337638855,
723
+ "learning_rate": 1.951332718082682e-05,
724
+ "loss": 0.3226,
725
+ "step": 100
726
+ },
727
+ {
728
+ "epoch": 0.41266598569969354,
729
+ "grad_norm": 0.3926009237766266,
730
+ "learning_rate": 1.9499440924749878e-05,
731
+ "loss": 0.2914,
732
+ "step": 101
733
+ },
734
+ {
735
+ "epoch": 0.4167517875383044,
736
+ "grad_norm": 0.3467339277267456,
737
+ "learning_rate": 1.9485364419471454e-05,
738
+ "loss": 0.266,
739
+ "step": 102
740
+ },
741
+ {
742
+ "epoch": 0.42083758937691523,
743
+ "grad_norm": 0.4126642644405365,
744
+ "learning_rate": 1.9471097946907506e-05,
745
+ "loss": 0.2775,
746
+ "step": 103
747
+ },
748
+ {
749
+ "epoch": 0.424923391215526,
750
+ "grad_norm": 0.44586020708084106,
751
+ "learning_rate": 1.9456641792778527e-05,
752
+ "loss": 0.2884,
753
+ "step": 104
754
+ },
755
+ {
756
+ "epoch": 0.4290091930541369,
757
+ "grad_norm": 0.3969588279724121,
758
+ "learning_rate": 1.9441996246603848e-05,
759
+ "loss": 0.2835,
760
+ "step": 105
761
+ },
762
+ {
763
+ "epoch": 0.4330949948927477,
764
+ "grad_norm": 0.38928356766700745,
765
+ "learning_rate": 1.9427161601695833e-05,
766
+ "loss": 0.2826,
767
+ "step": 106
768
+ },
769
+ {
770
+ "epoch": 0.4371807967313585,
771
+ "grad_norm": 0.4089799225330353,
772
+ "learning_rate": 1.9412138155154e-05,
773
+ "loss": 0.2817,
774
+ "step": 107
775
+ },
776
+ {
777
+ "epoch": 0.44126659856996936,
778
+ "grad_norm": 0.375505656003952,
779
+ "learning_rate": 1.9396926207859085e-05,
780
+ "loss": 0.2882,
781
+ "step": 108
782
+ },
783
+ {
784
+ "epoch": 0.4453524004085802,
785
+ "grad_norm": 0.406118780374527,
786
+ "learning_rate": 1.9381526064466995e-05,
787
+ "loss": 0.2861,
788
+ "step": 109
789
+ },
790
+ {
791
+ "epoch": 0.449438202247191,
792
+ "grad_norm": 0.3882409334182739,
793
+ "learning_rate": 1.9365938033402715e-05,
794
+ "loss": 0.261,
795
+ "step": 110
796
+ },
797
+ {
798
+ "epoch": 0.45352400408580185,
799
+ "grad_norm": 0.4351583421230316,
800
+ "learning_rate": 1.9350162426854152e-05,
801
+ "loss": 0.3014,
802
+ "step": 111
803
+ },
804
+ {
805
+ "epoch": 0.4576098059244127,
806
+ "grad_norm": 0.3621097505092621,
807
+ "learning_rate": 1.933419956076584e-05,
808
+ "loss": 0.2728,
809
+ "step": 112
810
+ },
811
+ {
812
+ "epoch": 0.4616956077630235,
813
+ "grad_norm": 0.3881032466888428,
814
+ "learning_rate": 1.9318049754832656e-05,
815
+ "loss": 0.2736,
816
+ "step": 113
817
+ },
818
+ {
819
+ "epoch": 0.46578140960163433,
820
+ "grad_norm": 0.37627285718917847,
821
+ "learning_rate": 1.9301713332493386e-05,
822
+ "loss": 0.2707,
823
+ "step": 114
824
+ },
825
+ {
826
+ "epoch": 0.4698672114402451,
827
+ "grad_norm": 0.4285913109779358,
828
+ "learning_rate": 1.9285190620924267e-05,
829
+ "loss": 0.2815,
830
+ "step": 115
831
+ },
832
+ {
833
+ "epoch": 0.473953013278856,
834
+ "grad_norm": 0.35718926787376404,
835
+ "learning_rate": 1.926848195103242e-05,
836
+ "loss": 0.2621,
837
+ "step": 116
838
+ },
839
+ {
840
+ "epoch": 0.4780388151174668,
841
+ "grad_norm": 0.3852044641971588,
842
+ "learning_rate": 1.925158765744924e-05,
843
+ "loss": 0.283,
844
+ "step": 117
845
+ },
846
+ {
847
+ "epoch": 0.4821246169560776,
848
+ "grad_norm": 0.3884032368659973,
849
+ "learning_rate": 1.923450807852367e-05,
850
+ "loss": 0.2711,
851
+ "step": 118
852
+ },
853
+ {
854
+ "epoch": 0.48621041879468846,
855
+ "grad_norm": 0.4398249685764313,
856
+ "learning_rate": 1.9217243556315445e-05,
857
+ "loss": 0.2757,
858
+ "step": 119
859
+ },
860
+ {
861
+ "epoch": 0.4902962206332993,
862
+ "grad_norm": 0.36689624190330505,
863
+ "learning_rate": 1.9199794436588244e-05,
864
+ "loss": 0.2669,
865
+ "step": 120
866
+ },
867
+ {
868
+ "epoch": 0.4943820224719101,
869
+ "grad_norm": 0.46398666501045227,
870
+ "learning_rate": 1.9182161068802742e-05,
871
+ "loss": 0.2683,
872
+ "step": 121
873
+ },
874
+ {
875
+ "epoch": 0.49846782431052095,
876
+ "grad_norm": 0.40020987391471863,
877
+ "learning_rate": 1.916434380610963e-05,
878
+ "loss": 0.2927,
879
+ "step": 122
880
+ },
881
+ {
882
+ "epoch": 0.5025536261491318,
883
+ "grad_norm": 0.4032459259033203,
884
+ "learning_rate": 1.9146343005342546e-05,
885
+ "loss": 0.31,
886
+ "step": 123
887
+ },
888
+ {
889
+ "epoch": 0.5066394279877426,
890
+ "grad_norm": 0.44166550040245056,
891
+ "learning_rate": 1.912815902701091e-05,
892
+ "loss": 0.2842,
893
+ "step": 124
894
+ },
895
+ {
896
+ "epoch": 0.5107252298263534,
897
+ "grad_norm": 0.39895153045654297,
898
+ "learning_rate": 1.9109792235292715e-05,
899
+ "loss": 0.2766,
900
+ "step": 125
901
+ },
902
+ {
903
+ "epoch": 0.5148110316649642,
904
+ "grad_norm": 0.3415013253688812,
905
+ "learning_rate": 1.909124299802724e-05,
906
+ "loss": 0.2761,
907
+ "step": 126
908
+ },
909
+ {
910
+ "epoch": 0.5188968335035751,
911
+ "grad_norm": 0.3837663531303406,
912
+ "learning_rate": 1.9072511686707663e-05,
913
+ "loss": 0.2797,
914
+ "step": 127
915
+ },
916
+ {
917
+ "epoch": 0.5229826353421859,
918
+ "grad_norm": 0.4030819833278656,
919
+ "learning_rate": 1.9053598676473656e-05,
920
+ "loss": 0.2932,
921
+ "step": 128
922
+ },
923
+ {
924
+ "epoch": 0.5270684371807968,
925
+ "grad_norm": 0.40120938420295715,
926
+ "learning_rate": 1.9034504346103825e-05,
927
+ "loss": 0.2698,
928
+ "step": 129
929
+ },
930
+ {
931
+ "epoch": 0.5311542390194075,
932
+ "grad_norm": 0.3621327579021454,
933
+ "learning_rate": 1.9015229078008163e-05,
934
+ "loss": 0.298,
935
+ "step": 130
936
+ },
937
+ {
938
+ "epoch": 0.5352400408580184,
939
+ "grad_norm": 0.33476150035858154,
940
+ "learning_rate": 1.8995773258220374e-05,
941
+ "loss": 0.2612,
942
+ "step": 131
943
+ },
944
+ {
945
+ "epoch": 0.5393258426966292,
946
+ "grad_norm": 0.3523140549659729,
947
+ "learning_rate": 1.8976137276390145e-05,
948
+ "loss": 0.2671,
949
+ "step": 132
950
+ },
951
+ {
952
+ "epoch": 0.54341164453524,
953
+ "grad_norm": 0.3624558746814728,
954
+ "learning_rate": 1.8956321525775337e-05,
955
+ "loss": 0.2687,
956
+ "step": 133
957
+ },
958
+ {
959
+ "epoch": 0.5474974463738509,
960
+ "grad_norm": 0.35892072319984436,
961
+ "learning_rate": 1.8936326403234125e-05,
962
+ "loss": 0.2755,
963
+ "step": 134
964
+ },
965
+ {
966
+ "epoch": 0.5515832482124617,
967
+ "grad_norm": 0.3678256869316101,
968
+ "learning_rate": 1.891615230921703e-05,
969
+ "loss": 0.278,
970
+ "step": 135
971
+ },
972
+ {
973
+ "epoch": 0.5556690500510725,
974
+ "grad_norm": 0.38125160336494446,
975
+ "learning_rate": 1.8895799647758912e-05,
976
+ "loss": 0.2765,
977
+ "step": 136
978
+ },
979
+ {
980
+ "epoch": 0.5597548518896833,
981
+ "grad_norm": 0.40152257680892944,
982
+ "learning_rate": 1.8875268826470875e-05,
983
+ "loss": 0.3239,
984
+ "step": 137
985
+ },
986
+ {
987
+ "epoch": 0.5638406537282942,
988
+ "grad_norm": 0.3935178816318512,
989
+ "learning_rate": 1.8854560256532098e-05,
990
+ "loss": 0.2956,
991
+ "step": 138
992
+ },
993
+ {
994
+ "epoch": 0.567926455566905,
995
+ "grad_norm": 0.4389478266239166,
996
+ "learning_rate": 1.8833674352681613e-05,
997
+ "loss": 0.2968,
998
+ "step": 139
999
+ },
1000
+ {
1001
+ "epoch": 0.5720122574055159,
1002
+ "grad_norm": 0.3884355127811432,
1003
+ "learning_rate": 1.881261153320999e-05,
1004
+ "loss": 0.3074,
1005
+ "step": 140
1006
+ },
1007
+ {
1008
+ "epoch": 0.5760980592441267,
1009
+ "grad_norm": 0.4054373502731323,
1010
+ "learning_rate": 1.879137221995095e-05,
1011
+ "loss": 0.2996,
1012
+ "step": 141
1013
+ },
1014
+ {
1015
+ "epoch": 0.5801838610827375,
1016
+ "grad_norm": 0.4423893690109253,
1017
+ "learning_rate": 1.8769956838272937e-05,
1018
+ "loss": 0.3082,
1019
+ "step": 142
1020
+ },
1021
+ {
1022
+ "epoch": 0.5842696629213483,
1023
+ "grad_norm": 0.42978307604789734,
1024
+ "learning_rate": 1.8748365817070586e-05,
1025
+ "loss": 0.2878,
1026
+ "step": 143
1027
+ },
1028
+ {
1029
+ "epoch": 0.5883554647599591,
1030
+ "grad_norm": 0.38182228803634644,
1031
+ "learning_rate": 1.8726599588756144e-05,
1032
+ "loss": 0.2649,
1033
+ "step": 144
1034
+ },
1035
+ {
1036
+ "epoch": 0.59244126659857,
1037
+ "grad_norm": 0.43477413058280945,
1038
+ "learning_rate": 1.8704658589250795e-05,
1039
+ "loss": 0.271,
1040
+ "step": 145
1041
+ },
1042
+ {
1043
+ "epoch": 0.5965270684371808,
1044
+ "grad_norm": 0.3876926898956299,
1045
+ "learning_rate": 1.868254325797594e-05,
1046
+ "loss": 0.2804,
1047
+ "step": 146
1048
+ },
1049
+ {
1050
+ "epoch": 0.6006128702757916,
1051
+ "grad_norm": 0.39310601353645325,
1052
+ "learning_rate": 1.866025403784439e-05,
1053
+ "loss": 0.2767,
1054
+ "step": 147
1055
+ },
1056
+ {
1057
+ "epoch": 0.6046986721144024,
1058
+ "grad_norm": 0.421290785074234,
1059
+ "learning_rate": 1.8637791375251505e-05,
1060
+ "loss": 0.2668,
1061
+ "step": 148
1062
+ },
1063
+ {
1064
+ "epoch": 0.6087844739530133,
1065
+ "grad_norm": 0.450023353099823,
1066
+ "learning_rate": 1.8615155720066247e-05,
1067
+ "loss": 0.2888,
1068
+ "step": 149
1069
+ },
1070
+ {
1071
+ "epoch": 0.6128702757916241,
1072
+ "grad_norm": 0.3645341396331787,
1073
+ "learning_rate": 1.859234752562217e-05,
1074
+ "loss": 0.2828,
1075
+ "step": 150
1076
+ },
1077
+ {
1078
+ "epoch": 0.616956077630235,
1079
+ "grad_norm": 0.41853606700897217,
1080
+ "learning_rate": 1.8569367248708343e-05,
1081
+ "loss": 0.284,
1082
+ "step": 151
1083
+ },
1084
+ {
1085
+ "epoch": 0.6210418794688458,
1086
+ "grad_norm": 0.3675737679004669,
1087
+ "learning_rate": 1.8546215349560204e-05,
1088
+ "loss": 0.2933,
1089
+ "step": 152
1090
+ },
1091
+ {
1092
+ "epoch": 0.6251276813074566,
1093
+ "grad_norm": 0.3668256998062134,
1094
+ "learning_rate": 1.8522892291850335e-05,
1095
+ "loss": 0.2729,
1096
+ "step": 153
1097
+ },
1098
+ {
1099
+ "epoch": 0.6292134831460674,
1100
+ "grad_norm": 0.34576019644737244,
1101
+ "learning_rate": 1.849939854267919e-05,
1102
+ "loss": 0.2612,
1103
+ "step": 154
1104
+ },
1105
+ {
1106
+ "epoch": 0.6332992849846782,
1107
+ "grad_norm": 0.41370126605033875,
1108
+ "learning_rate": 1.847573457256571e-05,
1109
+ "loss": 0.2693,
1110
+ "step": 155
1111
+ },
1112
+ {
1113
+ "epoch": 0.6373850868232891,
1114
+ "grad_norm": 0.4205566644668579,
1115
+ "learning_rate": 1.845190085543795e-05,
1116
+ "loss": 0.2746,
1117
+ "step": 156
1118
+ },
1119
+ {
1120
+ "epoch": 0.6414708886618999,
1121
+ "grad_norm": 0.3997614085674286,
1122
+ "learning_rate": 1.8427897868623535e-05,
1123
+ "loss": 0.2813,
1124
+ "step": 157
1125
+ },
1126
+ {
1127
+ "epoch": 0.6455566905005107,
1128
+ "grad_norm": 0.41005200147628784,
1129
+ "learning_rate": 1.840372609284013e-05,
1130
+ "loss": 0.2647,
1131
+ "step": 158
1132
+ },
1133
+ {
1134
+ "epoch": 0.6496424923391215,
1135
+ "grad_norm": 0.4547550678253174,
1136
+ "learning_rate": 1.8379386012185813e-05,
1137
+ "loss": 0.2791,
1138
+ "step": 159
1139
+ },
1140
+ {
1141
+ "epoch": 0.6537282941777324,
1142
+ "grad_norm": 0.4075047969818115,
1143
+ "learning_rate": 1.8354878114129368e-05,
1144
+ "loss": 0.2769,
1145
+ "step": 160
1146
+ },
1147
+ {
1148
+ "epoch": 0.6578140960163432,
1149
+ "grad_norm": 0.37060046195983887,
1150
+ "learning_rate": 1.8330202889500518e-05,
1151
+ "loss": 0.3028,
1152
+ "step": 161
1153
+ },
1154
+ {
1155
+ "epoch": 0.6618998978549541,
1156
+ "grad_norm": 0.35541340708732605,
1157
+ "learning_rate": 1.8305360832480118e-05,
1158
+ "loss": 0.2981,
1159
+ "step": 162
1160
+ },
1161
+ {
1162
+ "epoch": 0.6659856996935649,
1163
+ "grad_norm": 0.3970625400543213,
1164
+ "learning_rate": 1.8280352440590236e-05,
1165
+ "loss": 0.2634,
1166
+ "step": 163
1167
+ },
1168
+ {
1169
+ "epoch": 0.6700715015321757,
1170
+ "grad_norm": 0.4075865149497986,
1171
+ "learning_rate": 1.82551782146842e-05,
1172
+ "loss": 0.3027,
1173
+ "step": 164
1174
+ },
1175
+ {
1176
+ "epoch": 0.6700715015321757,
1177
+ "eval_loss": 0.291363924741745,
1178
+ "eval_runtime": 5.7936,
1179
+ "eval_samples_per_second": 13.636,
1180
+ "eval_steps_per_second": 1.726,
1181
+ "step": 164
1182
+ },
1183
+ {
1184
+ "epoch": 0.6741573033707865,
1185
+ "grad_norm": 0.34390076994895935,
1186
+ "learning_rate": 1.8229838658936566e-05,
1187
+ "loss": 0.2536,
1188
+ "step": 165
1189
+ },
1190
+ {
1191
+ "epoch": 0.6782431052093973,
1192
+ "grad_norm": 0.3729197084903717,
1193
+ "learning_rate": 1.8204334280833005e-05,
1194
+ "loss": 0.2739,
1195
+ "step": 166
1196
+ },
1197
+ {
1198
+ "epoch": 0.6823289070480082,
1199
+ "grad_norm": 0.3974601924419403,
1200
+ "learning_rate": 1.817866559116017e-05,
1201
+ "loss": 0.2858,
1202
+ "step": 167
1203
+ },
1204
+ {
1205
+ "epoch": 0.686414708886619,
1206
+ "grad_norm": 0.3424644470214844,
1207
+ "learning_rate": 1.8152833103995443e-05,
1208
+ "loss": 0.2305,
1209
+ "step": 168
1210
+ },
1211
+ {
1212
+ "epoch": 0.6905005107252298,
1213
+ "grad_norm": 0.4293709397315979,
1214
+ "learning_rate": 1.8126837336696645e-05,
1215
+ "loss": 0.3179,
1216
+ "step": 169
1217
+ },
1218
+ {
1219
+ "epoch": 0.6945863125638406,
1220
+ "grad_norm": 0.3259459435939789,
1221
+ "learning_rate": 1.8100678809891668e-05,
1222
+ "loss": 0.2589,
1223
+ "step": 170
1224
+ },
1225
+ {
1226
+ "epoch": 0.6986721144024515,
1227
+ "grad_norm": 0.40771302580833435,
1228
+ "learning_rate": 1.807435804746807e-05,
1229
+ "loss": 0.2637,
1230
+ "step": 171
1231
+ },
1232
+ {
1233
+ "epoch": 0.7027579162410623,
1234
+ "grad_norm": 0.3847212493419647,
1235
+ "learning_rate": 1.8047875576562556e-05,
1236
+ "loss": 0.2782,
1237
+ "step": 172
1238
+ },
1239
+ {
1240
+ "epoch": 0.7068437180796732,
1241
+ "grad_norm": 0.35547974705696106,
1242
+ "learning_rate": 1.802123192755044e-05,
1243
+ "loss": 0.2695,
1244
+ "step": 173
1245
+ },
1246
+ {
1247
+ "epoch": 0.710929519918284,
1248
+ "grad_norm": 0.3954298198223114,
1249
+ "learning_rate": 1.7994427634035016e-05,
1250
+ "loss": 0.3005,
1251
+ "step": 174
1252
+ },
1253
+ {
1254
+ "epoch": 0.7150153217568948,
1255
+ "grad_norm": 0.3506409525871277,
1256
+ "learning_rate": 1.796746323283686e-05,
1257
+ "loss": 0.2716,
1258
+ "step": 175
1259
+ },
1260
+ {
1261
+ "epoch": 0.7191011235955056,
1262
+ "grad_norm": 0.42227277159690857,
1263
+ "learning_rate": 1.7940339263983112e-05,
1264
+ "loss": 0.2915,
1265
+ "step": 176
1266
+ },
1267
+ {
1268
+ "epoch": 0.7231869254341164,
1269
+ "grad_norm": 0.3948259949684143,
1270
+ "learning_rate": 1.791305627069662e-05,
1271
+ "loss": 0.2883,
1272
+ "step": 177
1273
+ },
1274
+ {
1275
+ "epoch": 0.7272727272727273,
1276
+ "grad_norm": 0.3580792248249054,
1277
+ "learning_rate": 1.7885614799385086e-05,
1278
+ "loss": 0.2782,
1279
+ "step": 178
1280
+ },
1281
+ {
1282
+ "epoch": 0.7313585291113381,
1283
+ "grad_norm": 0.39698660373687744,
1284
+ "learning_rate": 1.785801539963012e-05,
1285
+ "loss": 0.2657,
1286
+ "step": 179
1287
+ },
1288
+ {
1289
+ "epoch": 0.7354443309499489,
1290
+ "grad_norm": 0.3663792610168457,
1291
+ "learning_rate": 1.7830258624176224e-05,
1292
+ "loss": 0.2686,
1293
+ "step": 180
1294
+ },
1295
+ {
1296
+ "epoch": 0.7395301327885597,
1297
+ "grad_norm": 0.38216930627822876,
1298
+ "learning_rate": 1.7802345028919728e-05,
1299
+ "loss": 0.2706,
1300
+ "step": 181
1301
+ },
1302
+ {
1303
+ "epoch": 0.7436159346271706,
1304
+ "grad_norm": 0.4187450706958771,
1305
+ "learning_rate": 1.777427517289766e-05,
1306
+ "loss": 0.2573,
1307
+ "step": 182
1308
+ },
1309
+ {
1310
+ "epoch": 0.7477017364657814,
1311
+ "grad_norm": 0.34619036316871643,
1312
+ "learning_rate": 1.7746049618276545e-05,
1313
+ "loss": 0.269,
1314
+ "step": 183
1315
+ },
1316
+ {
1317
+ "epoch": 0.7517875383043923,
1318
+ "grad_norm": 0.35370582342147827,
1319
+ "learning_rate": 1.7717668930341152e-05,
1320
+ "loss": 0.2552,
1321
+ "step": 184
1322
+ },
1323
+ {
1324
+ "epoch": 0.7558733401430031,
1325
+ "grad_norm": 0.4264880418777466,
1326
+ "learning_rate": 1.768913367748316e-05,
1327
+ "loss": 0.2952,
1328
+ "step": 185
1329
+ },
1330
+ {
1331
+ "epoch": 0.7599591419816139,
1332
+ "grad_norm": 0.39135676622390747,
1333
+ "learning_rate": 1.766044443118978e-05,
1334
+ "loss": 0.2661,
1335
+ "step": 186
1336
+ },
1337
+ {
1338
+ "epoch": 0.7640449438202247,
1339
+ "grad_norm": 0.39061596989631653,
1340
+ "learning_rate": 1.7631601766032337e-05,
1341
+ "loss": 0.2737,
1342
+ "step": 187
1343
+ },
1344
+ {
1345
+ "epoch": 0.7681307456588355,
1346
+ "grad_norm": 0.3799816966056824,
1347
+ "learning_rate": 1.7602606259654704e-05,
1348
+ "loss": 0.2767,
1349
+ "step": 188
1350
+ },
1351
+ {
1352
+ "epoch": 0.7722165474974464,
1353
