amphora commited on
Commit
ad1b65a
·
verified ·
1 Parent(s): 0d8a056

Delete 3b-mb_qwen/checkpoint-507

Browse files
3b-mb_qwen/checkpoint-507/added_tokens.json DELETED
@@ -1,24 +0,0 @@
1
- {
2
- "</tool_call>": 151658,
3
- "<tool_call>": 151657,
4
- "<|box_end|>": 151649,
5
- "<|box_start|>": 151648,
6
- "<|endoftext|>": 151643,
7
- "<|file_sep|>": 151664,
8
- "<|fim_middle|>": 151660,
9
- "<|fim_pad|>": 151662,
10
- "<|fim_prefix|>": 151659,
11
- "<|fim_suffix|>": 151661,
12
- "<|im_end|>": 151645,
13
- "<|im_start|>": 151644,
14
- "<|image_pad|>": 151655,
15
- "<|object_ref_end|>": 151647,
16
- "<|object_ref_start|>": 151646,
17
- "<|quad_end|>": 151651,
18
- "<|quad_start|>": 151650,
19
- "<|repo_name|>": 151663,
20
- "<|video_pad|>": 151656,
21
- "<|vision_end|>": 151653,
22
- "<|vision_pad|>": 151654,
23
- "<|vision_start|>": 151652
24
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b-mb_qwen/checkpoint-507/config.json DELETED
@@ -1,28 +0,0 @@
1
- {
2
- "_name_or_path": "Qwen/Qwen2.5-3B-Instruct",
3
- "architectures": [
4
- "Qwen2ForCausalLM"
5
- ],
6
- "attention_dropout": 0.0,
7
- "eos_token_id": 151645,
8
- "hidden_act": "silu",
9
- "hidden_size": 2048,
10
- "initializer_range": 0.02,
11
- "intermediate_size": 11008,
12
- "max_position_embeddings": 32768,
13
- "max_window_layers": 70,
14
- "model_type": "qwen2",
15
- "num_attention_heads": 16,
16
- "num_hidden_layers": 36,
17
- "num_key_value_heads": 2,
18
- "rms_norm_eps": 1e-06,
19
- "rope_scaling": null,
20
- "rope_theta": 1000000.0,
21
- "sliding_window": null,
22
- "tie_word_embeddings": true,
23
- "torch_dtype": "bfloat16",
24
- "transformers_version": "4.48.1",
25
- "use_cache": false,
26
- "use_sliding_window": false,
27
- "vocab_size": 151665
28
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b-mb_qwen/checkpoint-507/generation_config.json DELETED
@@ -1,14 +0,0 @@
1
- {
2
- "bos_token_id": 151643,
3
- "do_sample": true,
4
- "eos_token_id": [
5
- 151645,
6
- 151643
7
- ],
8
- "pad_token_id": 151643,
9
- "repetition_penalty": 1.05,
10
- "temperature": 0.7,
11
- "top_k": 20,
12
- "top_p": 0.8,
13
- "transformers_version": "4.48.1"
14
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b-mb_qwen/checkpoint-507/latest DELETED
@@ -1 +0,0 @@
1
- global_step505
 
 
3b-mb_qwen/checkpoint-507/merges.txt DELETED
The diff for this file is too large to render. See raw diff
 
3b-mb_qwen/checkpoint-507/model-00001-of-00002.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:c63c90852fa3fa4280db2cd535d3288d97103797c36bc01f6b86838774637395
3
- size 4956450288
 
 
 
 
3b-mb_qwen/checkpoint-507/model-00002-of-00002.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:5abba5a27427c5628dcedab5d617b319036407f2fc964f81ba71cfb4a973b178
3
- size 1835586736
 
 
 