+ "grad_norm": 0.3592148721218109,
1354
+ "learning_rate": 1.7573458492761802e-05,
1355
+ "loss": 0.2448,
1356
+ "step": 189
1357
+ },
1358
+ {
1359
+ "epoch": 0.7763023493360572,
1360
+ "grad_norm": 0.39084604382514954,
1361
+ "learning_rate": 1.7544159049107902e-05,
1362
+ "loss": 0.275,
1363
+ "step": 190
1364
+ },
1365
+ {
1366
+ "epoch": 0.780388151174668,
1367
+ "grad_norm": 0.36443451046943665,
1368
+ "learning_rate": 1.7514708515485002e-05,
1369
+ "loss": 0.2645,
1370
+ "step": 191
1371
+ },
1372
+ {
1373
+ "epoch": 0.7844739530132788,
1374
+ "grad_norm": 0.4001200497150421,
1375
+ "learning_rate": 1.7485107481711014e-05,
1376
+ "loss": 0.2724,
1377
+ "step": 192
1378
+ },
1379
+ {
1380
+ "epoch": 0.7885597548518897,
1381
+ "grad_norm": 0.39093396067619324,
1382
+ "learning_rate": 1.7455356540617988e-05,
1383
+ "loss": 0.2712,
1384
+ "step": 193
1385
+ },
1386
+ {
1387
+ "epoch": 0.7926455566905005,
1388
+ "grad_norm": 0.3430577218532562,
1389
+ "learning_rate": 1.7425456288040236e-05,
1390
+ "loss": 0.2489,
1391
+ "step": 194
1392
+ },
1393
+ {
1394
+ "epoch": 0.7967313585291114,
1395
+ "grad_norm": 0.3573733866214752,
1396
+ "learning_rate": 1.7395407322802374e-05,
1397
+ "loss": 0.2696,
1398
+ "step": 195
1399
+ },
1400
+ {
1401
+ "epoch": 0.8008171603677222,
1402
+ "grad_norm": 0.38158077001571655,
1403
+ "learning_rate": 1.736521024670737e-05,
1404
+ "loss": 0.2814,
1405
+ "step": 196
1406
+ },
1407
+ {
1408
+ "epoch": 0.804902962206333,
1409
+ "grad_norm": 0.366470068693161,
1410
+ "learning_rate": 1.733486566452446e-05,
1411
+ "loss": 0.2529,
1412
+ "step": 197
1413
+ },
1414
+ {
1415
+ "epoch": 0.8089887640449438,
1416
+ "grad_norm": 0.3718278408050537,
1417
+ "learning_rate": 1.7304374183977032e-05,
1418
+ "loss": 0.2747,
1419
+ "step": 198
1420
+ },
1421
+ {
1422
+ "epoch": 0.8130745658835546,
1423
+ "grad_norm": 0.3395809233188629,
1424
+ "learning_rate": 1.7273736415730488e-05,
1425
+ "loss": 0.2693,
1426
+ "step": 199
1427
+ },
1428
+ {
1429
+ "epoch": 0.8171603677221655,
1430
+ "grad_norm": 0.307731032371521,
1431
+ "learning_rate": 1.7242952973379983e-05,
1432
+ "loss": 0.2081,
1433
+ "step": 200
1434
+ },
1435
+ {
1436
+ "epoch": 0.8212461695607763,
1437
+ "grad_norm": 0.3522433936595917,
1438
+ "learning_rate": 1.7212024473438145e-05,
1439
+ "loss": 0.2495,
1440
+ "step": 201
1441
+ },
1442
+ {
1443
+ "epoch": 0.8253319713993871,
1444
+ "grad_norm": 0.35946980118751526,
1445
+ "learning_rate": 1.7180951535322742e-05,
1446
+ "loss": 0.2702,
1447
+ "step": 202
1448
+ },
1449
+ {
1450
+ "epoch": 0.8294177732379979,
1451
+ "grad_norm": 0.3933047950267792,
1452
+ "learning_rate": 1.7149734781344247e-05,
1453
+ "loss": 0.2629,
1454
+ "step": 203
1455
+ },
1456
+ {
1457
+ "epoch": 0.8335035750766088,
1458
+ "grad_norm": 0.3658384084701538,
1459
+ "learning_rate": 1.7118374836693407e-05,
1460
+ "loss": 0.2538,
1461
+ "step": 204
1462
+ },
1463
+ {
1464
+ "epoch": 0.8375893769152196,
1465
+ "grad_norm": 0.3532220423221588,
1466
+ "learning_rate": 1.7086872329428702e-05,
1467
+ "loss": 0.2587,
1468
+ "step": 205
1469
+ },
1470
+ {
1471
+ "epoch": 0.8416751787538305,
1472
+ "grad_norm": 0.3619686961174011,
1473
+ "learning_rate": 1.705522789046377e-05,
1474
+ "loss": 0.2658,
1475
+ "step": 206
1476
+ },
1477
+ {
1478
+ "epoch": 0.8457609805924413,
1479
+ "grad_norm": 0.4083801209926605,
1480
+ "learning_rate": 1.7023442153554776e-05,
1481
+ "loss": 0.2614,
1482
+ "step": 207
1483
+ },
1484
+ {
1485
+ "epoch": 0.849846782431052,
1486
+ "grad_norm": 0.3868924081325531,
1487
+ "learning_rate": 1.6991515755287715e-05,
1488
+ "loss": 0.2831,
1489
+ "step": 208
1490
+ },
1491
+ {
1492
+ "epoch": 0.8539325842696629,
1493
+ "grad_norm": 0.38413897156715393,
1494
+ "learning_rate": 1.695944933506567e-05,
1495
+ "loss": 0.2596,
1496
+ "step": 209
1497
+ },
1498
+ {
1499
+ "epoch": 0.8580183861082737,
1500
+ "grad_norm": 0.34999531507492065,
1501
+ "learning_rate": 1.6927243535095995e-05,
1502
+ "loss": 0.2842,
1503
+ "step": 210
1504
+ },
1505
+ {
1506
+ "epoch": 0.8621041879468846,
1507
+ "grad_norm": 0.328204482793808,
1508
+ "learning_rate": 1.6894899000377462e-05,
1509
+ "loss": 0.2332,
1510
+ "step": 211
1511
+ },
1512
+ {
1513
+ "epoch": 0.8661899897854954,
1514
+ "grad_norm": 0.3802552819252014,
1515
+ "learning_rate": 1.686241637868734e-05,
1516
+ "loss": 0.2709,
1517
+ "step": 212
1518
+ },
1519
+ {
1520
+ "epoch": 0.8702757916241062,
1521
+ "grad_norm": 0.35758858919143677,
1522
+ "learning_rate": 1.6829796320568416e-05,
1523
+ "loss": 0.279,
1524
+ "step": 213
1525
+ },
1526
+ {
1527
+ "epoch": 0.874361593462717,
1528
+ "grad_norm": 0.3561984896659851,
1529
+ "learning_rate": 1.6797039479315994e-05,
1530
+ "loss": 0.2868,
1531
+ "step": 214
1532
+ },
1533
+ {
1534
+ "epoch": 0.8784473953013279,
1535
+ "grad_norm": 0.32591065764427185,
1536
+ "learning_rate": 1.6764146510964762e-05,
1537
+ "loss": 0.2485,
1538
+ "step": 215
1539
+ },
1540
+ {
1541
+ "epoch": 0.8825331971399387,
1542
+ "grad_norm": 0.36409640312194824,
1543
+ "learning_rate": 1.67311180742757e-05,
1544
+ "loss": 0.2577,
1545
+ "step": 216
1546
+ },
1547
+ {
1548
+ "epoch": 0.8866189989785496,
1549
+ "grad_norm": 0.34685492515563965,
1550
+ "learning_rate": 1.669795483072287e-05,
1551
+ "loss": 0.247,
1552
+ "step": 217
1553
+ },
1554
+ {
1555
+ "epoch": 0.8907048008171604,
1556
+ "grad_norm": 0.3445712625980377,
1557
+ "learning_rate": 1.6664657444480145e-05,
1558
+ "loss": 0.2565,
1559
+ "step": 218
1560
+ },
1561
+ {
1562
+ "epoch": 0.8947906026557712,
1563
+ "grad_norm": 0.34710460901260376,
1564
+ "learning_rate": 1.6631226582407954e-05,
1565
+ "loss": 0.2363,
1566
+ "step": 219
1567
+ },
1568
+ {
1569
+ "epoch": 0.898876404494382,
1570
+ "grad_norm": 0.33726766705513,
1571
+ "learning_rate": 1.6597662914039885e-05,
1572
+ "loss": 0.2483,
1573
+ "step": 220
1574
+ },
1575
+ {
1576
+ "epoch": 0.9029622063329928,
1577
+ "grad_norm": 0.34024032950401306,
1578
+ "learning_rate": 1.65639671115693e-05,
1579
+ "loss": 0.2474,
1580
+ "step": 221
1581
+ },
1582
+ {
1583
+ "epoch": 0.9070480081716037,
1584
+ "grad_norm": 0.38807395100593567,
1585
+ "learning_rate": 1.653013984983585e-05,
1586
+ "loss": 0.2726,
1587
+ "step": 222
1588
+ },
1589
+ {
1590
+ "epoch": 0.9111338100102145,
1591
+ "grad_norm": 0.36375290155410767,
1592
+ "learning_rate": 1.6496181806312005e-05,
1593
+ "loss": 0.2726,
1594
+ "step": 223
1595
+ },
1596
+ {
1597
+ "epoch": 0.9152196118488254,
1598
+ "grad_norm": 0.36927178502082825,
1599
+ "learning_rate": 1.6462093661089432e-05,
1600
+ "loss": 0.2518,
1601
+ "step": 224
1602
+ },
1603
+ {
1604
+ "epoch": 0.9193054136874361,
1605
+ "grad_norm": 0.3809269070625305,
1606
+ "learning_rate": 1.6427876096865394e-05,
1607
+ "loss": 0.2449,
1608
+ "step": 225
1609
+ },
1610
+ {
1611
+ "epoch": 0.923391215526047,
1612
+ "grad_norm": 0.34634968638420105,
1613
+ "learning_rate": 1.6393529798929103e-05,
1614
+ "loss": 0.2575,
1615
+ "step": 226
1616
+ },
1617
+ {
1618
+ "epoch": 0.9274770173646578,
1619
+ "grad_norm": 0.33054831624031067,
1620
+ "learning_rate": 1.635905545514795e-05,
1621
+ "loss": 0.2639,
1622
+ "step": 227
1623
+ },
1624
+ {
1625
+ "epoch": 0.9315628192032687,
1626
+ "grad_norm": 0.35482174158096313,
1627
+ "learning_rate": 1.6324453755953772e-05,
1628
+ "loss": 0.2667,
1629
+ "step": 228
1630
+ },
1631
+ {
1632
+ "epoch": 0.9356486210418795,
1633
+ "grad_norm": 0.3657509684562683,
1634
+ "learning_rate": 1.6289725394328998e-05,
1635
+ "loss": 0.255,
1636
+ "step": 229
1637
+ },
1638
+ {
1639
+ "epoch": 0.9397344228804902,
1640
+ "grad_norm": 0.3343275785446167,
1641
+ "learning_rate": 1.6254871065792776e-05,
1642
+ "loss": 0.2336,
1643
+ "step": 230
1644
+ },
1645
+ {
1646
+ "epoch": 0.9438202247191011,
1647
+ "grad_norm": 0.3493170142173767,
1648
+ "learning_rate": 1.621989146838704e-05,
1649
+ "loss": 0.2649,
1650
+ "step": 231
1651
+ },
1652
+ {
1653
+ "epoch": 0.947906026557712,
1654
+ "grad_norm": 0.3305867612361908,
1655
+ "learning_rate": 1.618478730266255e-05,
1656
+ "loss": 0.2767,
1657
+ "step": 232
1658
+ },
1659
+ {
1660
+ "epoch": 0.9519918283963228,
1661
+ "grad_norm": 0.35817259550094604,
1662
+ "learning_rate": 1.6149559271664835e-05,
1663
+ "loss": 0.2817,
1664
+ "step": 233
1665
+ },
1666
+ {
1667
+ "epoch": 0.9560776302349336,
1668
+ "grad_norm": 0.37733370065689087,
1669
+ "learning_rate": 1.6114208080920125e-05,
1670
+ "loss": 0.2809,
1671
+ "step": 234
1672
+ },
1673
+ {
1674
+ "epoch": 0.9601634320735445,
1675
+ "grad_norm": 0.3227766156196594,
1676
+ "learning_rate": 1.607873443842122e-05,
1677
+ "loss": 0.2545,
1678
+ "step": 235
1679
+ },
1680
+ {
1681
+ "epoch": 0.9642492339121552,
1682
+ "grad_norm": 0.3445710241794586,
1683
+ "learning_rate": 1.6043139054613326e-05,
1684
+ "loss": 0.2476,
1685
+ "step": 236
1686
+ },
1687
+ {
1688
+ "epoch": 0.9683350357507661,
1689
+ "grad_norm": 0.3375508785247803,
1690
+ "learning_rate": 1.600742264237979e-05,
1691
+ "loss": 0.2502,
1692
+ "step": 237
1693
+ },
1694
+ {
1695
+ "epoch": 0.9724208375893769,
1696
+ "grad_norm": 0.356039434671402,
1697
+ "learning_rate": 1.5971585917027864e-05,
1698
+ "loss": 0.268,
1699
+ "step": 238
1700
+ },
1701
+ {
1702
+ "epoch": 0.9765066394279878,
1703
+ "grad_norm": 0.34852373600006104,
1704
+ "learning_rate": 1.5935629596274345e-05,
1705
+ "loss": 0.2605,
1706
+ "step": 239
1707
+ },
1708
+ {
1709
+ "epoch": 0.9805924412665986,
1710
+ "grad_norm": 0.3376101851463318,
1711
+ "learning_rate": 1.5899554400231233e-05,
1712
+ "loss": 0.2567,
1713
+ "step": 240
1714
+ },
1715
+ {
1716
+ "epoch": 0.9846782431052093,
1717
+ "grad_norm": 0.32361170649528503,
1718
+ "learning_rate": 1.586336105139127e-05,
1719
+ "loss": 0.2481,
1720
+ "step": 241
1721
+ },
1722
+ {
1723
+ "epoch": 0.9887640449438202,
1724
+ "grad_norm": 0.35558903217315674,
1725
+ "learning_rate": 1.5827050274613512e-05,
1726
+ "loss": 0.2514,
1727
+ "step": 242
1728
+ },
1729
+ {
1730
+ "epoch": 0.992849846782431,
1731
+ "grad_norm": 0.31636619567871094,
1732
+ "learning_rate": 1.579062279710879e-05,
1733
+ "loss": 0.2237,
1734
+ "step": 243
1735
+ },
1736
+ {
1737
+ "epoch": 0.9969356486210419,
1738
+ "grad_norm": 0.3540779948234558,
1739
+ "learning_rate": 1.5754079348425137e-05,
1740
+ "loss": 0.2381,
1741
+ "step": 244
1742
+ }
1743
+ ],
1744
+ "logging_steps": 1,
1745
+ "max_steps": 732,
1746
+ "num_input_tokens_seen": 0,
1747
+ "num_train_epochs": 3,
1748
+ "save_steps": 244,
1749
+ "stateful_callbacks": {
1750
+ "TrainerControl": {
1751
+ "args": {
1752
+ "should_epoch_stop": false,
1753
+ "should_evaluate": false,
1754
+ "should_log": false,
1755
+ "should_save": true,
1756
+ "should_training_stop": false
1757
+ },
1758
+ "attributes": {}
1759
+ }
1760
+ },
1761
+ "total_flos": 4.127797840707584e+17,
1762
+ "train_batch_size": 8,
1763
+ "trial_name": null,
1764
+ "trial_params": null
1765
+ }
checkpoint-244/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8a51e619db41bfecd4e2978f86e8cb848022d32d79a042203708d80062927ea
3
+ size 10744
checkpoint-244/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-244/zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
checkpoint-488/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-488/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-3B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "eos_token_id": 151645,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 2048,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_position_embeddings": 32768,
13
+ "max_window_layers": 70,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 16,
16
+ "num_hidden_layers": 36,
17
+ "num_key_value_heads": 2,
18
+ "rms_norm_eps": 1e-06,
19
+ "rope_scaling": null,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": true,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.48.1",
25
+ "use_cache": false,
26
+ "use_sliding_window": false,
27
+ "vocab_size": 151665
28
+ }
checkpoint-488/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.48.1"
14
+ }
checkpoint-488/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step488
checkpoint-488/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-488/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7bc974c51afa91050753be9509aad253632e3f54e8ef7abefff0fd407e809321
3
+ size 4956450288
checkpoint-488/model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f57fb6f644c16010eadbc4ff90a14eb769cef04dcea00d2116b60e65fb8db3f
3
+ size 1835586736
checkpoint-488/model.safetensors.index.json ADDED
@@ -0,0 +1,442 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 6791987200
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
368
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
369
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
370
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
371
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
372
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
373
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
374
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
376
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
377
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
378
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
379
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
380
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
382
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
384
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
385
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
386
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
387
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
388
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
389
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
390
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
391
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
394
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
395
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
396
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
397
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
398
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
399
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
400
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
401
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
402
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
403
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
404
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
405
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
406
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
407
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
408
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
409
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
410
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
411
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
412
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
413
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
414
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
415
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
416
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
417
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
418
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
419
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
420
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
421
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
422
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
423
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
424
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
425
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
426
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
427
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
428
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
429
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
430
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
431
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
432
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
433
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
434
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
435
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
436
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
437
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
438
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
439
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
440
+ "model.norm.weight": "model-00002-of-00002.safetensors"
441
+ }
442
+ }
checkpoint-488/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3dcb161b22b2558dbf7e3f8c871050cec383d11a40423fab11f18d5e630639bf
3
+ size 14512
checkpoint-488/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d50af6aef769414a6f28fa1b1bc51ce707dc8ecd15474e03f99a2f10fde086be
3
+ size 14512
checkpoint-488/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d8b2a59c30f5e09b1d7ce944fea889fdfc7000e147a68a8ad08ea9263213eb2
3
+ size 1064
checkpoint-488/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-488/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-488/tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
checkpoint-488/trainer_state.json ADDED
@@ -0,0 +1,3497 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.996935648621042,
5
+ "eval_steps": 82,
6
+ "global_step": 488,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0040858018386108275,
13
+ "grad_norm": 4.75867223739624,
14
+ "learning_rate": 6.666666666666667e-07,
15
+ "loss": 1.3989,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0040858018386108275,
20
+ "eval_loss": 1.7111468315124512,
21
+ "eval_runtime": 5.4436,
22
+ "eval_samples_per_second": 14.512,
23
+ "eval_steps_per_second": 1.837,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.008171603677221655,
28
+ "grad_norm": 4.975377559661865,
29
+ "learning_rate": 1.3333333333333334e-06,
30
+ "loss": 1.4837,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.012257405515832482,
35
+ "grad_norm": 5.219729900360107,
36
+ "learning_rate": 2.0000000000000003e-06,
37
+ "loss": 1.5181,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.01634320735444331,
42
+ "grad_norm": 4.57335901260376,
43
+ "learning_rate": 2.666666666666667e-06,
44
+ "loss": 1.4106,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.020429009193054137,
49
+ "grad_norm": 3.840559720993042,
50
+ "learning_rate": 3.3333333333333333e-06,
51
+ "loss": 1.3763,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.024514811031664963,
56
+ "grad_norm": 3.2056212425231934,
57
+ "learning_rate": 4.000000000000001e-06,
58
+ "loss": 1.1876,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.028600612870275793,
63
+ "grad_norm": 2.6987595558166504,
64
+ "learning_rate": 4.666666666666667e-06,
65
+ "loss": 1.2154,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.03268641470888662,
70
+ "grad_norm": 2.378502130508423,
71
+ "learning_rate": 5.333333333333334e-06,
72
+ "loss": 1.1594,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.03677221654749745,
77
+ "grad_norm": 1.7688865661621094,
78
+ "learning_rate": 6e-06,
79
+ "loss": 0.8435,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.04085801838610827,
84
+ "grad_norm": 1.3263744115829468,
85
+ "learning_rate": 6.666666666666667e-06,
86
+ "loss": 0.7219,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.0449438202247191,
91
+ "grad_norm": 1.3509997129440308,
92
+ "learning_rate": 7.333333333333333e-06,
93
+ "loss": 0.8172,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.049029622063329927,
98
+ "grad_norm": 1.4541417360305786,
99
+ "learning_rate": 8.000000000000001e-06,
100
+ "loss": 0.7393,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.05311542390194075,
105
+ "grad_norm": 1.181699275970459,
106
+ "learning_rate": 8.666666666666668e-06,
107
+ "loss": 0.664,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.05720122574055159,
112
+ "grad_norm": 0.9503294825553894,
113
+ "learning_rate": 9.333333333333334e-06,
114
+ "loss": 0.6222,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.06128702757916241,
119
+ "grad_norm": 0.7614471316337585,
120
+ "learning_rate": 1e-05,
121
+ "loss": 0.56,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.06537282941777324,
126
+ "grad_norm": 0.9878801107406616,
127
+ "learning_rate": 1.0666666666666667e-05,
128
+ "loss": 0.5548,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.06945863125638406,
133
+ "grad_norm": 0.8131901025772095,
134
+ "learning_rate": 1.1333333333333334e-05,
135
+ "loss": 0.4878,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.0735444330949949,
140
+ "grad_norm": 0.7322743535041809,
141
+ "learning_rate": 1.2e-05,
142
+ "loss": 0.5159,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.07763023493360573,
147
+ "grad_norm": 0.6428759098052979,
148
+ "learning_rate": 1.2666666666666667e-05,
149
+ "loss": 0.4575,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.08171603677221655,
154
+ "grad_norm": 0.562318742275238,
155
+ "learning_rate": 1.3333333333333333e-05,
156
+ "loss": 0.4571,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.08580183861082738,
161
+ "grad_norm": 0.5707699060440063,
162
+ "learning_rate": 1.4e-05,
163
+ "loss": 0.4592,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.0898876404494382,
168
+ "grad_norm": 0.5272228717803955,
169
+ "learning_rate": 1.4666666666666666e-05,
170
+ "loss": 0.4457,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.09397344228804903,
175
+ "grad_norm": 0.5120903253555298,
176
+ "learning_rate": 1.5333333333333334e-05,
177
+ "loss": 0.4034,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.09805924412665985,
182
+ "grad_norm": 0.46359285712242126,
183
+ "learning_rate": 1.6000000000000003e-05,
184
+ "loss": 0.4037,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.10214504596527069,
189
+ "grad_norm": 0.49431198835372925,
190
+ "learning_rate": 1.6666666666666667e-05,
191
+ "loss": 0.3875,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.1062308478038815,
196
+ "grad_norm": 0.4450273811817169,
197
+ "learning_rate": 1.7333333333333336e-05,
198
+ "loss": 0.3797,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.11031664964249234,
203
+ "grad_norm": 0.4551868140697479,
204
+ "learning_rate": 1.8e-05,
205
+ "loss": 0.3512,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.11440245148110317,
210
+ "grad_norm": 0.5083736777305603,
211
+ "learning_rate": 1.866666666666667e-05,
212
+ "loss": 0.3906,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.118488253319714,
217
+ "grad_norm": 0.47295963764190674,
218
+ "learning_rate": 1.9333333333333333e-05,
219
+ "loss": 0.3554,
220
+ "step": 29
221
+ },
222
+ {
223
+ "epoch": 0.12257405515832483,
224
+ "grad_norm": 0.4848616123199463,
225
+ "learning_rate": 2e-05,
226
+ "loss": 0.3712,
227
+ "step": 30
228
+ },
229
+ {
230
+ "epoch": 0.12665985699693566,
231
+ "grad_norm": 0.4398118555545807,
232
+ "learning_rate": 1.999989986294826e-05,
233
+ "loss": 0.3694,
234
+ "step": 31
235
+ },
236
+ {
237
+ "epoch": 0.13074565883554648,
238
+ "grad_norm": 0.41183602809906006,
239
+ "learning_rate": 1.9999599453798523e-05,
240
+ "loss": 0.3336,
241
+ "step": 32
242
+ },
243
+ {
244
+ "epoch": 0.1348314606741573,
245
+ "grad_norm": 0.492713987827301,
246
+ "learning_rate": 1.999909877856721e-05,
247
+ "loss": 0.3657,
248
+ "step": 33
249
+ },
250
+ {
251
+ "epoch": 0.13891726251276812,
252
+ "grad_norm": 0.4517015516757965,
253
+ "learning_rate": 1.9998397847281548e-05,
254
+ "loss": 0.367,
255
+ "step": 34
256
+ },
257
+ {
258
+ "epoch": 0.14300306435137897,
259
+ "grad_norm": 0.4641965627670288,
260
+ "learning_rate": 1.9997496673979375e-05,
261
+ "loss": 0.3565,
262
+ "step": 35
263
+ },
264
+ {
265
+ "epoch": 0.1470888661899898,
266
+ "grad_norm": 0.4812065064907074,
267
+ "learning_rate": 1.9996395276708856e-05,
268
+ "loss": 0.3773,
269
+ "step": 36
270
+ },
271
+ {
272
+ "epoch": 0.1511746680286006,
273
+ "grad_norm": 0.42300987243652344,
274
+ "learning_rate": 1.999509367752813e-05,
275
+ "loss": 0.3643,
276
+ "step": 37
277
+ },
278
+ {
279
+ "epoch": 0.15526046986721145,
280
+ "grad_norm": 0.4512963593006134,
281
+ "learning_rate": 1.9993591902504854e-05,
282
+ "loss": 0.3409,
283
+ "step": 38
284
+ },
285
+ {
286
+ "epoch": 0.15934627170582227,
287
+ "grad_norm": 0.41626426577568054,
288
+ "learning_rate": 1.9991889981715696e-05,
289
+ "loss": 0.3546,
290
+ "step": 39
291
+ },
292
+ {
293
+ "epoch": 0.1634320735444331,
294
+ "grad_norm": 0.43549367785453796,
295
+ "learning_rate": 1.9989987949245725e-05,
296
+ "loss": 0.3091,
297
+ "step": 40
298
+ },
299
+ {
300
+ "epoch": 0.1675178753830439,
301
+ "grad_norm": 0.4042600393295288,
302
+ "learning_rate": 1.9987885843187717e-05,
303
+ "loss": 0.3174,
304
+ "step": 41
305
+ },
306
+ {
307
+ "epoch": 0.17160367722165476,
308
+ "grad_norm": 0.4394363462924957,
309
+ "learning_rate": 1.9985583705641418e-05,
310
+ "loss": 0.3601,
311
+ "step": 42
312
+ },
313
+ {
314
+ "epoch": 0.17568947906026558,
315
+ "grad_norm": 0.4294170141220093,
316
+ "learning_rate": 1.9983081582712684e-05,
317
+ "loss": 0.3283,
318
+ "step": 43
319
+ },
320
+ {
321
+ "epoch": 0.1797752808988764,
322
+ "grad_norm": 0.44452300667762756,
323
+ "learning_rate": 1.998037952451255e-05,
324
+ "loss": 0.3367,
325
+ "step": 44
326
+ },
327
+ {
328
+ "epoch": 0.18386108273748722,
329
+ "grad_norm": 0.4113090932369232,
330
+ "learning_rate": 1.9977477585156252e-05,
331
+ "loss": 0.2986,
332
+ "step": 45
333
+ },
334
+ {
335
+ "epoch": 0.18794688457609807,
336
+ "grad_norm": 0.44443050026893616,
337
+ "learning_rate": 1.9974375822762117e-05,
338
+ "loss": 0.3463,
339
+ "step": 46
340
+ },
341
+ {
342
+ "epoch": 0.1920326864147089,
343
+ "grad_norm": 0.4303809106349945,
344
+ "learning_rate": 1.9971074299450414e-05,
345
+ "loss": 0.3281,
346
+ "step": 47
347
+ },
348
+ {
349
+ "epoch": 0.1961184882533197,
350
+ "grad_norm": 0.4178621470928192,
351
+ "learning_rate": 1.9967573081342103e-05,
352
+ "loss": 0.3629,
353
+ "step": 48
354
+ },
355
+ {
356
+ "epoch": 0.20020429009193055,
357
+ "grad_norm": 0.38657113909721375,
358
+ "learning_rate": 1.9963872238557516e-05,
359
+ "loss": 0.3225,
360
+ "step": 49
361
+ },
362
+ {
363
+ "epoch": 0.20429009193054137,
364
+ "grad_norm": 0.5300270915031433,
365
+ "learning_rate": 1.9959971845214953e-05,
366
+ "loss": 0.3279,
367
+ "step": 50
368
+ },
369
+ {
370
+ "epoch": 0.2083758937691522,
371
+ "grad_norm": 0.4061177968978882,
372
+ "learning_rate": 1.9955871979429188e-05,
373
+ "loss": 0.3278,
374
+ "step": 51
375
+ },
376
+ {
377
+ "epoch": 0.212461695607763,
378
+ "grad_norm": 0.41504785418510437,
379
+ "learning_rate": 1.9951572723309918e-05,
380
+ "loss": 0.3096,
381
+ "step": 52
382
+ },
383
+ {
384
+ "epoch": 0.21654749744637386,
385
+ "grad_norm": 0.4208971858024597,
386
+ "learning_rate": 1.9947074162960113e-05,
387
+ "loss": 0.3187,
388
+ "step": 53
389
+ },
390
+ {
391
+ "epoch": 0.22063329928498468,
392
+ "grad_norm": 0.36819201707839966,
393
+ "learning_rate": 1.9942376388474282e-05,
394
+ "loss": 0.3167,
395
+ "step": 54
396
+ },
397
+ {
398
+ "epoch": 0.2247191011235955,
399
+ "grad_norm": 0.43327596783638,
400
+ "learning_rate": 1.993747949393668e-05,
401
+ "loss": 0.3188,
402
+ "step": 55
403
+ },
404
+ {
405
+ "epoch": 0.22880490296220635,
406
+ "grad_norm": 0.4377865791320801,
407
+ "learning_rate": 1.9932383577419432e-05,
408
+ "loss": 0.3478,
409
+ "step": 56
410
+ },
411
+ {
412
+ "epoch": 0.23289070480081717,
413
+ "grad_norm": 0.43336397409439087,
414
+ "learning_rate": 1.992708874098054e-05,
415
+ "loss": 0.3025,
416
+ "step": 57
417
+ },
418
+ {
419
+ "epoch": 0.236976506639428,
420
+ "grad_norm": 0.4399135410785675,
421
+ "learning_rate": 1.9921595090661872e-05,
422
+ "loss": 0.3098,
423
+ "step": 58
424
+ },
425
+ {
426
+ "epoch": 0.2410623084780388,
427
+ "grad_norm": 0.4253901243209839,
428
+ "learning_rate": 1.991590273648702e-05,
429
+ "loss": 0.3303,
430
+ "step": 59
431
+ },
432
+ {
433
+ "epoch": 0.24514811031664965,
434
+ "grad_norm": 0.39254307746887207,
435
+ "learning_rate": 1.9910011792459086e-05,
436
+ "loss": 0.3018,
437
+ "step": 60
438
+ },
439
+ {
440
+ "epoch": 0.24923391215526047,
441
+ "grad_norm": 0.4217659831047058,
442
+ "learning_rate": 1.9903922376558432e-05,
443
+ "loss": 0.285,
444
+ "step": 61
445
+ },
446
+ {
447
+ "epoch": 0.2533197139938713,
448
+ "grad_norm": 0.48558109998703003,
449
+ "learning_rate": 1.989763461074029e-05,
450
+ "loss": 0.3221,
451
+ "step": 62
452
+ },
453
+ {
454
+ "epoch": 0.2574055158324821,
455
+ "grad_norm": 0.47454214096069336,
456
+ "learning_rate": 1.989114862093232e-05,
457
+ "loss": 0.3056,
458
+ "step": 63
459
+ },
460
+ {
461
+ "epoch": 0.26149131767109296,
462
+ "grad_norm": 0.4013993442058563,
463
+ "learning_rate": 1.9884464537032103e-05,
464
+ "loss": 0.3376,
465
+ "step": 64
466
+ },
467
+ {
468
+ "epoch": 0.26557711950970375,
469
+ "grad_norm": 0.4264606237411499,
470
+ "learning_rate": 1.9877582492904533e-05,
471
+ "loss": 0.3158,
472
+ "step": 65
473
+ },
474
+ {
475
+ "epoch": 0.2696629213483146,
476
+ "grad_norm": 0.5440453886985779,
477
+ "learning_rate": 1.9870502626379127e-05,
478
+ "loss": 0.3056,
479
+ "step": 66
480
+ },
481
+ {
482
+ "epoch": 0.27374872318692545,
483
+ "grad_norm": 0.40003377199172974,
484
+ "learning_rate": 1.9863225079247286e-05,
485
+ "loss": 0.3357,
486
+ "step": 67
487
+ },
488
+ {
489
+ "epoch": 0.27783452502553624,
490
+ "grad_norm": 0.39155763387680054,
491
+ "learning_rate": 1.985574999725943e-05,
492
+ "loss": 0.2819,
493
+ "step": 68
494
+ },
495
+ {
496
+ "epoch": 0.2819203268641471,
497
+ "grad_norm": 0.4461009204387665,
498
+ "learning_rate": 1.9848077530122083e-05,
499
+ "loss": 0.2732,
500
+ "step": 69
501
+ },
502
+ {
503
+ "epoch": 0.28600612870275793,
504
+ "grad_norm": 0.38970062136650085,
505
+ "learning_rate": 1.9840207831494903e-05,
506
+ "loss": 0.2957,
507
+ "step": 70
508
+ },
509
+ {
510
+ "epoch": 0.2900919305413687,
511
+ "grad_norm": 0.4369664788246155,
512
+ "learning_rate": 1.983214105898757e-05,
513
+ "loss": 0.3158,
514
+ "step": 71
515
+ },
516
+ {
517
+ "epoch": 0.2941777323799796,
518
+ "grad_norm": 0.4734659492969513,
519
+ "learning_rate": 1.9823877374156647e-05,
520
+ "loss": 0.3054,
521
+ "step": 72
522
+ },
523
+ {
524
+ "epoch": 0.2982635342185904,
525
+ "grad_norm": 0.3933468461036682,
526
+ "learning_rate": 1.9815416942502346e-05,
527
+ "loss": 0.286,
528
+ "step": 73
529
+ },
530
+ {
531
+ "epoch": 0.3023493360572012,
532
+ "grad_norm": 0.4472273290157318,
533
+ "learning_rate": 1.98067599334652e-05,
534
+ "loss": 0.3149,
535
+ "step": 74
536
+ },
537
+ {
538
+ "epoch": 0.30643513789581206,
539
+ "grad_norm": 0.43143752217292786,
540
+ "learning_rate": 1.979790652042268e-05,
541
+ "loss": 0.2792,
542
+ "step": 75
543
+ },
544
+ {
545
+ "epoch": 0.3105209397344229,
546
+ "grad_norm": 0.4325246512889862,
547
+ "learning_rate": 1.978885688068572e-05,
548
+ "loss": 0.3024,
549
+ "step": 76
550
+ },
551
+ {
552
+ "epoch": 0.3146067415730337,
553
+ "grad_norm": 0.48796600103378296,
554
+ "learning_rate": 1.9779611195495177e-05,
555
+ "loss": 0.3343,
556
+ "step": 77
557
+ },
558
+ {
559
+ "epoch": 0.31869254341164455,
560
+ "grad_norm": 0.40505748987197876,
561
+ "learning_rate": 1.977016965001817e-05,
562
+ "loss": 0.2753,
563
+ "step": 78
564
+ },
565
+ {
566
+ "epoch": 0.32277834525025534,
567
+ "grad_norm": 0.40753036737442017,
568
+ "learning_rate": 1.976053243334442e-05,
569
+ "loss": 0.3073,
570
+ "step": 79
571
+ },
572
+ {
573
+ "epoch": 0.3268641470888662,
574
+ "grad_norm": 0.4000149071216583,
575
+ "learning_rate": 1.9750699738482403e-05,
576
+ "loss": 0.284,
577
+ "step": 80
578
+ },
579
+ {
580
+ "epoch": 0.33094994892747703,
581
+ "grad_norm": 0.42099907994270325,
582
+ "learning_rate": 1.9740671762355548e-05,
583
+ "loss": 0.2881,
584
+ "step": 81
585
+ },
586
+ {
587
+ "epoch": 0.3350357507660878,
588
+ "grad_norm": 0.4155902564525604,
589
+ "learning_rate": 1.973044870579824e-05,
590
+ "loss": 0.2969,
591
+ "step": 82
592
+ },
593
+ {
594
+ "epoch": 0.3350357507660878,
595
+ "eval_loss": 0.31923907995224,
596
+ "eval_runtime": 5.81,
597
+ "eval_samples_per_second": 13.597,
598
+ "eval_steps_per_second": 1.721,
599
+ "step": 82
600
+ },
601
+ {
602
+ "epoch": 0.3391215526046987,
603
+ "grad_norm": 0.39282551407814026,
604
+ "learning_rate": 1.972003077355183e-05,
605
+ "loss": 0.2948,
606
+ "step": 83
607
+ },
608
+ {
609
+ "epoch": 0.3432073544433095,
610
+ "grad_norm": 0.4381943643093109,
611
+ "learning_rate": 1.9709418174260523e-05,
612
+ "loss": 0.3454,
613
+ "step": 84
614
+ },
615
+ {
616
+ "epoch": 0.3472931562819203,
617
+ "grad_norm": 0.4093382954597473,