 
3b-mb_qwen/checkpoint-507/model.safetensors.index.json DELETED
@@ -1,442 +0,0 @@
1
- {
2
- "metadata": {
3
- "total_size": 6791987200
4
- },
5
- "weight_map": {
6
- "lm_head.weight": "model-00002-of-00002.safetensors",
7
- "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
- "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
- "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
- "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
- "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
- "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
- "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
14
- "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
15
- "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
16
- "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
17
- "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
18
- "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
19
- "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
20
- "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
- "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
- "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
23
- "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
24
- "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
25
- "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
26
- "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
27
- "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
28
- "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
29
- "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
30
- "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
31
- "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
32
- "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
33
- "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
34
- "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
35
- "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
36
- "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
37
- "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
38
- "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
39
- "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
40
- "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
41
- "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
42
- "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
43
- "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
- "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
- "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
- "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
- "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
- "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
- "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
50
- "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
51
- "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
52
- "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
53
- "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
54
- "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
55
- "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
56
- "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
57
- "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
58
- "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
59
- "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
60
- "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
61
- "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
62
- "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
63
- "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
64
- "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
65
- "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
66
- "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
67
- "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
68
- "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
69
- "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
70
- "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
71
- "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
72
- "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
73
- "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
74
- "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
75
- "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
76
- "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
77
- "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
78
- "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
79
- "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
- "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
- "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
- "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
- "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
- "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
- "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
86
- "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
87
- "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
88
- "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
89
- "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
90
- "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
91
- "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
92
- "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
93
- "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
94
- "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
95
- "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
96
- "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
97
- "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
98
- "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
99
- "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
100
- "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
101
- "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
102
- "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
103
- "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
104
- "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
105
- "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
106
- "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
107
- "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
108
- "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
109
- "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
110
- "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
111
- "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
112
- "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
113
- "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
114
- "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
115
- "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
- "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
- "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
- "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
- "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
- "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
- "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
122
- "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
123
- "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
124
- "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
125
- "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
126
- "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
127
- "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
128
- "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
129
- "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
130
- "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
131
- "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
132
- "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
133
- "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
134
- "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
135
- "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
136
- "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
137
- "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
138
- "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
139
- "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
140
- "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
141
- "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
142
- "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
143
- "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
144
- "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
145
- "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
146
- "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
147
- "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
148
- "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
149
- "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
150
- "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
151
- "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
152
- "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
153
- "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
154
- "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
155
- "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
156
- "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
157
- "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
158
- "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
159
- "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
160
- "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
161
- "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
162
- "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
163
- "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
164
- "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
165
- "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
166
- "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
167
- "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
168
- "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
169
- "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
170
- "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
171
- "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
172
- "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
173
- "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
174
- "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
175
- "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
176
- "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
177
- "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
178
- "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
179
- "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
180
- "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
181
- "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
182
- "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
183
- "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
184
- "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
185
- "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
186
- "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
187
- "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
188
- "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
189
- "model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
190
- "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
191
- "model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
192
- "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
193
- "model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
194
- "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
195
- "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
196
- "model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
197
- "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
198
- "model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
199
- "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
200
- "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
201
- "model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
202
- "model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
203
- "model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
204
- "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
205
- "model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
206
- "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
207
- "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
208
- "model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
209
- "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
210
- "model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
211
- "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
212
- "model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
213
- "model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
214
- "model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
215
- "model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
216
- "model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
217
- "model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
218
- "model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
219
- "model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
220
- "model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
221
- "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
222
- "model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
223
- "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
- "model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
225
- "model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
226
- "model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
227
- "model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
228
- "model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
229
- "model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
230
- "model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
231
- "model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
232
- "model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
233
- "model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
234
- "model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
235
- "model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
236
- "model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
237
- "model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
238
- "model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
239
- "model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
240
- "model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
241
- "model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
242
- "model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
243
- "model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
244
- "model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
245
- "model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
246
- "model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
247
- "model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
248
- "model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
249
- "model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
250
- "model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
251
- "model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
252
- "model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
253
- "model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
254
- "model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
255
- "model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
256
- "model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
257
- "model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
258
- "model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
259
- "model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
- "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
261
- "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
262
- "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
263
- "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
264
- "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
265
- "model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
266
- "model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
267
- "model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
268
- "model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
269
- "model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
270
- "model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
271
- "model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
272
- "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
273
- "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
274
- "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
275
- "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
276
- "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
277
- "model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
278
- "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
279
- "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
280
- "model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
281
- "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
282
- "model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
283
- "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
284
- "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
285
- "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
286
- "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
287
- "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
288
- "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
289
- "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
290
- "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
291
- "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
292
- "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
293
- "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
294
- "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
295
- "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
296
- "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
297
- "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
298
- "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
299
- "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
300
- "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
301
- "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
302
- "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
303
- "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
304
- "model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
305
- "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
306
- "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
307
- "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
308
- "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
309
- "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
310
- "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
311
- "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
312
- "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
313
- "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
314
- "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
315
- "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
316
- "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
317
- "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
318
- "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
319
- "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
320
- "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
321
- "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
322
- "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
323
- "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
324
- "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
325
- "model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
326
- "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
327
- "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
328
- "model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
329
- "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
330
- "model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
331
- "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
332
- "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
333
- "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
334
- "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
335
- "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
336
- "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
337
- "model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
338
- "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
339
- "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
340
- "model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
341
- "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
342
- "model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
343
- "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
344
- "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
345
- "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
346
- "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
347
- "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
348
- "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
349
- "model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
350
- "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
351
- "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
352
- "model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
353
- "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
354
- "model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
355
- "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
356
- "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
357
- "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
358
- "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
359
- "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
360
- "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
361
- "model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
362
- "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
363
- "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
364
- "model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
365
- "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
366
- "model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
367
- "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
368
- "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
369
- "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
370
- "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
371
- "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
372
- "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
373
- "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
374
- "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
375
- "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
376
- "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
377
- "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
378
- "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
379
- "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
380
- "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
381
- "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
382
- "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
383
- "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
384
- "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
385
- "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
386
- "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
387
- "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
388
- "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
389
- "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
390
- "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
391
- "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
392
- "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
393
- "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
394
- "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
395
- "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
396
- "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
397
- "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
398
- "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
399
- "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
400
- "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
401
- "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
402
- "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
403
- "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
404
- "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
405
- "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
406
- "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
407
- "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
408
- "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
409
- "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
410
- "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
411
- "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
412
- "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
413
- "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
414
- "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
415
- "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
416
- "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
417
- "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
418
- "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
419
- "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
420
- "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
421
- "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
422
- "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
423
- "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
424
- "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
425
- "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
426
- "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
427
- "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
428
- "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
429
- "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
430
- "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
431
- "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
432
- "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
433
- "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
434
- "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
435
- "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
436
- "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
437
- "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
438
- "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
439
- "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
440
- "model.norm.weight": "model-00002-of-00002.safetensors"
441
- }
442
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b-mb_qwen/checkpoint-507/rng_state_0.pth DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:6f3803bff3f596c03b55881de967a825b5734e4a581739164f9cb9e7fd1aee89
3
- size 14512
 