618
+ "learning_rate": 1.9698611120467196e-05,
619
+ "loss": 0.2962,
620
+ "step": 85
621
+ },
622
+ {
623
+ "epoch": 0.35137895812053116,
624
+ "grad_norm": 0.450135737657547,
625
+ "learning_rate": 1.9687609828609156e-05,
626
+ "loss": 0.3243,
627
+ "step": 86
628
+ },
629
+ {
630
+ "epoch": 0.355464759959142,
631
+ "grad_norm": 0.4139018654823303,
632
+ "learning_rate": 1.9676414519013782e-05,
633
+ "loss": 0.2996,
634
+ "step": 87
635
+ },
636
+ {
637
+ "epoch": 0.3595505617977528,
638
+ "grad_norm": 0.40026575326919556,
639
+ "learning_rate": 1.966502541589414e-05,
640
+ "loss": 0.2788,
641
+ "step": 88
642
+ },
643
+ {
644
+ "epoch": 0.36363636363636365,
645
+ "grad_norm": 0.36627820134162903,
646
+ "learning_rate": 1.965344274734447e-05,
647
+ "loss": 0.2857,
648
+ "step": 89
649
+ },
650
+ {
651
+ "epoch": 0.36772216547497444,
652
+ "grad_norm": 0.42685478925704956,
653
+ "learning_rate": 1.9641666745335626e-05,
654
+ "loss": 0.2995,
655
+ "step": 90
656
+ },
657
+ {
658
+ "epoch": 0.3718079673135853,
659
+ "grad_norm": 0.374288946390152,
660
+ "learning_rate": 1.9629697645710432e-05,
661
+ "loss": 0.3056,
662
+ "step": 91
663
+ },
664
+ {
665
+ "epoch": 0.37589376915219613,
666
+ "grad_norm": 0.3649786114692688,
667
+ "learning_rate": 1.961753568817896e-05,
668
+ "loss": 0.2854,
669
+ "step": 92
670
+ },
671
+ {
672
+ "epoch": 0.3799795709908069,
673
+ "grad_norm": 0.38573023676872253,
674
+ "learning_rate": 1.9605181116313725e-05,
675
+ "loss": 0.2667,
676
+ "step": 93
677
+ },
678
+ {
679
+ "epoch": 0.3840653728294178,
680
+ "grad_norm": 0.37577807903289795,
681
+ "learning_rate": 1.9592634177544803e-05,
682
+ "loss": 0.2815,
683
+ "step": 94
684
+ },
685
+ {
686
+ "epoch": 0.3881511746680286,
687
+ "grad_norm": 0.4320047199726105,
688
+ "learning_rate": 1.957989512315489e-05,
689
+ "loss": 0.3094,
690
+ "step": 95
691
+ },
692
+ {
693
+ "epoch": 0.3922369765066394,
694
+ "grad_norm": 0.3816889524459839,
695
+ "learning_rate": 1.9566964208274254e-05,
696
+ "loss": 0.292,
697
+ "step": 96
698
+ },
699
+ {
700
+ "epoch": 0.39632277834525026,
701
+ "grad_norm": 0.3946669399738312,
702
+ "learning_rate": 1.9553841691875632e-05,
703
+ "loss": 0.3002,
704
+ "step": 97
705
+ },
706
+ {
707
+ "epoch": 0.4004085801838611,
708
+ "grad_norm": 0.36885613203048706,
709
+ "learning_rate": 1.9540527836769047e-05,
710
+ "loss": 0.2583,
711
+ "step": 98
712
+ },
713
+ {
714
+ "epoch": 0.4044943820224719,
715
+ "grad_norm": 0.37865176796913147,
716
+ "learning_rate": 1.9527022909596537e-05,
717
+ "loss": 0.2787,
718
+ "step": 99
719
+ },
720
+ {
721
+ "epoch": 0.40858018386108275,
722
+ "grad_norm": 0.4429585337638855,
723
+ "learning_rate": 1.951332718082682e-05,
724
+ "loss": 0.3226,
725
+ "step": 100
726
+ },
727
+ {
728
+ "epoch": 0.41266598569969354,
729
+ "grad_norm": 0.3926009237766266,
730
+ "learning_rate": 1.9499440924749878e-05,
731
+ "loss": 0.2914,
732
+ "step": 101
733
+ },
734
+ {
735
+ "epoch": 0.4167517875383044,
736
+ "grad_norm": 0.3467339277267456,
737
+ "learning_rate": 1.9485364419471454e-05,
738
+ "loss": 0.266,
739
+ "step": 102
740
+ },
741
+ {
742
+ "epoch": 0.42083758937691523,
743
+ "grad_norm": 0.4126642644405365,
744
+ "learning_rate": 1.9471097946907506e-05,
745
+ "loss": 0.2775,
746
+ "step": 103
747
+ },
748
+ {
749
+ "epoch": 0.424923391215526,
750
+ "grad_norm": 0.44586020708084106,
751
+ "learning_rate": 1.9456641792778527e-05,
752
+ "loss": 0.2884,
753
+ "step": 104
754
+ },
755
+ {
756
+ "epoch": 0.4290091930541369,
757
+ "grad_norm": 0.3969588279724121,
758
+ "learning_rate": 1.9441996246603848e-05,
759
+ "loss": 0.2835,
760
+ "step": 105
761
+ },
762
+ {
763
+ "epoch": 0.4330949948927477,
764
+ "grad_norm": 0.38928356766700745,
765
+ "learning_rate": 1.9427161601695833e-05,
766
+ "loss": 0.2826,
767
+ "step": 106
768
+ },
769
+ {
770
+ "epoch": 0.4371807967313585,
771
+ "grad_norm": 0.4089799225330353,
772
+ "learning_rate": 1.9412138155154e-05,
773
+ "loss": 0.2817,
774
+ "step": 107
775
+ },
776
+ {
777
+ "epoch": 0.44126659856996936,
778
+ "grad_norm": 0.375505656003952,
779
+ "learning_rate": 1.9396926207859085e-05,
780
+ "loss": 0.2882,
781
+ "step": 108
782
+ },
783
+ {
784
+ "epoch": 0.4453524004085802,
785
+ "grad_norm": 0.406118780374527,
786
+ "learning_rate": 1.9381526064466995e-05,
787
+ "loss": 0.2861,
788
+ "step": 109
789
+ },
790
+ {
791
+ "epoch": 0.449438202247191,
792
+ "grad_norm": 0.3882409334182739,
793
+ "learning_rate": 1.9365938033402715e-05,
794
+ "loss": 0.261,
795
+ "step": 110
796
+ },
797
+ {
798
+ "epoch": 0.45352400408580185,
799
+ "grad_norm": 0.4351583421230316,
800
+ "learning_rate": 1.9350162426854152e-05,
801
+ "loss": 0.3014,
802
+ "step": 111
803
+ },
804
+ {
805
+ "epoch": 0.4576098059244127,
806
+ "grad_norm": 0.3621097505092621,
807
+ "learning_rate": 1.933419956076584e-05,
808
+ "loss": 0.2728,
809
+ "step": 112
810
+ },
811
+ {
812
+ "epoch": 0.4616956077630235,
813
+ "grad_norm": 0.3881032466888428,
814
+ "learning_rate": 1.9318049754832656e-05,
815
+ "loss": 0.2736,
816
+ "step": 113
817
+ },
818
+ {
819
+ "epoch": 0.46578140960163433,
820
+ "grad_norm": 0.37627285718917847,
821
+ "learning_rate": 1.9301713332493386e-05,
822
+ "loss": 0.2707,
823
+ "step": 114
824
+ },
825
+ {
826
+ "epoch": 0.4698672114402451,
827
+ "grad_norm": 0.4285913109779358,
828
+ "learning_rate": 1.9285190620924267e-05,
829
+ "loss": 0.2815,
830
+ "step": 115
831
+ },
832
+ {
833
+ "epoch": 0.473953013278856,
834
+ "grad_norm": 0.35718926787376404,
835
+ "learning_rate": 1.926848195103242e-05,
836
+ "loss": 0.2621,
837
+ "step": 116
838
+ },
839
+ {
840
+ "epoch": 0.4780388151174668,
841
+ "grad_norm": 0.3852044641971588,
842
+ "learning_rate": 1.925158765744924e-05,
843
+ "loss": 0.283,
844
+ "step": 117
845
+ },
846
+ {
847
+ "epoch": 0.4821246169560776,
848
+ "grad_norm": 0.3884032368659973,
849
+ "learning_rate": 1.923450807852367e-05,
850
+ "loss": 0.2711,
851
+ "step": 118
852
+ },
853
+ {
854
+ "epoch": 0.48621041879468846,
855
+ "grad_norm": 0.4398249685764313,
856
+ "learning_rate": 1.9217243556315445e-05,
857
+ "loss": 0.2757,
858
+ "step": 119
859
+ },
860
+ {
861
+ "epoch": 0.4902962206332993,
862
+ "grad_norm": 0.36689624190330505,
863
+ "learning_rate": 1.9199794436588244e-05,
864
+ "loss": 0.2669,
865
+ "step": 120
866
+ },
867
+ {
868
+ "epoch": 0.4943820224719101,
869
+ "grad_norm": 0.46398666501045227,
870
+ "learning_rate": 1.9182161068802742e-05,
871
+ "loss": 0.2683,
872
+ "step": 121
873
+ },
874
+ {
875
+ "epoch": 0.49846782431052095,
876
+ "grad_norm": 0.40020987391471863,
877
+ "learning_rate": 1.916434380610963e-05,
878
+ "loss": 0.2927,
879
+ "step": 122
880
+ },
881
+ {
882
+ "epoch": 0.5025536261491318,
883
+ "grad_norm": 0.4032459259033203,
884
+ "learning_rate": 1.9146343005342546e-05,
885
+ "loss": 0.31,
886
+ "step": 123
887
+ },
888
+ {
889
+ "epoch": 0.5066394279877426,
890
+ "grad_norm": 0.44166550040245056,
891
+ "learning_rate": 1.912815902701091e-05,
892
+ "loss": 0.2842,
893
+ "step": 124
894
+ },
895
+ {
896
+ "epoch": 0.5107252298263534,
897
+ "grad_norm": 0.39895153045654297,
898
+ "learning_rate": 1.9109792235292715e-05,
899
+ "loss": 0.2766,
900
+ "step": 125
901
+ },
902
+ {
903
+ "epoch": 0.5148110316649642,
904
+ "grad_norm": 0.3415013253688812,
905
+ "learning_rate": 1.909124299802724e-05,
906
+ "loss": 0.2761,
907
+ "step": 126
908
+ },
909
+ {
910
+ "epoch": 0.5188968335035751,
911
+ "grad_norm": 0.3837663531303406,
912
+ "learning_rate": 1.9072511686707663e-05,
913
+ "loss": 0.2797,
914
+ "step": 127
915
+ },
916
+ {
917
+ "epoch": 0.5229826353421859,
918
+ "grad_norm": 0.4030819833278656,
919
+ "learning_rate": 1.9053598676473656e-05,
920
+ "loss": 0.2932,
921
+ "step": 128
922
+ },
923
+ {
924
+ "epoch": 0.5270684371807968,
925
+ "grad_norm": 0.40120938420295715,
926
+ "learning_rate": 1.9034504346103825e-05,
927
+ "loss": 0.2698,
928
+ "step": 129
929
+ },
930
+ {
931
+ "epoch": 0.5311542390194075,
932
+ "grad_norm": 0.3621327579021454,
933
+ "learning_rate": 1.9015229078008163e-05,
934
+ "loss": 0.298,
935
+ "step": 130
936
+ },
937
+ {
938
+ "epoch": 0.5352400408580184,
939
+ "grad_norm": 0.33476150035858154,
940
+ "learning_rate": 1.8995773258220374e-05,
941
+ "loss": 0.2612,
942
+ "step": 131
943
+ },
944
+ {
945
+ "epoch": 0.5393258426966292,
946
+ "grad_norm": 0.3523140549659729,
947
+ "learning_rate": 1.8976137276390145e-05,
948
+ "loss": 0.2671,
949
+ "step": 132
950
+ },
951
+ {
952
+ "epoch": 0.54341164453524,
953
+ "grad_norm": 0.3624558746814728,
954
+ "learning_rate": 1.8956321525775337e-05,
955
+ "loss": 0.2687,
956
+ "step": 133
957
+ },
958
+ {
959
+ "epoch": 0.5474974463738509,
960
+ "grad_norm": 0.35892072319984436,
961
+ "learning_rate": 1.8936326403234125e-05,
962
+ "loss": 0.2755,
963
+ "step": 134
964
+ },
965
+ {
966
+ "epoch": 0.5515832482124617,
967
+ "grad_norm": 0.3678256869316101,
968
+ "learning_rate": 1.891615230921703e-05,
969
+ "loss": 0.278,
970
+ "step": 135
971
+ },
972
+ {
973
+ "epoch": 0.5556690500510725,
974
+ "grad_norm": 0.38125160336494446,
975
+ "learning_rate": 1.8895799647758912e-05,
976
+ "loss": 0.2765,
977
+ "step": 136
978
+ },
979
+ {
980
+ "epoch": 0.5597548518896833,
981
+ "grad_norm": 0.40152257680892944,
982
+ "learning_rate": 1.8875268826470875e-05,
983
+ "loss": 0.3239,
984
+ "step": 137
985
+ },
986
+ {
987
+ "epoch": 0.5638406537282942,
988
+ "grad_norm": 0.3935178816318512,
989
+ "learning_rate": 1.8854560256532098e-05,
990
+ "loss": 0.2956,
991
+ "step": 138
992
+ },
993
+ {
994
+ "epoch": 0.567926455566905,
995
+ "grad_norm": 0.4389478266239166,
996
+ "learning_rate": 1.8833674352681613e-05,
997
+ "loss": 0.2968,
998
+ "step": 139
999
+ },
1000
+ {
1001
+ "epoch": 0.5720122574055159,
1002
+ "grad_norm": 0.3884355127811432,
1003
+ "learning_rate": 1.881261153320999e-05,
1004
+ "loss": 0.3074,
1005
+ "step": 140
1006
+ },
1007
+ {
1008
+ "epoch": 0.5760980592441267,
1009
+ "grad_norm": 0.4054373502731323,
1010
+ "learning_rate": 1.879137221995095e-05,
1011
+ "loss": 0.2996,
1012
+ "step": 141
1013
+ },
1014
+ {
1015
+ "epoch": 0.5801838610827375,
1016
+ "grad_norm": 0.4423893690109253,
1017
+ "learning_rate": 1.8769956838272937e-05,
1018
+ "loss": 0.3082,
1019
+ "step": 142
1020
+ },
1021
+ {
1022
+ "epoch": 0.5842696629213483,
1023
+ "grad_norm": 0.42978307604789734,
1024
+ "learning_rate": 1.8748365817070586e-05,
1025
+ "loss": 0.2878,
1026
+ "step": 143
1027
+ },
1028
+ {
1029
+ "epoch": 0.5883554647599591,
1030
+ "grad_norm": 0.38182228803634644,
1031
+ "learning_rate": 1.8726599588756144e-05,
1032
+ "loss": 0.2649,
1033
+ "step": 144
1034
+ },
1035
+ {
1036
+ "epoch": 0.59244126659857,
1037
+ "grad_norm": 0.43477413058280945,
1038
+ "learning_rate": 1.8704658589250795e-05,
1039
+ "loss": 0.271,
1040
+ "step": 145
1041
+ },
1042
+ {
1043
+ "epoch": 0.5965270684371808,
1044
+ "grad_norm": 0.3876926898956299,
1045
+ "learning_rate": 1.868254325797594e-05,
1046
+ "loss": 0.2804,
1047
+ "step": 146
1048
+ },
1049
+ {
1050
+ "epoch": 0.6006128702757916,
1051
+ "grad_norm": 0.39310601353645325,
1052
+ "learning_rate": 1.866025403784439e-05,
1053
+ "loss": 0.2767,
1054
+ "step": 147
1055
+ },
1056
+ {
1057
+ "epoch": 0.6046986721144024,
1058
+ "grad_norm": 0.421290785074234,
1059
+ "learning_rate": 1.8637791375251505e-05,
1060
+ "loss": 0.2668,
1061
+ "step": 148
1062
+ },
1063
+ {
1064
+ "epoch": 0.6087844739530133,
1065
+ "grad_norm": 0.450023353099823,
1066
+ "learning_rate": 1.8615155720066247e-05,
1067
+ "loss": 0.2888,
1068
+ "step": 149
1069
+ },
1070
+ {
1071
+ "epoch": 0.6128702757916241,
1072
+ "grad_norm": 0.3645341396331787,
1073
+ "learning_rate": 1.859234752562217e-05,
1074
+ "loss": 0.2828,
1075
+ "step": 150
1076
+ },
1077
+ {
1078
+ "epoch": 0.616956077630235,
1079
+ "grad_norm": 0.41853606700897217,
1080
+ "learning_rate": 1.8569367248708343e-05,
1081
+ "loss": 0.284,
1082
+ "step": 151
1083
+ },
1084
+ {
1085
+ "epoch": 0.6210418794688458,
1086
+ "grad_norm": 0.3675737679004669,
1087
+ "learning_rate": 1.8546215349560204e-05,
1088
+ "loss": 0.2933,
1089
+ "step": 152
1090
+ },
1091
+ {
1092
+ "epoch": 0.6251276813074566,
1093
+ "grad_norm": 0.3668256998062134,
1094
+ "learning_rate": 1.8522892291850335e-05,
1095
+ "loss": 0.2729,
1096
+ "step": 153
1097
+ },
1098
+ {
1099
+ "epoch": 0.6292134831460674,
1100
+ "grad_norm": 0.34576019644737244,
1101
+ "learning_rate": 1.849939854267919e-05,
1102
+ "loss": 0.2612,
1103
+ "step": 154
1104
+ },
1105
+ {
1106
+ "epoch": 0.6332992849846782,
1107
+ "grad_norm": 0.41370126605033875,
1108
+ "learning_rate": 1.847573457256571e-05,
1109
+ "loss": 0.2693,
1110
+ "step": 155
1111
+ },
1112
+ {
1113
+ "epoch": 0.6373850868232891,
1114
+ "grad_norm": 0.4205566644668579,
1115
+ "learning_rate": 1.845190085543795e-05,
1116
+ "loss": 0.2746,
1117
+ "step": 156
1118
+ },
1119
+ {
1120
+ "epoch": 0.6414708886618999,
1121
+ "grad_norm": 0.3997614085674286,
1122
+ "learning_rate": 1.8427897868623535e-05,
1123
+ "loss": 0.2813,
1124
+ "step": 157
1125
+ },
1126
+ {
1127
+ "epoch": 0.6455566905005107,
1128
+ "grad_norm": 0.41005200147628784,
1129
+ "learning_rate": 1.840372609284013e-05,
1130
+ "loss": 0.2647,
1131
+ "step": 158
1132
+ },
1133
+ {
1134
+ "epoch": 0.6496424923391215,
1135
+ "grad_norm": 0.4547550678253174,
1136
+ "learning_rate": 1.8379386012185813e-05,
1137
+ "loss": 0.2791,
1138
+ "step": 159
1139
+ },
1140
+ {
1141
+ "epoch": 0.6537282941777324,
1142
+ "grad_norm": 0.4075047969818115,
1143
+ "learning_rate": 1.8354878114129368e-05,
1144
+ "loss": 0.2769,
1145
+ "step": 160
1146
+ },
1147
+ {
1148
+ "epoch": 0.6578140960163432,
1149
+ "grad_norm": 0.37060046195983887,
1150
+ "learning_rate": 1.8330202889500518e-05,
1151
+ "loss": 0.3028,
1152
+ "step": 161
1153
+ },
1154
+ {
1155
+ "epoch": 0.6618998978549541,
1156
+ "grad_norm": 0.35541340708732605,
1157
+ "learning_rate": 1.8305360832480118e-05,
1158
+ "loss": 0.2981,
1159
+ "step": 162
1160
+ },
1161
+ {
1162
+ "epoch": 0.6659856996935649,
1163
+ "grad_norm": 0.3970625400543213,
1164
+ "learning_rate": 1.8280352440590236e-05,
1165
+ "loss": 0.2634,
1166
+ "step": 163
1167
+ },
1168
+ {
1169
+ "epoch": 0.6700715015321757,
1170
+ "grad_norm": 0.4075865149497986,
1171
+ "learning_rate": 1.82551782146842e-05,
1172
+ "loss": 0.3027,
1173
+ "step": 164
1174
+ },
1175
+ {
1176
+ "epoch": 0.6700715015321757,
1177
+ "eval_loss": 0.291363924741745,
1178
+ "eval_runtime": 5.7936,
1179
+ "eval_samples_per_second": 13.636,
1180
+ "eval_steps_per_second": 1.726,
1181
+ "step": 164
1182
+ },
1183
+ {
1184
+ "epoch": 0.6741573033707865,
1185
+ "grad_norm": 0.34390076994895935,
1186
+ "learning_rate": 1.8229838658936566e-05,
1187
+ "loss": 0.2536,
1188
+ "step": 165
1189
+ },
1190
+ {
1191
+ "epoch": 0.6782431052093973,
1192
+ "grad_norm": 0.3729197084903717,
1193
+ "learning_rate": 1.8204334280833005e-05,
1194
+ "loss": 0.2739,
1195
+ "step": 166
1196
+ },
1197
+ {
1198
+ "epoch": 0.6823289070480082,
1199
+ "grad_norm": 0.3974601924419403,
1200
+ "learning_rate": 1.817866559116017e-05,
1201
+ "loss": 0.2858,
1202
+ "step": 167
1203
+ },
1204
+ {
1205
+ "epoch": 0.686414708886619,
1206
+ "grad_norm": 0.3424644470214844,
1207
+ "learning_rate": 1.8152833103995443e-05,
1208
+ "loss": 0.2305,
1209
+ "step": 168
1210
+ },
1211
+ {
1212
+ "epoch": 0.6905005107252298,
1213
+ "grad_norm": 0.4293709397315979,
1214
+ "learning_rate": 1.8126837336696645e-05,
1215
+ "loss": 0.3179,
1216
+ "step": 169
1217
+ },
1218
+ {
1219
+ "epoch": 0.6945863125638406,
1220
+ "grad_norm": 0.3259459435939789,
1221
+ "learning_rate": 1.8100678809891668e-05,
1222
+ "loss": 0.2589,
1223
+ "step": 170
1224
+ },
1225
+ {
1226
+ "epoch": 0.6986721144024515,
1227
+ "grad_norm": 0.40771302580833435,
1228
+ "learning_rate": 1.807435804746807e-05,
1229
+ "loss": 0.2637,
1230
+ "step": 171
1231
+ },
1232
+ {
1233
+ "epoch": 0.7027579162410623,
1234
+ "grad_norm": 0.3847212493419647,
1235
+ "learning_rate": 1.8047875576562556e-05,
1236
+ "loss": 0.2782,
1237
+ "step": 172
1238
+ },
1239
+ {
1240
+ "epoch": 0.7068437180796732,
1241
+ "grad_norm": 0.35547974705696106,
1242
+ "learning_rate": 1.802123192755044e-05,
1243
+ "loss": 0.2695,
1244
+ "step": 173
1245
+ },
1246
+ {
1247
+ "epoch": 0.710929519918284,
1248
+ "grad_norm": 0.3954298198223114,
1249
+ "learning_rate": 1.7994427634035016e-05,
1250
+ "loss": 0.3005,
1251
+ "step": 174
1252
+ },
1253
+ {
1254
+ "epoch": 0.7150153217568948,
1255
+ "grad_norm": 0.3506409525871277,
1256
+ "learning_rate": 1.796746323283686e-05,
1257
+ "loss": 0.2716,
1258
+ "step": 175
1259
+ },
1260
+ {
1261
+ "epoch": 0.7191011235955056,
1262
+ "grad_norm": 0.42227277159690857,
1263
+ "learning_rate": 1.7940339263983112e-05,
1264
+ "loss": 0.2915,
1265
+ "step": 176
1266
+ },
1267
+ {
1268
+ "epoch": 0.7231869254341164,
1269
+ "grad_norm": 0.3948259949684143,
1270
+ "learning_rate": 1.791305627069662e-05,
1271
+ "loss": 0.2883,
1272
+ "step": 177
1273
+ },
1274
+ {
1275
+ "epoch": 0.7272727272727273,
1276
+ "grad_norm": 0.3580792248249054,
1277
+ "learning_rate": 1.7885614799385086e-05,
1278
+ "loss": 0.2782,
1279
+ "step": 178
1280
+ },
1281
+ {
1282
+ "epoch": 0.7313585291113381,
1283
+ "grad_norm": 0.39698660373687744,
1284
+ "learning_rate": 1.785801539963012e-05,
1285
+ "loss": 0.2657,
1286
+ "step": 179
1287
+ },
1288
+ {
1289
+ "epoch": 0.7354443309499489,
1290
+ "grad_norm": 0.3663792610168457,
1291
+ "learning_rate": 1.7830258624176224e-05,
1292
+ "loss": 0.2686,
1293
+ "step": 180
1294
+ },
1295
+ {
1296
+ "epoch": 0.7395301327885597,
1297
+ "grad_norm": 0.38216930627822876,
1298
+ "learning_rate": 1.7802345028919728e-05,
1299
+ "loss": 0.2706,
1300
+ "step": 181
1301
+ },
1302
+ {
1303
+ "epoch": 0.7436159346271706,
1304
+ "grad_norm": 0.4187450706958771,
1305
+ "learning_rate": 1.777427517289766e-05,
1306
+ "loss": 0.2573,
1307
+ "step": 182
1308
+ },
1309
+ {
1310
+ "epoch": 0.7477017364657814,
1311
+ "grad_norm": 0.34619036316871643,
1312
+ "learning_rate": 1.7746049618276545e-05,
1313
+ "loss": 0.269,
1314
+ "step": 183
1315
+ },
1316
+ {
1317
+ "epoch": 0.7517875383043923,
1318
+ "grad_norm": 0.35370582342147827,
1319
+ "learning_rate": 1.7717668930341152e-05,
1320
+ "loss": 0.2552,
1321
+ "step": 184
1322
+ },
1323
+ {
1324
+ "epoch": 0.7558733401430031,
1325
+ "grad_norm": 0.4264880418777466,
1326
+ "learning_rate": 1.768913367748316e-05,
1327
+ "loss": 0.2952,
1328
+ "step": 185
1329
+ },
1330
+ {
1331
+ "epoch": 0.7599591419816139,
1332
+ "grad_norm": 0.39135676622390747,
1333
+ "learning_rate": 1.766044443118978e-05,
1334
+ "loss": 0.2661,
1335
+ "step": 186
1336
+ },
1337
+ {
1338
+ "epoch": 0.7640449438202247,
1339
+ "grad_norm": 0.39061596989631653,
1340
+ "learning_rate": 1.7631601766032337e-05,
1341
+ "loss": 0.2737,
1342
+ "step": 187
1343
+ },
1344
+ {
1345
+ "epoch": 0.7681307456588355,
1346
+ "grad_norm": 0.3799816966056824,
1347
+ "learning_rate": 1.7602606259654704e-05,
1348
+ "loss": 0.2767,
1349
+ "step": 188
1350
+ },
1351
+ {
1352
+ "epoch": 0.7722165474974464,
1353
+ "grad_norm": 0.3592148721218109,
1354
+ "learning_rate": 1.7573458492761802e-05,
1355
+ "loss": 0.2448,
1356
+ "step": 189
1357
+ },
1358
+ {
1359
+ "epoch": 0.7763023493360572,
1360
+ "grad_norm": 0.39084604382514954,
1361
+ "learning_rate": 1.7544159049107902e-05,
1362
+ "loss": 0.275,
1363
+ "step": 190
1364
+ },
1365
+ {
1366
+ "epoch": 0.780388151174668,
1367
+ "grad_norm": 0.36443451046943665,
1368
+ "learning_rate": 1.7514708515485002e-05,
1369
+ "loss": 0.2645,
1370
+ "step": 191
1371
+ },
1372
+ {
1373
+ "epoch": 0.7844739530132788,
1374
+ "grad_norm": 0.4001200497150421,
1375
+ "learning_rate": 1.7485107481711014e-05,
1376
+ "loss": 0.2724,
1377
+ "step": 192
1378
+ },
1379
+ {
1380
+ "epoch": 0.7885597548518897,
1381
+ "grad_norm": 0.39093396067619324,
1382
+ "learning_rate": 1.7455356540617988e-05,
1383
+ "loss": 0.2712,
1384
+ "step": 193
1385
+ },
1386
+ {
1387
+ "epoch": 0.7926455566905005,
1388
+ "grad_norm": 0.3430577218532562,
1389
+ "learning_rate": 1.7425456288040236e-05,
1390
+ "loss": 0.2489,
1391
+ "step": 194
1392
+ },
1393
+ {
1394
+ "epoch": 0.7967313585291114,
1395
+ "grad_norm": 0.3573733866214752,
1396
+ "learning_rate": 1.7395407322802374e-05,
1397
+ "loss": 0.2696,
1398
+ "step": 195
1399
+ },
1400
+ {
1401
+ "epoch": 0.8008171603677222,
1402
+ "grad_norm": 0.38158077001571655,
1403
+ "learning_rate": 1.736521024670737e-05,
1404
+ "loss": 0.2814,
1405
+ "step": 196
1406
+ },
1407
+ {
1408
+ "epoch": 0.804902962206333,
1409
+ "grad_norm": 0.366470068693161,
1410
+ "learning_rate": 1.733486566452446e-05,
1411
+ "loss": 0.2529,
1412
+ "step": 197
1413
+ },
1414
+ {
1415
+ "epoch": 0.8089887640449438,
1416
+ "grad_norm": 0.3718278408050537,
1417
+ "learning_rate": 1.7304374183977032e-05,
1418
+ "loss": 0.2747,
1419
+ "step": 198
1420
+ },
1421
+ {
1422
+ "epoch": 0.8130745658835546,
1423
+ "grad_norm": 0.3395809233188629,
1424
+ "learning_rate": 1.7273736415730488e-05,
1425
+ "loss": 0.2693,
1426
+ "step": 199
1427
+ },
1428
+ {
1429
+ "epoch": 0.8171603677221655,
1430
+ "grad_norm": 0.307731032371521,
1431
+ "learning_rate": 1.7242952973379983e-05,
1432
+ "loss": 0.2081,
1433
+ "step": 200
1434
+ },
1435
+ {
1436
+ "epoch": 0.8212461695607763,
1437
+ "grad_norm": 0.3522433936595917,
1438
+ "learning_rate": 1.7212024473438145e-05,
1439
+ "loss": 0.2495,
1440
+ "step": 201
1441
+ },
1442
+ {
1443
+ "epoch": 0.8253319713993871,
1444
+ "grad_norm": 0.35946980118751526,
1445
+ "learning_rate": 1.7180951535322742e-05,
1446
+ "loss": 0.2702,
1447
+ "step": 202
1448
+ },
1449
+ {
1450
+ "epoch": 0.8294177732379979,
1451
+ "grad_norm": 0.3933047950267792,
1452
+ "learning_rate": 1.7149734781344247e-05,
1453
+ "loss": 0.2629,
1454
+ "step": 203
1455
+ },
1456
+ {
1457
+ "epoch": 0.8335035750766088,
1458
+ "grad_norm": 0.3658384084701538,
1459
+ "learning_rate": 1.7118374836693407e-05,
1460
+ "loss": 0.2538,
1461
+ "step": 204
1462
+ },
1463
+ {
1464
+ "epoch": 0.8375893769152196,
1465
+ "grad_norm": 0.3532220423221588,
1466
+ "learning_rate": 1.7086872329428702e-05,
1467
+ "loss": 0.2587,
1468
+ "step": 205
1469
+ },
1470
+ {
1471
+ "epoch": 0.8416751787538305,
1472
+ "grad_norm": 0.3619686961174011,
1473
+ "learning_rate": 1.705522789046377e-05,
1474
+ "loss": 0.2658,
1475
+ "step": 206
1476
+ },
1477
+ {
1478
+ "epoch": 0.8457609805924413,
1479
+ "grad_norm": 0.4083801209926605,
1480
+ "learning_rate": 1.7023442153554776e-05,
1481
+ "loss": 0.2614,
1482
+ "step": 207
1483
+ },
1484
+ {
1485
+ "epoch": 0.849846782431052,
1486
+ "grad_norm": 0.3868924081325531,
1487
+ "learning_rate": 1.6991515755287715e-05,
1488
+ "loss": 0.2831,
1489
+ "step": 208
1490
+ },
1491
+ {
1492
+ "epoch": 0.8539325842696629,
1493
+ "grad_norm": 0.38413897156715393,
1494
+ "learning_rate": 1.695944933506567e-05,
1495
+ "loss": 0.2596,
1496
+ "step": 209
1497
+ },
1498
+ {
1499
+ "epoch": 0.8580183861082737,
1500
+ "grad_norm": 0.34999531507492065,
1501
+ "learning_rate": 1.6927243535095995e-05,
1502
+ "loss": 0.2842,
1503
+ "step": 210
1504
+ },
1505
+ {
1506
+ "epoch": 0.8621041879468846,
1507
+ "grad_norm": 0.328204482793808,
1508
+ "learning_rate": 1.6894899000377462e-05,
1509
+ "loss": 0.2332,
1510
+ "step": 211
1511
+ },
1512
+ {
1513
+ "epoch": 0.8661899897854954,
1514
+ "grad_norm": 0.3802552819252014,
1515
+ "learning_rate": 1.686241637868734e-05,
1516
+ "loss": 0.2709,
1517
+ "step": 212
1518
+ },
1519
+ {
1520
+ "epoch": 0.8702757916241062,
1521
+ "grad_norm": 0.35758858919143677,
1522
+ "learning_rate": 1.6829796320568416e-05,
1523
+ "loss": 0.279,
1524
+ "step": 213
1525
+ },
1526
+ {
1527
+ "epoch": 0.874361593462717,
1528
+ "grad_norm": 0.3561984896659851,
1529
+ "learning_rate": 1.6797039479315994e-05,
1530
+ "loss": 0.2868,
1531
+ "step": 214
1532
+ },
1533
+ {
1534
+ "epoch": 0.8784473953013279,
1535
+ "grad_norm": 0.32591065764427185,
1536
+ "learning_rate": 1.6764146510964762e-05,
1537
+ "loss": 0.2485,
1538
+ "step": 215
1539
+ },
1540
+ {
1541
+ "epoch": 0.8825331971399387,
1542
+ "grad_norm": 0.36409640312194824,
1543
+ "learning_rate": 1.67311180742757e-05,
1544
+ "loss": 0.2577,
1545
+ "step": 216
1546
+ },
1547
+ {
1548
+ "epoch": 0.8866189989785496,
1549
+ "grad_norm": 0.34685492515563965,
1550
+ "learning_rate": 1.669795483072287e-05,
1551
+ "loss": 0.247,
1552
+ "step": 217
1553
+ },
1554
+ {
1555
+ "epoch": 0.8907048008171604,
1556
+ "grad_norm": 0.3445712625980377,
1557
+ "learning_rate": 1.6664657444480145e-05,
1558
+ "loss": 0.2565,
1559
+ "step": 218
1560
+ },
1561
+ {
1562
+ "epoch": 0.8947906026557712,
1563
+ "grad_norm": 0.34710460901260376,
1564
+ "learning_rate": 1.6631226582407954e-05,
1565
+ "loss": 0.2363,
1566
+ "step": 219
1567
+ },
1568
+ {
1569
+ "epoch": 0.898876404494382,
1570
+ "grad_norm": 0.33726766705513,
1571
+ "learning_rate": 1.6597662914039885e-05,
1572
+ "loss": 0.2483,
1573
+ "step": 220
1574
+ },
1575
+ {
1576
+ "epoch": 0.9029622063329928,
1577
+ "grad_norm": 0.34024032950401306,
1578
+ "learning_rate": 1.65639671115693e-05,
1579
+ "loss": 0.2474,
1580
+ "step": 221
1581
+ },
1582
+ {
1583
+ "epoch": 0.9070480081716037,
1584
+ "grad_norm": 0.38807395100593567,
1585
+ "learning_rate": 1.653013984983585e-05,
1586
+ "loss": 0.2726,
1587
+ "step": 222
1588
+ },
1589
+ {
1590
+ "epoch": 0.9111338100102145,
1591
+ "grad_norm": 0.36375290155410767,
1592
+ "learning_rate": 1.6496181806312005e-05,
1593
+ "loss": 0.2726,
1594
+ "step": 223
1595
+ },
1596
+ {
1597
+ "epoch": 0.9152196118488254,
1598
+ "grad_norm": 0.36927178502082825,
1599
+ "learning_rate": 1.6462093661089432e-05,
1600
+ "loss": 0.2518,
1601
+ "step": 224
1602
+ },
1603
+ {
1604
+ "epoch": 0.9193054136874361,
1605
+ "grad_norm": 0.3809269070625305,
1606
+ "learning_rate": 1.6427876096865394e-05,
1607
+ "loss": 0.2449,
1608
+ "step": 225
1609
+ },
1610
+ {
1611
+ "epoch": 0.923391215526047,
1612
+ "grad_norm": 0.34634968638420105,
1613
+ "learning_rate": 1.6393529798929103e-05,
1614
+ "loss": 0.2575,
1615
+ "step": 226
1616
+ },
1617
+ {
1618
+ "epoch": 0.9274770173646578,
1619
+ "grad_norm": 0.33054831624031067,
1620
+ "learning_rate": 1.635905545514795e-05,
1621
+ "loss": 0.2639,
1622
+ "step": 227
1623
+ },
1624
+ {
1625
+ "epoch": 0.9315628192032687,
1626
+ "grad_norm": 0.35482174158096313,
1627
+ "learning_rate": 1.6324453755953772e-05,
1628
+ "loss": 0.2667,
1629
+ "step": 228
1630
+ },
1631
+ {
1632
+ "epoch": 0.9356486210418795,
1633
+ "grad_norm": 0.3657509684562683,
1634
+ "learning_rate": 1.6289725394328998e-05,
1635
+ "loss": 0.255,
1636
+ "step": 229
1637
+ },
1638
+ {
1639
+ "epoch": 0.9397344228804902,
1640
+ "grad_norm": 0.3343275785446167,
1641
+ "learning_rate": 1.6254871065792776e-05,
1642
+ "loss": 0.2336,
1643
+ "step": 230
1644
+ },
1645
+ {
1646
+ "epoch": 0.9438202247191011,
1647
+ "grad_norm": 0.3493170142173767,
1648
+ "learning_rate": 1.621989146838704e-05,
1649
+ "loss": 0.2649,
1650
+ "step": 231
1651
+ },
1652
+ {
1653
+ "epoch": 0.947906026557712,
1654
+ "grad_norm": 0.3305867612361908,
1655
+ "learning_rate": 1.618478730266255e-05,
1656
+ "loss": 0.2767,
1657
+ "step": 232
1658
+ },
1659
+ {
1660
+ "epoch": 0.9519918283963228,
1661
+ "grad_norm": 0.35817259550094604,
1662
+ "learning_rate": 1.6149559271664835e-05,
1663
+ "loss": 0.2817,
1664
+ "step": 233
1665
+ },
1666
+ {
1667
+ "epoch": 0.9560776302349336,
1668
+ "grad_norm": 0.37733370065689087,
1669
+ "learning_rate": 1.6114208080920125e-05,
1670
+ "loss": 0.2809,
1671
+ "step": 234
1672
+ },
1673
+ {
1674
+ "epoch": 0.9601634320735445,
1675
+ "grad_norm": 0.3227766156196594,
1676
+ "learning_rate": 1.607873443842122e-05,
1677
+ "loss": 0.2545,
1678
+ "step": 235
1679
+ },
1680
+ {
1681
+ "epoch": 0.9642492339121552,
1682
+ "grad_norm": 0.3445710241794586,
1683
+ "learning_rate": 1.6043139054613326e-05,
1684
+ "loss": 0.2476,
1685
+ "step": 236
1686
+ },
1687
+ {
1688
+ "epoch": 0.9683350357507661,
1689
+ "grad_norm": 0.3375508785247803,
1690
+ "learning_rate": 1.600742264237979e-05,
1691
+ "loss": 0.2502,
1692
+ "step": 237
1693
+ },
1694
+ {
1695
+ "epoch": 0.9724208375893769,
1696
+ "grad_norm": 0.356039434671402,
1697
+ "learning_rate": 1.5971585917027864e-05,
1698
+ "loss": 0.268,
1699
+ "step": 238
1700
+ },
1701
+ {
1702
+ "epoch": 0.9765066394279878,
1703
+ "grad_norm": 0.34852373600006104,
1704
+ "learning_rate": 1.5935629596274345e-05,
1705
+ "loss": 0.2605,
1706
+ "step": 239
1707
+ },
1708
+ {
1709
+ "epoch": 0.9805924412665986,
1710
+ "grad_norm": 0.3376101851463318,
1711
+ "learning_rate": 1.5899554400231233e-05,
1712
+ "loss": 0.2567,
1713
+ "step": 240
1714
+ },
1715
+ {
1716
+ "epoch": 0.9846782431052093,
1717
+ "grad_norm": 0.32361170649528503,
1718
+ "learning_rate": 1.586336105139127e-05,
1719
+ "loss": 0.2481,
1720
+ "step": 241
1721
+ },
1722
+ {
1723
+ "epoch": 0.9887640449438202,
1724
+ "grad_norm": 0.35558903217315674,
1725
+ "learning_rate": 1.5827050274613512e-05,
1726
+ "loss": 0.2514,
1727
+ "step": 242
1728
+ },
1729
+ {
1730
+ "epoch": 0.992849846782431,
1731
+ "grad_norm": 0.31636619567871094,
1732
+ "learning_rate": 1.579062279710879e-05,
1733
+ "loss": 0.2237,
1734
+ "step": 243
1735
+ },
1736
+ {
1737
+ "epoch": 0.9969356486210419,
1738
+ "grad_norm": 0.3540779948234558,
1739
+ "learning_rate": 1.5754079348425137e-05,
1740
+ "loss": 0.2381,
1741
+ "step": 244
1742
+ },
1743
+ {
1744
+ "epoch": 1.0040858018386107,
1745
+ "grad_norm": 0.7127255201339722,
1746
+ "learning_rate": 1.57174206604332e-05,
1747
+ "loss": 0.4477,
1748
+ "step": 245
1749
+ },
1750
+ {
1751
+ "epoch": 1.0081716036772217,
1752
+ "grad_norm": 0.21768411993980408,
1753
+ "learning_rate": 1.568064746731156e-05,
1754
+ "loss": 0.177,
1755
+ "step": 246
1756
+ },
1757
+ {
1758
+ "epoch": 1.0081716036772217,
1759
+ "eval_loss": 0.2854033410549164,
1760
+ "eval_runtime": 5.5756,
1761
+ "eval_samples_per_second": 14.169,
1762
+ "eval_steps_per_second": 1.794,
1763
+ "step": 246
1764
+ },
1765
+ {
1766
+ "epoch": 1.0122574055158324,
1767
+ "grad_norm": 0.24506381154060364,
1768
+ "learning_rate": 1.564376050553205e-05,
1769
+ "loss": 0.1647,
1770
+ "step": 247
1771
+ },
1772
+ {
1773
+ "epoch": 1.0163432073544434,
1774
+ "grad_norm": 0.24179627001285553,
1775
+ "learning_rate": 1.560676051384499e-05,
1776
+ "loss": 0.1908,
1777
+ "step": 248
1778
+ },
1779
+ {
1780
+ "epoch": 1.0204290091930541,
1781
+ "grad_norm": 0.2527990937232971,
1782
+ "learning_rate": 1.5569648233264395e-05,
1783
+ "loss": 0.1728,
1784
+ "step": 249
1785
+ },
1786
+ {
1787
+ "epoch": 1.0245148110316649,
1788
+ "grad_norm": 0.28597134351730347,
1789
+ "learning_rate": 1.553242440705314e-05,
1790
+ "loss": 0.1854,
1791
+ "step": 250
1792
+ },
1793
+ {
1794
+ "epoch": 1.0286006128702758,
1795
+ "grad_norm": 0.2613103985786438,
1796
+ "learning_rate": 1.5495089780708062e-05,
1797
+ "loss": 0.1762,
1798
+ "step": 251
1799
+ },
1800
+ {
1801
+ "epoch": 1.0326864147088866,
1802
+ "grad_norm": 0.2806336581707001,
1803
+ "learning_rate": 1.5457645101945046e-05,
1804
+ "loss": 0.1801,
1805
+ "step": 252
1806
+ },
1807
+ {
1808
+ "epoch": 1.0367722165474975,
1809
+ "grad_norm": 0.29933255910873413,
1810
+ "learning_rate": 1.5420091120684042e-05,
1811
+ "loss": 0.1869,
1812
+ "step": 253
1813
+ },
1814
+ {
1815
+ "epoch": 1.0408580183861083,
1816
+ "grad_norm": 0.2678683400154114,
1817
+ "learning_rate": 1.538242858903404e-05,
1818
+ "loss": 0.1684,
1819
+ "step": 254
1820
+ },
1821
+ {
1822
+ "epoch": 1.0449438202247192,
1823
+ "grad_norm": 0.27515852451324463,
1824
+ "learning_rate": 1.5344658261278013e-05,
1825
+ "loss": 0.1859,
1826
+ "step": 255
1827
+ },
1828
+ {
1829
+ "epoch": 1.04902962206333,
1830
+ "grad_norm": 0.2876634895801544,
1831
+ "learning_rate": 1.530678089385782e-05,
1832
+ "loss": 0.1705,
1833
+ "step": 256
1834
+ },
1835
+ {
1836
+ "epoch": 1.0531154239019407,
1837
+ "grad_norm": 0.2911262810230255,
1838
+ "learning_rate": 1.5268797245359035e-05,
1839
+ "loss": 0.1937,
1840
+ "step": 257
1841
+ },
1842
+ {
1843
+ "epoch": 1.0572012257405516,
1844
+ "grad_norm": 0.3048553466796875,
1845
+ "learning_rate": 1.5230708076495777e-05,
1846
+ "loss": 0.1882,
1847
+ "step": 258
1848
+ },
1849
+ {
1850
+ "epoch": 1.0612870275791624,
1851
+ "grad_norm": 0.28508955240249634,
1852
+ "learning_rate": 1.519251415009546e-05,
1853
+ "loss": 0.1767,
1854
+ "step": 259
1855
+ },
1856
+ {
1857
+ "epoch": 1.0653728294177733,
1858
+ "grad_norm": 0.266313374042511,
1859
+ "learning_rate": 1.5154216231083522e-05,
1860
+ "loss": 0.1647,
1861
+ "step": 260
1862
+ },
1863
+ {
1864
+ "epoch": 1.069458631256384,
1865
+ "grad_norm": 0.2724918723106384,
1866
+ "learning_rate": 1.5115815086468103e-05,
1867
+ "loss": 0.1685,
1868
+ "step": 261
1869
+ },
1870
+ {
1871
+ "epoch": 1.0735444330949948,
1872