 
 
 
3b-mb_qwen/checkpoint-507/rng_state_1.pth DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d768a04b798e2ca42effbe096b8e4481f32a402a9125a2ced390586dab8eb29e
3
- size 14512
 
 
 
 
3b-mb_qwen/checkpoint-507/scheduler.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:a7cc083c6282a60be998cf859b1a6c559bc7ea7e1edebd39819cd91f2b32e45e
3
- size 1064
 
 
 
 
3b-mb_qwen/checkpoint-507/special_tokens_map.json DELETED
@@ -1,31 +0,0 @@
1
- {
2
- "additional_special_tokens": [
3
- "<|im_start|>",
4
- "<|im_end|>",
5
- "<|object_ref_start|>",
6
- "<|object_ref_end|>",
7
- "<|box_start|>",
8
- "<|box_end|>",
9
- "<|quad_start|>",
10
- "<|quad_end|>",
11
- "<|vision_start|>",
12
- "<|vision_end|>",
13
- "<|vision_pad|>",
14
- "<|image_pad|>",
15
- "<|video_pad|>"
16
- ],
17
- "eos_token": {
18
- "content": "<|im_end|>",
19
- "lstrip": false,
20
- "normalized": false,
21
- "rstrip": false,
22
- "single_word": false
23
- },
24
- "pad_token": {
25
- "content": "<|endoftext|>",
26
- "lstrip": false,
27
- "normalized": false,
28
- "rstrip": false,
29
- "single_word": false
30
- }
31
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b-mb_qwen/checkpoint-507/tokenizer.json DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
- size 11421896
 
 
 