+ "grad_norm": 0.2324502021074295,
1873
+ "learning_rate": 1.507731148532468e-05,
1874
+ "loss": 0.1632,
1875
+ "step": 262
1876
+ },
1877
+ {
1878
+ "epoch": 1.0776302349336058,
1879
+ "grad_norm": 0.26865899562835693,
1880
+ "learning_rate": 1.5038706198780673e-05,
1881
+ "loss": 0.1802,
1882
+ "step": 263
1883
+ },
1884
+ {
1885
+ "epoch": 1.0817160367722165,
1886
+ "grad_norm": 0.29491883516311646,
1887
+ "learning_rate": 1.5000000000000002e-05,
1888
+ "loss": 0.1803,
1889
+ "step": 264
1890
+ },
1891
+ {
1892
+ "epoch": 1.0858018386108275,
1893
+ "grad_norm": 0.28987348079681396,
1894
+ "learning_rate": 1.496119366416759e-05,
1895
+ "loss": 0.1862,
1896
+ "step": 265
1897
+ },
1898
+ {
1899
+ "epoch": 1.0898876404494382,
1900
+ "grad_norm": 0.27755048871040344,
1901
+ "learning_rate": 1.492228796847385e-05,
1902
+ "loss": 0.1741,
1903
+ "step": 266
1904
+ },
1905
+ {
1906
+ "epoch": 1.093973442288049,
1907
+ "grad_norm": 0.2608552873134613,
1908
+ "learning_rate": 1.4883283692099114e-05,
1909
+ "loss": 0.1693,
1910
+ "step": 267
1911
+ },
1912
+ {
1913
+ "epoch": 1.09805924412666,
1914
+ "grad_norm": 0.27284783124923706,
1915
+ "learning_rate": 1.4844181616198028e-05,
1916
+ "loss": 0.1878,
1917
+ "step": 268
1918
+ },
1919
+ {
1920
+ "epoch": 1.1021450459652706,
1921
+ "grad_norm": 0.24481667578220367,
1922
+ "learning_rate": 1.4804982523883915e-05,
1923
+ "loss": 0.1589,
1924
+ "step": 269
1925
+ },
1926
+ {
1927
+ "epoch": 1.1062308478038816,
1928
+ "grad_norm": 0.2996629774570465,
1929
+ "learning_rate": 1.4765687200213079e-05,
1930
+ "loss": 0.1823,
1931
+ "step": 270
1932
+ },
1933
+ {
1934
+ "epoch": 1.1103166496424923,
1935
+ "grad_norm": 0.2922385632991791,
1936
+ "learning_rate": 1.4726296432169095e-05,
1937
+ "loss": 0.1769,
1938
+ "step": 271
1939
+ },
1940
+ {
1941
+ "epoch": 1.1144024514811033,
1942
+ "grad_norm": 0.3046974241733551,
1943
+ "learning_rate": 1.4686811008647037e-05,
1944
+ "loss": 0.1823,
1945
+ "step": 272
1946
+ },
1947
+ {
1948
+ "epoch": 1.118488253319714,
1949
+ "grad_norm": 0.2792796790599823,
1950
+ "learning_rate": 1.4647231720437687e-05,
1951
+ "loss": 0.1717,
1952
+ "step": 273
1953
+ },
1954
+ {
1955
+ "epoch": 1.1225740551583248,
1956
+ "grad_norm": 0.27251774072647095,
1957
+ "learning_rate": 1.4607559360211688e-05,
1958
+ "loss": 0.1652,
1959
+ "step": 274
1960
+ },
1961
+ {
1962
+ "epoch": 1.1266598569969357,
1963
+ "grad_norm": 0.2751109302043915,
1964
+ "learning_rate": 1.456779472250368e-05,
1965
+ "loss": 0.1713,
1966
+ "step": 275
1967
+ },
1968
+ {
1969
+ "epoch": 1.1307456588355465,
1970
+ "grad_norm": 0.2737586796283722,
1971
+ "learning_rate": 1.4527938603696376e-05,
1972
+ "loss": 0.162,
1973
+ "step": 276
1974
+ },
1975
+ {
1976
+ "epoch": 1.1348314606741572,
1977
+ "grad_norm": 0.24653682112693787,
1978
+ "learning_rate": 1.4487991802004625e-05,
1979
+ "loss": 0.1626,
1980
+ "step": 277
1981
+ },
1982
+ {
1983
+ "epoch": 1.1389172625127681,
1984
+ "grad_norm": 0.46106576919555664,
1985
+ "learning_rate": 1.4447955117459414e-05,
1986
+ "loss": 0.1609,
1987
+ "step": 278
1988
+ },
1989
+ {
1990
+ "epoch": 1.1430030643513789,
1991
+ "grad_norm": 0.27714091539382935,
1992
+ "learning_rate": 1.4407829351891858e-05,
1993
+ "loss": 0.1759,
1994
+ "step": 279
1995
+ },
1996
+ {
1997
+ "epoch": 1.1470888661899898,
1998
+ "grad_norm": 0.2678029537200928,
1999
+ "learning_rate": 1.436761530891713e-05,
2000
+ "loss": 0.1753,
2001
+ "step": 280
2002
+ },
2003
+ {
2004
+ "epoch": 1.1511746680286006,
2005
+ "grad_norm": 0.2559642791748047,
2006
+ "learning_rate": 1.4327313793918362e-05,
2007
+ "loss": 0.1778,
2008
+ "step": 281
2009
+ },
2010
+ {
2011
+ "epoch": 1.1552604698672115,
2012
+ "grad_norm": 0.3033258616924286,
2013
+ "learning_rate": 1.4286925614030542e-05,
2014
+ "loss": 0.1871,
2015
+ "step": 282
2016
+ },
2017
+ {
2018
+ "epoch": 1.1593462717058223,
2019
+ "grad_norm": 0.2658158540725708,
2020
+ "learning_rate": 1.4246451578124321e-05,
2021
+ "loss": 0.1782,
2022
+ "step": 283
2023
+ },
2024
+ {
2025
+ "epoch": 1.163432073544433,
2026
+ "grad_norm": 0.2901168465614319,
2027
+ "learning_rate": 1.4205892496789816e-05,
2028
+ "loss": 0.174,
2029
+ "step": 284
2030
+ },
2031
+ {
2032
+ "epoch": 1.167517875383044,
2033
+ "grad_norm": 0.23054322600364685,
2034
+ "learning_rate": 1.4165249182320401e-05,
2035
+ "loss": 0.1553,
2036
+ "step": 285
2037
+ },
2038
+ {
2039
+ "epoch": 1.1716036772216547,
2040
+ "grad_norm": 0.267805278301239,
2041
+ "learning_rate": 1.4124522448696407e-05,
2042
+ "loss": 0.168,
2043
+ "step": 286
2044
+ },
2045
+ {
2046
+ "epoch": 1.1756894790602657,
2047
+ "grad_norm": 0.26580214500427246,
2048
+ "learning_rate": 1.4083713111568841e-05,
2049
+ "loss": 0.167,
2050
+ "step": 287
2051
+ },
2052
+ {
2053
+ "epoch": 1.1797752808988764,
2054
+ "grad_norm": 0.2736794948577881,
2055
+ "learning_rate": 1.404282198824305e-05,
2056
+ "loss": 0.1623,
2057
+ "step": 288
2058
+ },
2059
+ {
2060
+ "epoch": 1.1838610827374871,
2061
+ "grad_norm": 0.25851017236709595,
2062
+ "learning_rate": 1.4001849897662337e-05,
2063
+ "loss": 0.1646,
2064
+ "step": 289
2065
+ },
2066
+ {
2067
+ "epoch": 1.187946884576098,
2068
+ "grad_norm": 0.26858997344970703,
2069
+ "learning_rate": 1.396079766039157e-05,
2070
+ "loss": 0.1768,
2071
+ "step": 290
2072
+ },
2073
+ {
2074
+ "epoch": 1.1920326864147088,
2075
+ "grad_norm": 0.2878361940383911,
2076
+ "learning_rate": 1.3919666098600753e-05,
2077
+ "loss": 0.1712,
2078
+ "step": 291
2079
+ },
2080
+ {
2081
+ "epoch": 1.1961184882533198,
2082
+ "grad_norm": 0.23014627397060394,
2083
+ "learning_rate": 1.387845603604855e-05,
2084
+ "loss": 0.1595,
2085
+ "step": 292
2086
+ },
2087
+ {
2088
+ "epoch": 1.2002042900919305,
2089
+ "grad_norm": 0.27550917863845825,
2090
+ "learning_rate": 1.3837168298065798e-05,
2091
+ "loss": 0.1639,
2092
+ "step": 293
2093
+ },
2094
+ {
2095
+ "epoch": 1.2042900919305413,
2096
+ "grad_norm": 0.2697204053401947,
2097
+ "learning_rate": 1.3795803711538966e-05,
2098
+ "loss": 0.1619,
2099
+ "step": 294
2100
+ },
2101
+ {
2102
+ "epoch": 1.2083758937691522,
2103
+ "grad_norm": 0.29666051268577576,
2104
+ "learning_rate": 1.37543631048936e-05,
2105
+ "loss": 0.1815,
2106
+ "step": 295
2107
+ },
2108
+ {
2109
+ "epoch": 1.212461695607763,
2110
+ "grad_norm": 0.25596365332603455,
2111
+ "learning_rate": 1.3712847308077737e-05,
2112
+ "loss": 0.1629,
2113
+ "step": 296
2114
+ },
2115
+ {
2116
+ "epoch": 1.216547497446374,
2117
+ "grad_norm": 0.25550931692123413,
2118
+ "learning_rate": 1.3671257152545277e-05,
2119
+ "loss": 0.1635,
2120
+ "step": 297
2121
+ },
2122
+ {
2123
+ "epoch": 1.2206332992849847,
2124
+ "grad_norm": 0.2615107297897339,
2125
+ "learning_rate": 1.3629593471239328e-05,
2126
+ "loss": 0.1547,
2127
+ "step": 298
2128
+ },
2129
+ {
2130
+ "epoch": 1.2247191011235956,
2131
+ "grad_norm": 0.2814185917377472,
2132
+ "learning_rate": 1.3587857098575534e-05,
2133
+ "loss": 0.1713,
2134
+ "step": 299
2135
+ },
2136
+ {
2137
+ "epoch": 1.2288049029622063,
2138
+ "grad_norm": 0.2644117772579193,
2139
+ "learning_rate": 1.3546048870425356e-05,
2140
+ "loss": 0.1703,
2141
+ "step": 300
2142
+ },
2143
+ {
2144
+ "epoch": 1.232890704800817,
2145
+ "grad_norm": 0.2645355463027954,
2146
+ "learning_rate": 1.350416962409934e-05,
2147
+ "loss": 0.159,
2148
+ "step": 301
2149
+ },
2150
+ {
2151
+ "epoch": 1.236976506639428,
2152
+ "grad_norm": 0.2637065351009369,
2153
+ "learning_rate": 1.346222019833033e-05,
2154
+ "loss": 0.1647,
2155
+ "step": 302
2156
+ },
2157
+ {
2158
+ "epoch": 1.2410623084780388,
2159
+ "grad_norm": 0.24007368087768555,
2160
+ "learning_rate": 1.342020143325669e-05,
2161
+ "loss": 0.1569,
2162
+ "step": 303
2163
+ },
2164
+ {
2165
+ "epoch": 1.2451481103166497,
2166
+ "grad_norm": 0.2273741364479065,
2167
+ "learning_rate": 1.3378114170405473e-05,
2168
+ "loss": 0.1645,
2169
+ "step": 304
2170
+ },
2171
+ {
2172
+ "epoch": 1.2492339121552605,
2173
+ "grad_norm": 0.2602927088737488,
2174
+ "learning_rate": 1.3335959252675566e-05,
2175
+ "loss": 0.1723,
2176
+ "step": 305
2177
+ },
2178
+ {
2179
+ "epoch": 1.2533197139938714,
2180
+ "grad_norm": 0.28329333662986755,
2181
+ "learning_rate": 1.3293737524320798e-05,
2182
+ "loss": 0.1704,
2183
+ "step": 306
2184
+ },
2185
+ {
2186
+ "epoch": 1.2574055158324822,
2187
+ "grad_norm": 0.270916610956192,
2188
+ "learning_rate": 1.3251449830933052e-05,
2189
+ "loss": 0.1621,
2190
+ "step": 307
2191
+ },
2192
+ {
2193
+ "epoch": 1.261491317671093,
2194
+ "grad_norm": 0.268443763256073,
2195
+ "learning_rate": 1.3209097019425317e-05,
2196
+ "loss": 0.177,
2197
+ "step": 308
2198
+ },
2199
+ {
2200
+ "epoch": 1.2655771195097039,
2201
+ "grad_norm": 0.2811964750289917,
2202
+ "learning_rate": 1.3166679938014728e-05,
2203
+ "loss": 0.1581,
2204
+ "step": 309
2205
+ },
2206
+ {
2207
+ "epoch": 1.2696629213483146,
2208
+ "grad_norm": 0.2809509038925171,
2209
+ "learning_rate": 1.3124199436205575e-05,
2210
+ "loss": 0.1625,
2211
+ "step": 310
2212
+ },
2213
+ {
2214
+ "epoch": 1.2737487231869253,
2215
+ "grad_norm": 0.27429160475730896,
2216
+ "learning_rate": 1.3081656364772308e-05,
2217
+ "loss": 0.1796,
2218
+ "step": 311
2219
+ },
2220
+ {
2221
+ "epoch": 1.2778345250255363,
2222
+ "grad_norm": 0.2557787299156189,
2223
+ "learning_rate": 1.303905157574247e-05,
2224
+ "loss": 0.1664,
2225
+ "step": 312
2226
+ },
2227
+ {
2228
+ "epoch": 1.281920326864147,
2229
+ "grad_norm": 0.3070502281188965,
2230
+ "learning_rate": 1.2996385922379657e-05,
2231
+ "loss": 0.1884,
2232
+ "step": 313
2233
+ },
2234
+ {
2235
+ "epoch": 1.286006128702758,
2236
+ "grad_norm": 0.2685239315032959,
2237
+ "learning_rate": 1.2953660259166413e-05,
2238
+ "loss": 0.1728,
2239
+ "step": 314
2240
+ },
2241
+ {
2242
+ "epoch": 1.2900919305413687,
2243
+ "grad_norm": 0.2761296331882477,
2244
+ "learning_rate": 1.291087544178713e-05,
2245
+ "loss": 0.1754,
2246
+ "step": 315
2247
+ },
2248
+ {
2249
+ "epoch": 1.2941777323799797,
2250
+ "grad_norm": 0.29421859979629517,
2251
+ "learning_rate": 1.2868032327110904e-05,
2252
+ "loss": 0.1566,
2253
+ "step": 316
2254
+ },
2255
+ {
2256
+ "epoch": 1.2982635342185904,
2257
+ "grad_norm": 0.2753983736038208,
2258
+ "learning_rate": 1.2825131773174371e-05,
2259
+ "loss": 0.1722,
2260
+ "step": 317
2261
+ },
2262
+ {
2263
+ "epoch": 1.3023493360572012,
2264
+ "grad_norm": 0.280300498008728,
2265
+ "learning_rate": 1.2782174639164528e-05,
2266
+ "loss": 0.1743,
2267
+ "step": 318
2268
+ },
2269
+ {
2270
+ "epoch": 1.3064351378958121,
2271
+ "grad_norm": 0.28724053502082825,
2272
+ "learning_rate": 1.2739161785401525e-05,
2273
+ "loss": 0.1727,
2274
+ "step": 319
2275
+ },
2276
+ {
2277
+ "epoch": 1.3105209397344229,
2278
+ "grad_norm": 0.24978399276733398,
2279
+ "learning_rate": 1.269609407332144e-05,
2280
+ "loss": 0.1654,
2281
+ "step": 320
2282
+ },
2283
+ {
2284
+ "epoch": 1.3146067415730336,
2285
+ "grad_norm": 0.2458401620388031,
2286
+ "learning_rate": 1.2652972365459008e-05,
2287
+ "loss": 0.1558,
2288
+ "step": 321
2289
+ },
2290
+ {
2291
+ "epoch": 1.3186925434116445,
2292
+ "grad_norm": 0.29217007756233215,
2293
+ "learning_rate": 1.2609797525430374e-05,
2294
+ "loss": 0.1749,
2295
+ "step": 322
2296
+ },
2297
+ {
2298
+ "epoch": 1.3227783452502553,
2299
+ "grad_norm": 0.2738885283470154,
2300
+ "learning_rate": 1.2566570417915769e-05,
2301
+ "loss": 0.1598,
2302
+ "step": 323
2303
+ },
2304
+ {
2305
+ "epoch": 1.3268641470888662,
2306
+ "grad_norm": 0.23460422456264496,
2307
+ "learning_rate": 1.2523291908642219e-05,
2308
+ "loss": 0.1586,
2309
+ "step": 324
2310
+ },
2311
+ {
2312
+ "epoch": 1.330949948927477,
2313
+ "grad_norm": 0.2899508476257324,
2314
+ "learning_rate": 1.2479962864366186e-05,
2315
+ "loss": 0.1698,
2316
+ "step": 325
2317
+ },
2318
+ {
2319
+ "epoch": 1.335035750766088,
2320
+ "grad_norm": 0.2744244933128357,
2321
+ "learning_rate": 1.243658415285622e-05,
2322
+ "loss": 0.167,
2323
+ "step": 326
2324
+ },
2325
+ {
2326
+ "epoch": 1.3391215526046987,
2327
+ "grad_norm": 0.3147677183151245,
2328
+ "learning_rate": 1.2393156642875579e-05,
2329
+ "loss": 0.1592,
2330
+ "step": 327
2331
+ },
2332
+ {
2333
+ "epoch": 1.3432073544433094,
2334
+ "grad_norm": 0.26883426308631897,
2335
+ "learning_rate": 1.2349681204164823e-05,
2336
+ "loss": 0.1735,
2337
+ "step": 328
2338
+ },
2339
+ {
2340
+ "epoch": 1.3432073544433094,
2341
+ "eval_loss": 0.2857210040092468,
2342
+ "eval_runtime": 5.8046,
2343
+ "eval_samples_per_second": 13.61,
2344
+ "eval_steps_per_second": 1.723,
2345
+ "step": 328
2346
+ },
2347
+ {
2348
+ "epoch": 1.3472931562819204,
2349
+ "grad_norm": 0.26572638750076294,
2350
+ "learning_rate": 1.2306158707424402e-05,
2351
+ "loss": 0.172,
2352
+ "step": 329
2353
+ },
2354
+ {
2355
+ "epoch": 1.351378958120531,
2356
+ "grad_norm": 0.3158324062824249,
2357
+ "learning_rate": 1.2262590024297226e-05,
2358
+ "loss": 0.184,
2359
+ "step": 330
2360
+ },
2361
+ {
2362
+ "epoch": 1.355464759959142,
2363
+ "grad_norm": 0.2606561779975891,
2364
+ "learning_rate": 1.2218976027351177e-05,
2365
+ "loss": 0.1681,
2366
+ "step": 331
2367
+ },
2368
+ {
2369
+ "epoch": 1.3595505617977528,
2370
+ "grad_norm": 0.2860865592956543,
2371
+ "learning_rate": 1.2175317590061676e-05,
2372
+ "loss": 0.1768,
2373
+ "step": 332
2374
+ },
2375
+ {
2376
+ "epoch": 1.3636363636363638,
2377
+ "grad_norm": 0.2928154766559601,
2378
+ "learning_rate": 1.2131615586794162e-05,
2379
+ "loss": 0.1654,
2380
+ "step": 333
2381
+ },
2382
+ {
2383
+ "epoch": 1.3677221654749745,
2384
+ "grad_norm": 0.2754892110824585,
2385
+ "learning_rate": 1.2087870892786588e-05,
2386
+ "loss": 0.1679,
2387
+ "step": 334
2388
+ },
2389
+ {
2390
+ "epoch": 1.3718079673135852,
2391
+ "grad_norm": 0.25418567657470703,
2392
+ "learning_rate": 1.2044084384131891e-05,
2393
+ "loss": 0.1692,
2394
+ "step": 335
2395
+ },
2396
+ {
2397
+ "epoch": 1.3758937691521962,
2398
+ "grad_norm": 0.29680415987968445,
2399
+ "learning_rate": 1.2000256937760446e-05,
2400
+ "loss": 0.1835,
2401
+ "step": 336
2402
+ },
2403
+ {
2404
+ "epoch": 1.379979570990807,
2405
+ "grad_norm": 0.25421565771102905,
2406
+ "learning_rate": 1.1956389431422508e-05,
2407
+ "loss": 0.1628,
2408
+ "step": 337
2409
+ },
2410
+ {
2411
+ "epoch": 1.3840653728294177,
2412
+ "grad_norm": 0.26102015376091003,
2413
+ "learning_rate": 1.1912482743670624e-05,
2414
+ "loss": 0.1587,
2415
+ "step": 338
2416
+ },
2417
+ {
2418
+ "epoch": 1.3881511746680286,
2419
+ "grad_norm": 0.2658519744873047,
2420
+ "learning_rate": 1.1868537753842052e-05,
2421
+ "loss": 0.1622,
2422
+ "step": 339
2423
+ },
2424
+ {
2425
+ "epoch": 1.3922369765066394,
2426
+ "grad_norm": 0.25693395733833313,
2427
+ "learning_rate": 1.1824555342041129e-05,
2428
+ "loss": 0.1611,
2429
+ "step": 340
2430
+ },
2431
+ {
2432
+ "epoch": 1.3963227783452503,
2433
+ "grad_norm": 0.24095548689365387,
2434
+ "learning_rate": 1.1780536389121668e-05,
2435
+ "loss": 0.1566,
2436
+ "step": 341
2437
+ },
2438
+ {
2439
+ "epoch": 1.400408580183861,
2440
+ "grad_norm": 0.25440356135368347,
2441
+ "learning_rate": 1.1736481776669307e-05,
2442
+ "loss": 0.1646,
2443
+ "step": 342
2444
+ },
2445
+ {
2446
+ "epoch": 1.404494382022472,
2447
+ "grad_norm": 0.23900751769542694,
2448
+ "learning_rate": 1.1692392386983837e-05,
2449
+ "loss": 0.1567,
2450
+ "step": 343
2451
+ },
2452
+ {
2453
+ "epoch": 1.4085801838610827,
2454
+ "grad_norm": 0.2516697645187378,
2455
+ "learning_rate": 1.1648269103061567e-05,
2456
+ "loss": 0.1693,
2457
+ "step": 344
2458
+ },
2459
+ {
2460
+ "epoch": 1.4126659856996935,
2461
+ "grad_norm": 0.23285552859306335,
2462
+ "learning_rate": 1.1604112808577603e-05,
2463
+ "loss": 0.1565,
2464
+ "step": 345
2465
+ },
2466
+ {
2467
+ "epoch": 1.4167517875383044,
2468
+ "grad_norm": 0.22535811364650726,
2469
+ "learning_rate": 1.155992438786818e-05,
2470
+ "loss": 0.1519,
2471
+ "step": 346
2472
+ },
2473
+ {
2474
+ "epoch": 1.4208375893769152,
2475
+ "grad_norm": 0.2757152020931244,
2476
+ "learning_rate": 1.1515704725912926e-05,
2477
+ "loss": 0.1824,
2478
+ "step": 347
2479
+ },
2480
+ {
2481
+ "epoch": 1.424923391215526,
2482
+ "grad_norm": 0.25517934560775757,
2483
+ "learning_rate": 1.1471454708317163e-05,
2484
+ "loss": 0.1524,
2485
+ "step": 348
2486
+ },
2487
+ {
2488
+ "epoch": 1.4290091930541369,
2489
+ "grad_norm": 0.26882752776145935,
2490
+ "learning_rate": 1.1427175221294145e-05,