 
3b-mb_qwen/checkpoint-507/tokenizer_config.json DELETED
@@ -1,208 +0,0 @@
1
- {
2
- "add_bos_token": false,
3
- "add_prefix_space": false,
4
- "added_tokens_decoder": {
5
- "151643": {
6
- "content": "<|endoftext|>",
7
- "lstrip": false,
8
- "normalized": false,
9
- "rstrip": false,
10
- "single_word": false,
11
- "special": true
12
- },
13
- "151644": {
14
- "content": "<|im_start|>",
15
- "lstrip": false,
16
- "normalized": false,
17
- "rstrip": false,
18
- "single_word": false,
19
- "special": true
20
- },
21
- "151645": {
22
- "content": "<|im_end|>",
23
- "lstrip": false,
24
- "normalized": false,
25
- "rstrip": false,
26
- "single_word": false,
27
- "special": true
28
- },
29
- "151646": {
30
- "content": "<|object_ref_start|>",
31
- "lstrip": false,
32
- "normalized": false,
33
- "rstrip": false,
34
- "single_word": false,
35
- "special": true
36
- },
37
- "151647": {
38
- "content": "<|object_ref_end|>",
39
- "lstrip": false,
40
- "normalized": false,
41
- "rstrip": false,
42
- "single_word": false,
43
- "special": true
44
- },
45
- "151648": {
46
- "content": "<|box_start|>",
47
- "lstrip": false,
48
- "normalized": false,
49
- "rstrip": false,
50
- "single_word": false,
51
- "special": true
52
- },
53
- "151649": {
54
- "content": "<|box_end|>",
55
- "lstrip": false,
56
- "normalized": false,
57
- "rstrip": false,
58
- "single_word": false,
59
- "special": true
60
- },
61
- "151650": {
62
- "content": "<|quad_start|>",
63
- "lstrip": false,
64
- "normalized": false,
65
- "rstrip": false,
66
- "single_word": false,
67
- "special": true
68
- },
69
- "151651": {
70
- "content": "<|quad_end|>",
71
- "lstrip": false,
72
- "normalized": false,
73
- "rstrip": false,
74
- "single_word": false,
75
- "special": true
76
- },
77
- "151652": {
78
- "content": "<|vision_start|>",
79
- "lstrip": false,
80
- "normalized": false,
81
- "rstrip": false,
82
- "single_word": false,
83
- "special": true
84
- },
85
- "151653": {
86
- "content": "<|vision_end|>",
87
- "lstrip": false,
88
- "normalized": false,
89
- "rstrip": false,
90
- "single_word": false,
91
- "special": true
92
- },
93
- "151654": {
94
- "content": "<|vision_pad|>",
95
- "lstrip": false,
96
- "normalized": false,
97
- "rstrip": false,
98
- "single_word": false,
99
- "special": true
100
- },
101
- "151655": {
102
- "content": "<|image_pad|>",
103
- "lstrip": false,
104
- "normalized": false,
105
- "rstrip": false,
106
- "single_word": false,
107
- "special": true
108
- },
109
- "151656": {
110
- "content": "<|video_pad|>",
111
- "lstrip": false,
112
- "normalized": false,
113
- "rstrip": false,
114
- "single_word": false,
115
- "special": true
116
- },
117
- "151657": {
118
- "content": "<tool_call>",
119
- "lstrip": false,
120
- "normalized": false,
121
- "rstrip": false,
122
- "single_word": false,
123
- "special": false
124
- },
125
- "151658": {
126
- "content": "</tool_call>",
127
- "lstrip": false,
128
- "normalized": false,
129
- "rstrip": false,
130
- "single_word": false,
131
- "special": false
132
- },
133
- "151659": {
134
- "content": "<|fim_prefix|>",
135
- "lstrip": false,
136
- "normalized": false,
137
- "rstrip": false,
138
- "single_word": false,
139
- "special": false
140
- },
141
- "151660": {
142
- "content": "<|fim_middle|>",
143
- "lstrip": false,
144
- "normalized": false,
145
- "rstrip": false,
146
- "single_word": false,
147
- "special": false
148
- },
149
- "151661": {
150
- "content": "<|fim_suffix|>",
151
- "lstrip": false,
152
- "normalized": false,
153
- "rstrip": false,
154
- "single_word": false,
155
- "special": false
156
- },
157
- "151662": {
158
- "content": "<|fim_pad|>",
159
- "lstrip": false,
160
- "normalized": false,
161
- "rstrip": false,
162
- "single_word": false,
163
- "special": false
164
- },
165
- "151663": {
166
- "content": "<|repo_name|>",
167
- "lstrip": false,
168
- "normalized": false,
169
- "rstrip": false,
170
- "single_word": false,
171
- "special": false
172
- },
173
- "151664": {
174
- "content": "<|file_sep|>",
175
- "lstrip": false,
176
- "normalized": false,
177
- "rstrip": false,
178
- "single_word": false,
179
- "special": false
180
- }
181
- },
182
- "additional_special_tokens": [
183
- "<|im_start|>",
184
- "<|im_end|>",
185
- "<|object_ref_start|>",
186
- "<|object_ref_end|>",
187
- "<|box_start|>",