2491
+ "loss": 0.1653,
2492
+ "step": 349
2493
+ },
2494
+ {
2495
+ "epoch": 1.4330949948927478,
2496
+ "grad_norm": 0.2248525470495224,
2497
+ "learning_rate": 1.1382867151647333e-05,
2498
+ "loss": 0.1458,
2499
+ "step": 350
2500
+ },
2501
+ {
2502
+ "epoch": 1.4371807967313586,
2503
+ "grad_norm": 0.2648623585700989,
2504
+ "learning_rate": 1.1338531386752618e-05,
2505
+ "loss": 0.1663,
2506
+ "step": 351
2507
+ },
2508
+ {
2509
+ "epoch": 1.4412665985699693,
2510
+ "grad_norm": 0.2239081859588623,
2511
+ "learning_rate": 1.1294168814540554e-05,
2512
+ "loss": 0.1488,
2513
+ "step": 352
2514
+ },
2515
+ {
2516
+ "epoch": 1.4453524004085803,
2517
+ "grad_norm": 0.2529364824295044,
2518
+ "learning_rate": 1.1249780323478585e-05,
2519
+ "loss": 0.1633,
2520
+ "step": 353
2521
+ },
2522
+ {
2523
+ "epoch": 1.449438202247191,
2524
+ "grad_norm": 0.22921797633171082,
2525
+ "learning_rate": 1.1205366802553231e-05,
2526
+ "loss": 0.1648,
2527
+ "step": 354
2528
+ },
2529
+ {
2530
+ "epoch": 1.4535240040858017,
2531
+ "grad_norm": 0.29341360926628113,
2532
+ "learning_rate": 1.1160929141252303e-05,
2533
+ "loss": 0.1657,
2534
+ "step": 355
2535
+ },
2536
+ {
2537
+ "epoch": 1.4576098059244127,
2538
+ "grad_norm": 0.2699342966079712,
2539
+ "learning_rate": 1.1116468229547079e-05,
2540
+ "loss": 0.1726,
2541
+ "step": 356
2542
+ },
2543
+ {
2544
+ "epoch": 1.4616956077630234,
2545
+ "grad_norm": 0.22347010672092438,
2546
+ "learning_rate": 1.107198495787448e-05,
2547
+ "loss": 0.1549,
2548
+ "step": 357
2549
+ },
2550
+ {
2551
+ "epoch": 1.4657814096016344,
2552
+ "grad_norm": 0.2765299677848816,
2553
+ "learning_rate": 1.1027480217119245e-05,
2554
+ "loss": 0.1567,
2555
+ "step": 358
2556
+ },
2557
+ {
2558
+ "epoch": 1.4698672114402451,
2559
+ "grad_norm": 0.2796229422092438,
2560
+ "learning_rate": 1.0982954898596072e-05,
2561
+ "loss": 0.1673,
2562
+ "step": 359
2563
+ },
2564
+ {
2565
+ "epoch": 1.473953013278856,
2566
+ "grad_norm": 0.2708180546760559,
2567
+ "learning_rate": 1.0938409894031793e-05,
2568
+ "loss": 0.1608,
2569
+ "step": 360
2570
+ },
2571
+ {
2572
+ "epoch": 1.4780388151174668,
2573
+ "grad_norm": 0.26708030700683594,
2574
+ "learning_rate": 1.0893846095547493e-05,
2575
+ "loss": 0.1672,
2576
+ "step": 361
2577
+ },
2578
+ {
2579
+ "epoch": 1.4821246169560776,
2580
+ "grad_norm": 0.25234729051589966,
2581
+ "learning_rate": 1.084926439564065e-05,
2582
+ "loss": 0.1695,
2583
+ "step": 362
2584
+ },
2585
+ {
2586
+ "epoch": 1.4862104187946885,
2587
+ "grad_norm": 0.23701204359531403,
2588
+ "learning_rate": 1.0804665687167262e-05,
2589
+ "loss": 0.1478,
2590
+ "step": 363
2591
+ },
2592
+ {
2593
+ "epoch": 1.4902962206332993,
2594
+ "grad_norm": 0.23572878539562225,
2595
+ "learning_rate": 1.0760050863323961e-05,
2596
+ "loss": 0.1518,
2597
+ "step": 364
2598
+ },
2599
+ {
2600
+ "epoch": 1.49438202247191,
2601
+ "grad_norm": 0.26712414622306824,
2602
+ "learning_rate": 1.0715420817630137e-05,
2603
+ "loss": 0.1641,
2604
+ "step": 365
2605
+ },
2606
+ {
2607
+ "epoch": 1.498467824310521,
2608
+ "grad_norm": 0.2618795931339264,
2609
+ "learning_rate": 1.0670776443910024e-05,
2610
+ "loss": 0.1584,
2611
+ "step": 366
2612
+ },
2613
+ {
2614
+ "epoch": 1.502553626149132,
2615
+ "grad_norm": 0.24355687201023102,
2616
+ "learning_rate": 1.062611863627482e-05,
2617
+ "loss": 0.155,
2618
+ "step": 367
2619
+ },
2620
+ {
2621
+ "epoch": 1.5066394279877426,
2622
+ "grad_norm": 0.28303593397140503,
2623
+ "learning_rate": 1.0581448289104759e-05,
2624
+ "loss": 0.1699,
2625
+ "step": 368
2626
+ },
2627
+ {
2628
+ "epoch": 1.5107252298263534,
2629
+ "grad_norm": 0.2682429254055023,
2630
+ "learning_rate": 1.0536766297031216e-05,
2631
+ "loss": 0.1638,
2632
+ "step": 369
2633
+ },
2634
+ {
2635
+ "epoch": 1.5148110316649643,
2636
+ "grad_norm": 0.2611052095890045,
2637
+ "learning_rate": 1.0492073554918782e-05,
2638
+ "loss": 0.162,
2639
+ "step": 370
2640
+ },
2641
+ {
2642
+ "epoch": 1.518896833503575,
2643
+ "grad_norm": 0.2545654773712158,
2644
+ "learning_rate": 1.0447370957847343e-05,
2645
+ "loss": 0.171,
2646
+ "step": 371
2647
+ },
2648
+ {
2649
+ "epoch": 1.5229826353421858,
2650
+ "grad_norm": 0.2540684640407562,
2651
+ "learning_rate": 1.0402659401094154e-05,
2652
+ "loss": 0.1609,
2653
+ "step": 372
2654
+ },
2655
+ {
2656
+ "epoch": 1.5270684371807968,
2657
+ "grad_norm": 0.29473230242729187,
2658
+ "learning_rate": 1.0357939780115906e-05,
2659
+ "loss": 0.1739,
2660
+ "step": 373
2661
+ },
2662
+ {
2663
+ "epoch": 1.5311542390194075,
2664
+ "grad_norm": 0.23088738322257996,
2665
+ "learning_rate": 1.0313212990530804e-05,
2666
+ "loss": 0.1396,
2667
+ "step": 374
2668
+ },
2669
+ {
2670
+ "epoch": 1.5352400408580182,
2671
+ "grad_norm": 0.2865520119667053,
2672
+ "learning_rate": 1.0268479928100615e-05,
2673
+ "loss": 0.1587,
2674
+ "step": 375
2675
+ },
2676
+ {
2677
+ "epoch": 1.5393258426966292,
2678
+ "grad_norm": 0.26724815368652344,
2679
+ "learning_rate": 1.0223741488712732e-05,
2680
+ "loss": 0.1643,
2681
+ "step": 376
2682
+ },
2683
+ {
2684
+ "epoch": 1.5434116445352402,
2685
+ "grad_norm": 0.2568652033805847,
2686
+ "learning_rate": 1.0178998568362243e-05,
2687
+ "loss": 0.1502,
2688
+ "step": 377
2689
+ },
2690
+ {
2691
+ "epoch": 1.547497446373851,
2692
+ "grad_norm": 0.25489166378974915,
2693
+ "learning_rate": 1.0134252063133976e-05,
2694
+ "loss": 0.1551,
2695
+ "step": 378
2696
+ },
2697
+ {
2698
+ "epoch": 1.5515832482124616,
2699
+ "grad_norm": 0.2938600480556488,
2700
+ "learning_rate": 1.0089502869184549e-05,
2701
+ "loss": 0.1721,
2702
+ "step": 379
2703
+ },
2704
+ {
2705
+ "epoch": 1.5556690500510726,
2706
+ "grad_norm": 0.2571638822555542,
2707
+ "learning_rate": 1.0044751882724436e-05,
2708
+ "loss": 0.1596,
2709
+ "step": 380
2710
+ },
2711
+ {
2712
+ "epoch": 1.5597548518896833,
2713
+ "grad_norm": 0.2504737079143524,
2714
+ "learning_rate": 1e-05,
2715
+ "loss": 0.1652,
2716
+ "step": 381
2717
+ },
2718
+ {
2719
+ "epoch": 1.563840653728294,
2720
+ "grad_norm": 0.25643548369407654,
2721
+ "learning_rate": 9.955248117275566e-06,
2722
+ "loss": 0.1646,
2723
+ "step": 382
2724
+ },
2725
+ {
2726
+ "epoch": 1.567926455566905,
2727
+ "grad_norm": 0.24690495431423187,
2728
+ "learning_rate": 9.910497130815454e-06,
2729
+ "loss": 0.1692,
2730
+ "step": 383
2731
+ },
2732
+ {
2733
+ "epoch": 1.572012257405516,
2734
+ "grad_norm": 0.23503315448760986,
2735
+ "learning_rate": 9.865747936866027e-06,
2736
+ "loss": 0.1614,
2737
+ "step": 384
2738
+ },
2739
+ {
2740
+ "epoch": 1.5760980592441267,
2741
+ "grad_norm": 0.2600212097167969,
2742
+ "learning_rate": 9.821001431637759e-06,
2743
+ "loss": 0.1843,
2744
+ "step": 385
2745
+ },
2746
+ {
2747
+ "epoch": 1.5801838610827375,
2748
+ "grad_norm": 0.24049755930900574,
2749
+ "learning_rate": 9.776258511287271e-06,
2750
+ "loss": 0.1939,
2751
+ "step": 386
2752
+ },
2753
+ {
2754
+ "epoch": 1.5842696629213484,
2755
+ "grad_norm": 0.26995447278022766,
2756
+ "learning_rate": 9.73152007189939e-06,
2757
+ "loss": 0.1608,
2758
+ "step": 387
2759
+ },
2760
+ {
2761
+ "epoch": 1.5883554647599591,
2762
+ "grad_norm": 0.25705352425575256,
2763
+ "learning_rate": 9.6867870094692e-06,
2764
+ "loss": 0.1503,
2765
+ "step": 388
2766
+ },
2767
+ {
2768
+ "epoch": 1.5924412665985699,
2769
+ "grad_norm": 0.2591187059879303,
2770
+ "learning_rate": 9.642060219884096e-06,
2771
+ "loss": 0.1601,
2772
+ "step": 389
2773
+ },
2774
+ {
2775
+ "epoch": 1.5965270684371808,
2776
+ "grad_norm": 0.26638317108154297,
2777
+ "learning_rate": 9.597340598905851e-06,
2778
+ "loss": 0.1525,
2779
+ "step": 390
2780
+ },
2781
+ {
2782
+ "epoch": 1.6006128702757916,
2783
+ "grad_norm": 0.27399975061416626,
2784
+ "learning_rate": 9.55262904215266e-06,
2785
+ "loss": 0.1571,
2786
+ "step": 391
2787
+ },
2788
+ {
2789
+ "epoch": 1.6046986721144023,
2790
+ "grad_norm": 0.298513263463974,
2791
+ "learning_rate": 9.50792644508122e-06,
2792
+ "loss": 0.1734,
2793
+ "step": 392
2794
+ },
2795
+ {
2796
+ "epoch": 1.6087844739530133,
2797
+ "grad_norm": 0.2932952344417572,
2798
+ "learning_rate": 9.463233702968784e-06,
2799
+ "loss": 0.1595,
2800
+ "step": 393
2801
+ },
2802
+ {
2803
+ "epoch": 1.6128702757916242,
2804
+ "grad_norm": 0.2699350118637085,
2805
+ "learning_rate": 9.418551710895243e-06,
2806
+ "loss": 0.1513,
2807
+ "step": 394
2808
+ },
2809
+ {
2810
+ "epoch": 1.616956077630235,
2811
+ "grad_norm": 0.2710689902305603,
2812
+ "learning_rate": 9.373881363725182e-06,
2813
+ "loss": 0.1558,
2814
+ "step": 395
2815
+ },
2816
+ {
2817
+ "epoch": 1.6210418794688457,
2818
+ "grad_norm": 0.26967060565948486,
2819
+ "learning_rate": 9.329223556089976e-06,
2820
+ "loss": 0.1532,
2821
+ "step": 396
2822
+ },
2823
+ {
2824
+ "epoch": 1.6251276813074567,
2825
+ "grad_norm": 0.26783767342567444,
2826
+ "learning_rate": 9.284579182369868e-06,
2827
+ "loss": 0.167,
2828
+ "step": 397
2829
+ },
2830
+ {
2831
+ "epoch": 1.6292134831460674,
2832
+ "grad_norm": 0.2573103606700897,
2833
+ "learning_rate": 9.239949136676042e-06,
2834
+ "loss": 0.1675,
2835
+ "step": 398
2836
+ },
2837
+ {
2838
+ "epoch": 1.6332992849846781,
2839
+ "grad_norm": 0.2554529905319214,
2840
+ "learning_rate": 9.195334312832742e-06,
2841
+ "loss": 0.1653,
2842
+ "step": 399
2843
+ },
2844
+ {
2845
+ "epoch": 1.637385086823289,
2846
+ "grad_norm": 0.2697620391845703,
2847
+ "learning_rate": 9.15073560435935e-06,
2848
+ "loss": 0.1754,
2849
+ "step": 400
2850
+ },
2851
+ {
2852
+ "epoch": 1.6414708886619,
2853
+ "grad_norm": 0.2908802032470703,
2854
+ "learning_rate": 9.10615390445251e-06,
2855
+ "loss": 0.1694,
2856
+ "step": 401
2857
+ },
2858
+ {
2859
+ "epoch": 1.6455566905005106,
2860
+ "grad_norm": 0.28988802433013916,
2861
+ "learning_rate": 9.061590105968208e-06,
2862
+ "loss": 0.1596,
2863
+ "step": 402
2864
+ },
2865
+ {
2866
+ "epoch": 1.6496424923391215,
2867
+ "grad_norm": 0.27670571208000183,
2868
+ "learning_rate": 9.01704510140393e-06,
2869
+ "loss": 0.1486,
2870
+ "step": 403
2871
+ },
2872
+ {
2873
+ "epoch": 1.6537282941777325,
2874
+ "grad_norm": 0.29919058084487915,
2875
+ "learning_rate": 8.97251978288076e-06,
2876
+ "loss": 0.1668,
2877
+ "step": 404
2878
+ },
2879
+ {
2880
+ "epoch": 1.6578140960163432,
2881
+ "grad_norm": 0.2605692446231842,
2882
+ "learning_rate": 8.928015042125523e-06,
2883
+ "loss": 0.1533,
2884
+ "step": 405
2885
+ },
2886
+ {
2887
+ "epoch": 1.661899897854954,
2888
+ "grad_norm": 0.27188801765441895,
2889
+ "learning_rate": 8.883531770452924e-06,
2890
+ "loss": 0.1591,
2891
+ "step": 406
2892
+ },
2893
+ {
2894
+ "epoch": 1.665985699693565,
2895
+ "grad_norm": 0.2607693374156952,
2896
+ "learning_rate": 8.839070858747697e-06,
2897
+ "loss": 0.1631,
2898
+ "step": 407
2899
+ },
2900
+ {
2901
+ "epoch": 1.6700715015321757,
2902
+ "grad_norm": 0.26251208782196045,
2903
+ "learning_rate": 8.79463319744677e-06,
2904
+ "loss": 0.1669,
2905
+ "step": 408
2906
+ },
2907
+ {
2908
+ "epoch": 1.6741573033707864,
2909
+ "grad_norm": 0.27655109763145447,
2910
+ "learning_rate": 8.750219676521417e-06,
2911
+ "loss": 0.1797,
2912
+ "step": 409
2913
+ },
2914
+ {
2915
+ "epoch": 1.6782431052093973,
2916
+ "grad_norm": 0.2489909827709198,
2917
+ "learning_rate": 8.705831185459446e-06,
2918
+ "loss": 0.1684,
2919
+ "step": 410
2920
+ },
2921
+ {
2922
+ "epoch": 1.6782431052093973,
2923
+ "eval_loss": 0.2804652154445648,
2924
+ "eval_runtime": 5.3248,
2925
+ "eval_samples_per_second": 14.836,
2926
+ "eval_steps_per_second": 1.878,
2927
+ "step": 410
2928
+ },
2929
+ {
2930
+ "epoch": 1.6823289070480083,
2931
+ "grad_norm": 0.2541872560977936,
2932
+ "learning_rate": 8.661468613247387e-06,
2933
+ "loss": 0.1738,
2934
+ "step": 411
2935
+ },
2936
+ {
2937
+ "epoch": 1.686414708886619,
2938
+ "grad_norm": 0.26432761549949646,
2939
+ "learning_rate": 8.617132848352672e-06,
2940
+ "loss": 0.1523,
2941
+ "step": 412
2942
+ },
2943
+ {
2944
+ "epoch": 1.6905005107252298,
2945
+ "grad_norm": 0.24682320654392242,
2946
+ "learning_rate": 8.572824778705858e-06,
2947
+ "loss": 0.1685,
2948
+ "step": 413
2949
+ },
2950
+ {
2951
+ "epoch": 1.6945863125638407,
2952
+ "grad_norm": 0.255575567483902,
2953
+ "learning_rate": 8.528545291682839e-06,
2954
+ "loss": 0.1603,
2955
+ "step": 414
2956
+ },
2957
+ {
2958
+ "epoch": 1.6986721144024515,
2959
+ "grad_norm": 0.27255284786224365,
2960
+ "learning_rate": 8.484295274087077e-06,
2961
+ "loss": 0.1649,
2962
+ "step": 415
2963
+ },
2964
+ {
2965
+ "epoch": 1.7027579162410622,
2966
+ "grad_norm": 0.2935710549354553,
2967
+ "learning_rate": 8.440075612131823e-06,
2968
+ "loss": 0.1824,
2969
+ "step": 416
2970
+ },
2971
+ {
2972
+ "epoch": 1.7068437180796732,
2973
+ "grad_norm": 0.28145232796669006,
2974
+ "learning_rate": 8.395887191422397e-06,
2975
+ "loss": 0.1664,
2976
+ "step": 417
2977
+ },
2978
+ {
2979
+ "epoch": 1.7109295199182841,
2980
+ "grad_norm": 0.2540966272354126,
2981
+ "learning_rate": 8.351730896938438e-06,
2982
+ "loss": 0.139,
2983
+ "step": 418
2984
+ },
2985
+ {
2986
+ "epoch": 1.7150153217568946,
2987
+ "grad_norm": 0.2761797606945038,
2988
+ "learning_rate": 8.307607613016166e-06,
2989
+ "loss": 0.1468,
2990
+ "step": 419
2991
+ },
2992
+ {
2993
+ "epoch": 1.7191011235955056,
2994
+ "grad_norm": 0.26004406809806824,
2995
+ "learning_rate": 8.263518223330698e-06,
2996
+ "loss": 0.1791,
2997
+ "step": 420
2998
+ },
2999
+ {
3000
+ "epoch": 1.7231869254341166,
3001
+ "grad_norm": 0.26706498861312866,
3002
+ "learning_rate": 8.219463610878336e-06,
3003
+ "loss": 0.1767,
3004
+ "step": 421
3005
+ },
3006
+ {
3007
+ "epoch": 1.7272727272727273,
3008
+ "grad_norm": 0.25433361530303955,
3009
+ "learning_rate": 8.175444657958875e-06,
3010
+ "loss": 0.1641,
3011
+ "step": 422
3012
+ },
3013
+ {
3014
+ "epoch": 1.731358529111338,
3015
+ "grad_norm": 0.28011849522590637,
3016
+ "learning_rate": 8.131462246157953e-06,
3017
+ "loss": 0.1667,
3018
+ "step": 423
3019
+ },
3020
+ {
3021
+ "epoch": 1.735444330949949,
3022
+ "grad_norm": 0.24411511421203613,
3023
+ "learning_rate": 8.087517256329376e-06,
3024
+ "loss": 0.1484,
3025
+ "step": 424
3026
+ },
3027
+ {
3028
+ "epoch": 1.7395301327885597,
3029
+ "grad_norm": 0.2515384554862976,
3030
+ "learning_rate": 8.043610568577497e-06,
3031
+ "loss": 0.149,
3032
+ "step": 425
3033
+ },
3034
+ {
3035
+ "epoch": 1.7436159346271705,
3036
+ "grad_norm": 0.28085580468177795,
3037
+ "learning_rate": 7.999743062239557e-06,
3038
+ "loss": 0.1758,
3039
+ "step": 426
3040
+ },
3041
+ {
3042
+ "epoch": 1.7477017364657814,
3043
+ "grad_norm": 0.2542356848716736,
3044
+ "learning_rate": 7.95591561586811e-06,
3045
+ "loss": 0.1526,
3046
+ "step": 427
3047
+ },
3048
+ {
3049
+ "epoch": 1.7517875383043924,
3050
+ "grad_norm": 0.2624610960483551,
3051
+ "learning_rate": 7.912129107213417e-06,
3052
+ "loss": 0.1669,
3053
+ "step": 428
3054
+ },
3055
+ {
3056
+ "epoch": 1.7558733401430031,
3057
+ "grad_norm": 0.2531009316444397,
3058
+ "learning_rate": 7.868384413205842e-06,
3059
+ "loss": 0.1728,
3060
+ "step": 429
3061
+ },
3062
+ {
3063
+ "epoch": 1.7599591419816139,
3064
+ "grad_norm": 0.26832813024520874,
3065
+ "learning_rate": 7.824682409938328e-06,
3066
+ "loss": 0.1689,
3067
+ "step": 430
3068
+ },
3069
+ {
3070
+ "epoch": 1.7640449438202248,
3071
+ "grad_norm": 0.26647037267684937,
3072
+ "learning_rate": 7.781023972648826e-06,
3073
+ "loss": 0.1566,
3074
+ "step": 431
3075
+ },
3076
+ {
3077
+ "epoch": 1.7681307456588355,
3078
+ "grad_norm": 0.2441844940185547,
3079
+ "learning_rate": 7.73740997570278e-06,
3080
+ "loss": 0.1475,
3081
+ "step": 432
3082
+ },
3083
+ {
3084
+ "epoch": 1.7722165474974463,
3085
+ "grad_norm": 0.26222023367881775,
3086
+ "learning_rate": 7.6938412925756e-06,
3087
+ "loss": 0.1627,
3088
+ "step": 433
3089
+ },
3090
+ {
3091
+ "epoch": 1.7763023493360572,
3092
+ "grad_norm": 0.27849847078323364,
3093
+ "learning_rate": 7.650318795835179e-06,
3094
+ "loss": 0.1692,
3095
+ "step": 434
3096
+ },
3097
+ {
3098
+ "epoch": 1.780388151174668,
3099
+ "grad_norm": 0.23362480103969574,
3100
+ "learning_rate": 7.606843357124426e-06,
3101
+ "loss": 0.1486,
3102
+ "step": 435
3103
+ },
3104
+ {
3105
+ "epoch": 1.7844739530132787,
3106
+ "grad_norm": 0.25098103284835815,
3107
+ "learning_rate": 7.563415847143782e-06,
3108
+ "loss": 0.1586,
3109
+ "step": 436
3110
+ },
3111
+ {
3112
+ "epoch": 1.7885597548518897,
3113
+ "grad_norm": 0.2666711211204529,
3114
+ "learning_rate": 7.520037135633817e-06,
3115
+ "loss": 0.1631,
3116
+ "step": 437
3117
+ },
3118
+ {
3119
+ "epoch": 1.7926455566905006,
3120
+ "grad_norm": 0.25154757499694824,
3121
+ "learning_rate": 7.476708091357783e-06,
3122
+ "loss": 0.1496,
3123
+ "step": 438
3124
+ },
3125
+ {
3126
+ "epoch": 1.7967313585291114,
3127
+ "grad_norm": 0.2870493233203888,
3128
+ "learning_rate": 7.433429582084233e-06,
3129
+ "loss": 0.1718,
3130
+ "step": 439
3131
+ },
3132
+ {
3133
+ "epoch": 1.800817160367722,
3134
+ "grad_norm": 0.2450946867465973,
3135
+ "learning_rate": 7.39020247456963e-06,
3136
+ "loss": 0.1551,
3137
+ "step": 440
3138
+ },
3139
+ {
3140
+ "epoch": 1.804902962206333,
3141
+ "grad_norm": 0.2701391577720642,
3142
+ "learning_rate": 7.347027634540993e-06,
3143
+ "loss": 0.1611,
3144
+ "step": 441
3145
+ },
3146
+ {
3147
+ "epoch": 1.8089887640449438,
3148
+ "grad_norm": 0.25652557611465454,
3149
+ "learning_rate": 7.303905926678565e-06,
3150
+ "loss": 0.1571,
3151
+ "step": 442
3152
+ },
3153
+ {
3154
+ "epoch": 1.8130745658835545,
3155
+ "grad_norm": 0.24130114912986755,
3156
+ "learning_rate": 7.260838214598475e-06,
3157
+ "loss": 0.1525,
3158
+ "step": 443
3159
+ },
3160
+ {
3161
+ "epoch": 1.8171603677221655,
3162
+ "grad_norm": 0.2391010969877243,
3163
+ "learning_rate": 7.217825360835475e-06,
3164
+ "loss": 0.1478,
3165
+ "step": 444
3166
+ },
3167
+ {
3168
+ "epoch": 1.8212461695607765,
3169
+ "grad_norm": 0.24808183312416077,
3170
+ "learning_rate": 7.174868226825631e-06,
3171
+ "loss": 0.1449,
3172
+ "step": 445
3173
+ },
3174
+ {
3175
+ "epoch": 1.825331971399387,
3176
+ "grad_norm": 0.24367845058441162,
3177
+ "learning_rate": 7.131967672889101e-06,
3178
+ "loss": 0.1527,
3179
+ "step": 446
3180
+ },
3181
+ {
3182
+ "epoch": 1.829417773237998,
3183
+ "grad_norm": 0.24614740908145905,
3184
+ "learning_rate": 7.089124558212872e-06,
3185
+ "loss": 0.1473,
3186
+ "step": 447
3187
+ },
3188
+ {
3189
+ "epoch": 1.8335035750766089,
3190
+ "grad_norm": 0.23732498288154602,
3191
+ "learning_rate": 7.04633974083359e-06,
3192
+ "loss": 0.1676,
3193
+ "step": 448
3194
+ },
3195
+ {
3196
+ "epoch": 1.8375893769152196,
3197
+ "grad_norm": 0.26191797852516174,
3198
+ "learning_rate": 7.003614077620348e-06,
3199
+ "loss": 0.1625,
3200
+ "step": 449
3201
+ },
3202
+ {
3203
+ "epoch": 1.8416751787538304,
3204
+ "grad_norm": 0.22175060212612152,
3205
+ "learning_rate": 6.960948424257532e-06,
3206
+ "loss": 0.1417,
3207
+ "step": 450
3208
+ },
3209
+ {
3210
+ "epoch": 1.8457609805924413,
3211
+ "grad_norm": 0.2599637806415558,
3212
+ "learning_rate": 6.918343635227694e-06,
3213
+ "loss": 0.1542,
3214
+ "step": 451
3215
+ },
3216
+ {
3217
+ "epoch": 1.849846782431052,
3218
+ "grad_norm": 0.2902531325817108,
3219
+ "learning_rate": 6.8758005637944245e-06,
3220
+ "loss": 0.1673,
3221
+ "step": 452
3222
+ },
3223
+ {
3224
+ "epoch": 1.8539325842696628,
3225
+ "grad_norm": 0.26200827956199646,
3226
+ "learning_rate": 6.833320061985278e-06,
3227
+ "loss": 0.1507,
3228
+ "step": 453
3229
+ },
3230
+ {
3231
+ "epoch": 1.8580183861082737,
3232
+ "grad_norm": 0.22496499121189117,
3233
+ "learning_rate": 6.7909029805746855e-06,
3234
+ "loss": 0.1563,
3235
+ "step": 454
3236
+ },
3237
+ {
3238
+ "epoch": 1.8621041879468847,
3239
+ "grad_norm": 0.26499348878860474,
3240
+ "learning_rate": 6.7485501690669495e-06,
3241
+ "loss": 0.1588,
3242
+ "step": 455
3243
+ },
3244
+ {
3245
+ "epoch": 1.8661899897854954,
3246
+ "grad_norm": 0.21678292751312256,
3247
+ "learning_rate": 6.706262475679205e-06,
3248
+ "loss": 0.1446,
3249
+ "step": 456
3250
+ },
3251
+ {
3252
+ "epoch": 1.8702757916241062,
3253
+ "grad_norm": 0.249608114361763,
3254
+ "learning_rate": 6.664040747324437e-06,
3255
+ "loss": 0.1574,
3256
+ "step": 457
3257
+ },
3258
+ {
3259
+ "epoch": 1.8743615934627171,
3260
+ "grad_norm": 0.27170929312705994,
3261
+ "learning_rate": 6.62188582959453e-06,
3262
+ "loss": 0.1714,
3263
+ "step": 458
3264
+ },
3265
+ {
3266
+ "epoch": 1.8784473953013279,
3267
+ "grad_norm": 0.26091060042381287,
3268
+ "learning_rate": 6.579798566743314e-06,
3269
+ "loss": 0.153,
3270
+ "step": 459
3271
+ },
3272
+ {
3273
+ "epoch": 1.8825331971399386,
3274
+ "grad_norm": 0.2784002125263214,
3275
+ "learning_rate": 6.537779801669677e-06,
3276
+ "loss": 0.1594,
3277
+ "step": 460
3278
+ },
3279
+ {
3280
+ "epoch": 1.8866189989785496,
3281
+ "grad_norm": 0.2827843427658081,
3282
+ "learning_rate": 6.495830375900665e-06,
3283
+ "loss": 0.1713,
3284
+ "step": 461
3285
+ },
3286
+ {
3287
+ "epoch": 1.8907048008171605,
3288
+ "grad_norm": 0.24465838074684143,
3289
+ "learning_rate": 6.453951129574644e-06,
3290
+ "loss": 0.1398,
3291
+ "step": 462
3292
+ },
3293
+ {
3294
+ "epoch": 1.894790602655771,
3295
+ "grad_norm": 0.24695105850696564,
3296
+ "learning_rate": 6.41214290142447e-06,
3297
+ "loss": 0.1569,
3298
+ "step": 463
3299
+ },
3300
+ {
3301
+ "epoch": 1.898876404494382,
3302
+ "grad_norm": 0.23522843420505524,
3303
+ "learning_rate": 6.370406528760675e-06,
3304
+ "loss": 0.1572,
3305
+ "step": 464
3306
+ },
3307
+ {
3308
+ "epoch": 1.902962206332993,
3309
+ "grad_norm": 0.28958627581596375,
3310
+ "learning_rate": 6.3287428474547256e-06,
3311
+ "loss": 0.1576,
3312
+ "step": 465
3313
+ },
3314
+ {
3315
+ "epoch": 1.9070480081716037,
3316
+ "grad_norm": 0.22417336702346802,
3317
+ "learning_rate": 6.287152691922264e-06,
3318
+ "loss": 0.151,
3319
+ "step": 466
3320
+ },
3321
+ {
3322
+ "epoch": 1.9111338100102144,
3323
+ "grad_norm": 0.24010370671749115,
3324
+ "learning_rate": 6.245636895106403e-06,
3325
+ "loss": 0.1422,
3326
+ "step": 467
3327
+ },
3328
+ {
3329
+ "epoch": 1.9152196118488254,
3330
+ "grad_norm": 0.257285475730896,
3331
+ "learning_rate": 6.204196288461037e-06,
3332
+ "loss": 0.1541,
3333
+ "step": 468
3334
+ },
3335
+ {
3336
+ "epoch": 1.9193054136874361,
3337
+ "grad_norm": 0.2468208223581314,
3338
+ "learning_rate": 6.162831701934203e-06,
3339
+ "loss": 0.1618,
3340
+ "step": 469
3341
+ },
3342
+ {
3343
+ "epoch": 1.9233912155260469,
3344
+ "grad_norm": 0.2693644165992737,
3345
+ "learning_rate": 6.121543963951453e-06,
3346
+ "loss": 0.1597,
3347
+ "step": 470
3348
+ },
3349
+ {
3350
+ "epoch": 1.9274770173646578,
3351
+ "grad_norm": 0.22864265739917755,
3352
+ "learning_rate": 6.080333901399252e-06,
3353
+ "loss": 0.1447,
3354
+ "step": 471
3355
+ },
3356
+ {
3357
+ "epoch": 1.9315628192032688,
3358
+ "grad_norm": 0.2744729518890381,
3359
+ "learning_rate": 6.039202339608432e-06,
3360
+ "loss": 0.1649,
3361
+ "step": 472
3362
+ },
3363
+ {
3364
+ "epoch": 1.9356486210418795,
3365
+ "grad_norm": 0.2626800537109375,
3366
+ "learning_rate": 5.998150102337665e-06,
3367
+ "loss": 0.1465,
3368
+ "step": 473
3369
+ },
3370
+ {
3371
+ "epoch": 1.9397344228804902,
3372
+ "grad_norm": 0.24998779594898224,
3373
+ "learning_rate": 5.957178011756952e-06,
3374
+ "loss": 0.1314,
3375
+ "step": 474
3376
+ },
3377
+ {
3378
+ "epoch": 1.9438202247191012,
3379
+ "grad_norm": 0.25133228302001953,
3380
+ "learning_rate": 5.9162868884311596e-06,
3381
+ "loss": 0.1541,
3382
+ "step": 475
3383
+ },
3384
+ {
3385
+ "epoch": 1.947906026557712,
3386
+ "grad_norm": 0.27924278378486633,
3387
+ "learning_rate": 5.875477551303596e-06,
3388
+ "loss": 0.1588,
3389
+ "step": 476
3390
+ },
3391
+ {
3392
+ "epoch": 1.9519918283963227,
3393
+ "grad_norm": 0.23838290572166443,
3394
+ "learning_rate": 5.834750817679606e-06,
3395
+ "loss": 0.1559,
3396
+ "step": 477
3397
+ },
3398
+ {
3399
+ "epoch": 1.9560776302349336,
3400
+ "grad_norm": 0.20889320969581604,
3401
+ "learning_rate": 5.794107503210187e-06,
3402
+ "loss": 0.1376,
3403
+ "step": 478
3404
+ },
3405
+ {
3406
+ "epoch": 1.9601634320735446,
3407
+ "grad_norm": 0.24007071554660797,
3408
+ "learning_rate": 5.753548421875686e-06,
3409
+ "loss": 0.1641,
3410
+ "step": 479
3411
+ },
3412
+ {
3413
+ "epoch": 1.9642492339121551,
3414
+ "grad_norm": 0.25776174664497375,
3415
+ "learning_rate": 5.713074385969457e-06,
3416
+ "loss": 0.1486,
3417
+ "step": 480
3418
+ },
3419
+ {
3420
+ "epoch": 1.968335035750766,
3421
+ "grad_norm": 0.24709415435791016,
3422
+ "learning_rate": 5.672686206081638e-06,
3423
+ "loss": 0.1647,
3424
+ "step": 481
3425
+ },
3426
+ {
3427
+ "epoch": 1.972420837589377,
3428
+ "grad_norm": 0.2545711398124695,
3429
+ "learning_rate": 5.632384691082874e-06,
3430
+ "loss": 0.1558,
3431
+ "step": 482
3432
+ },
3433
+ {
3434
+ "epoch": 1.9765066394279878,
3435
+ "grad_norm": 0.25180289149284363,
3436
+ "learning_rate": 5.5921706481081405e-06,
3437
+ "loss": 0.1405,
3438
+ "step": 483
3439
+ },
3440
+ {
3441
+ "epoch": 1.9805924412665985,
3442
+ "grad_norm": 0.2353358417749405,
3443
+ "learning_rate": 5.55204488254059e-06,
3444
+ "loss": 0.1496,
3445
+ "step": 484
3446
+ },
3447
+ {
3448
+ "epoch": 1.9846782431052095,
3449
+ "grad_norm": 0.25672510266304016,
3450
+ "learning_rate": 5.512008197995379e-06,
3451
+ "loss": 0.1557,
3452
+ "step": 485
3453
+ },
3454
+ {
3455
+ "epoch": 1.9887640449438202,
3456
+ "grad_norm": 0.24256597459316254,
3457
+ "learning_rate": 5.47206139630363e-06,
3458
+ "loss": 0.1366,
3459
+ "step": 486
3460
+ },
3461
+ {
3462
+ "epoch": 1.992849846782431,
3463
+ "grad_norm": 0.2704496681690216,
3464
+ "learning_rate": 5.432205277496327e-06,
3465
+ "loss": 0.1492,
3466
+ "step": 487
3467
+ },
3468
+ {
3469
+ "epoch": 1.996935648621042,
3470
+ "grad_norm": 0.24868719279766083,
3471
+ "learning_rate": 5.3924406397883174e-06,
3472
+ "loss": 0.1632,
3473
+ "step": 488
3474
+ }
3475
+ ],
3476
+ "logging_steps": 1,
3477
+ "max_steps": 732,
3478
+ "num_input_tokens_seen": 0,
3479
+ "num_train_epochs": 3,
3480
+ "save_steps": 244,
3481
+ "stateful_callbacks": {
3482
+ "TrainerControl": {
3483
+ "args": {
3484
+ "should_epoch_stop": false,
3485
+ "should_evaluate": false,
3486
+ "should_log": false,
3487
+ "should_save": true,
3488
+ "should_training_stop": false
3489
+ },
3490
+ "attributes": {}
3491
+ }
3492
+ },
3493
+ "total_flos": 8.264375507248742e+17,
3494
+ "train_batch_size": 8,
3495
+ "trial_name": null,
3496
+ "trial_params": null
3497
+ }
checkpoint-488/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8a51e619db41bfecd4e2978f86e8cb848022d32d79a042203708d80062927ea
3
+ size 10744
checkpoint-488/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-488/zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
checkpoint-732/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-732/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-3B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "eos_token_id": 151645,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 2048,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_position_embeddings": 32768,
13
+ "max_window_layers": 70,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 16,
16
+ "num_hidden_layers": 36,
17
+ "num_key_value_heads": 2,
18
+ "rms_norm_eps": 1e-06,
19
+ "rope_scaling": null,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": true,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.48.1",
25
+ "use_cache": false,
26
+ "use_sliding_window": false,
27
+ "vocab_size": 151665
28
+ }
checkpoint-732/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.48.1"
14
+ }
checkpoint-732/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step732
checkpoint-732/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-732/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94e77145585997322f3e99da879afe33d1189e28971acf742a4a46e57fb43e28
3
+ size 4956450288
checkpoint-732/model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4416d56b700f372991da3e4f93be86ca790c88aec666652aa0d55ec0bfa11ce
3
+ size 1835586736
checkpoint-732/model.safetensors.index.json ADDED
@@ -0,0 +1,442 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 6791987200
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
368
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
369
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
370
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
371
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
372
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
373
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
374
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
376
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
377
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
378
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
379
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
380
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
382
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
384
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
385
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
386
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
387
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
388
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
389
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
390
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
391
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
394
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
395
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
396
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
397
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
398
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
399
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
400
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
401
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
402
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
403
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
404
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
405
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
406
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
407
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
408
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
409
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
410
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
411
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
412
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
413
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
414
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
415
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
416
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
417
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
418
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
419
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
420
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
421
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
422
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
423
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
424
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
425
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
426
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
427
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
428
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
429
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
430
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
431
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
432
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
433
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
434
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
435
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
436
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
437
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
438
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
439
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
440
+ "model.norm.weight": "model-00002-of-00002.safetensors"
441
+ }
442
+ }
checkpoint-732/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f3803bff3f596c03b55881de967a825b5734e4a581739164f9cb9e7fd1aee89
3
+ size 14512
checkpoint-732/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d768a04b798e2ca42effbe096b8e4481f32a402a9125a2ced390586dab8eb29e
3
+ size 14512
checkpoint-732/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3674e6d322bb18fac688dee98de72d6d1e9649274ab1079046232a9da36c9b5
3
+ size 1064
checkpoint-732/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-732/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896