188
- "<|box_end|>",
189
- "<|quad_start|>",
190
- "<|quad_end|>",
191
- "<|vision_start|>",
192
- "<|vision_end|>",
193
- "<|vision_pad|>",
194
- "<|image_pad|>",
195
- "<|video_pad|>"
196
- ],
197
- "bos_token": null,
198
- "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
- "clean_up_tokenization_spaces": false,
200
- "eos_token": "<|im_end|>",
201
- "errors": "replace",
202
- "extra_special_tokens": {},
203
- "model_max_length": 131072,
204
- "pad_token": "<|endoftext|>",
205
- "split_special_tokens": false,
206
- "tokenizer_class": "Qwen2Tokenizer",
207
- "unk_token": null
208
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b-mb_qwen/checkpoint-507/trainer_state.json DELETED
@@ -1,3654 +0,0 @@
1
- {
2
- "best_metric": null,
3
- "best_model_checkpoint": null,
4
- "epoch": 2.986706056129985,
5
- "eval_steps": 57,
6
- "global_step": 507,
7
- "is_hyper_param_search": false,
8
- "is_local_process_zero": true,
9
- "is_world_process_zero": true,
10
- "log_history": [
11
- {
12
- "epoch": 0.005908419497784343,
13
- "grad_norm": 4.501461029052734,
14
- "learning_rate": 6.666666666666667e-07,
15
- "loss": 1.062,
16
- "step": 1
17
- },
18
- {
19
- "epoch": 0.005908419497784343,
20
- "eval_loss": 1.0835397243499756,
21
- "eval_runtime": 4.3539,
22
- "eval_samples_per_second": 12.632,
23
- "eval_steps_per_second": 1.608,
24
- "step": 1
25
- },
26
- {
27
- "epoch": 0.011816838995568686,
28
- "grad_norm": 4.469114303588867,
29
- "learning_rate": 1.3333333333333334e-06,
30
- "loss": 1.0268,
31
- "step": 2
32
- },
33
- {
34
- "epoch": 0.01772525849335303,
35
- "grad_norm": 4.554893970489502,
36
- "learning_rate": 2.0000000000000003e-06,
37
- "loss": 1.0401,
38
- "step": 3
39
- },
40
- {
41
- "epoch": 0.023633677991137372,
42
- "grad_norm": 4.374792575836182,
43
- "learning_rate": 2.666666666666667e-06,
44
- "loss": 1.0423,
45
- "step": 4
46
- },
47
- {
48
- "epoch": 0.029542097488921712,
49
- "grad_norm": 3.4377498626708984,
50
- "learning_rate": 3.3333333333333333e-06,
51
- "loss": 0.9965,
52
- "step": 5
53
- },
54
- {
55
- "epoch": 0.03545051698670606,
56
- "grad_norm": 3.1242499351501465,
57
- "learning_rate": 4.000000000000001e-06,
58
- "loss": 0.9479,
59
- "step": 6
60
- },
61
- {
62
- "epoch": 0.0413589364844904,
63
- "grad_norm": 1.8368685245513916,
64
- "learning_rate": 4.666666666666667e-06,
65
- "loss": 0.8296,
66
- "step": 7
67
- },
68
- {
69
- "epoch": 0.047267355982274745,
70
- "grad_norm": 1.7457680702209473,
71
- "learning_rate": 5.333333333333334e-06,
72
- "loss": 0.8159,
73
- "step": 8
74
- },
75
- {
76
- "epoch": 0.053175775480059084,
77
- "grad_norm": 1.2953853607177734,
78
- "learning_rate": 6e-06,
79
- "loss": 0.664,
80
- "step": 9
81
- },
82
- {
83
- "epoch": 0.059084194977843424,
84
- "grad_norm": 1.1054794788360596,
85
- "learning_rate": 6.666666666666667e-06,
86
- "loss": 0.6486,
87
- "step": 10
88
- },
89
- {
90
- "epoch": 0.06499261447562776,
91
- "grad_norm": 0.8712942004203796,
92
- "learning_rate": 7.333333333333333e-06,
93
- "loss": 0.6415,
94
- "step": 11
95
- },
96
- {
97
- "epoch": 0.07090103397341212,
98
- "grad_norm": 1.4441039562225342,
99
- "learning_rate": 8.000000000000001e-06,
100
- "loss": 0.6255,
101
- "step": 12
102
- },
103
- {
104
- "epoch": 0.07680945347119646,
105
- "grad_norm": 1.4984484910964966,
106
- "learning_rate": 8.666666666666668e-06,
107
- "loss": 0.5561,
108
- "step": 13
109
- },
110
- {
111
- "epoch": 0.0827178729689808,
112
- "grad_norm": 0.8376960754394531,
113
- "learning_rate": 9.333333333333334e-06,
114
- "loss": 0.5534,
115
- "step": 14
116
- },
117
- {
118
- "epoch": 0.08862629246676514,
119
- "grad_norm": 0.7184750437736511,
120
- "learning_rate": 1e-05,
121
- "loss": 0.5062,
122
- "step": 15
123
- },
124
- {
125
- "epoch": 0.09453471196454949,
126
- "grad_norm": 0.8381787538528442,
127
- "learning_rate": 1.0666666666666667e-05,
128
- "loss": 0.5531,
129
- "step": 16
130
- },
131
- {
132
- "epoch": 0.10044313146233383,
133
- "grad_norm": 0.7621350288391113,
134
- "learning_rate": 1.1333333333333334e-05,
135
- "loss": 0.4876,
136
- "step": 17
137
- },
138
- {
139
- "epoch": 0.10635155096011817,
140
- "grad_norm": 0.6955872178077698,
141
- "learning_rate": 1.2e-05,
142
- "loss": 0.5019,
143
- "step": 18
144
- },
145
- {
146
- "epoch": 0.11225997045790251,
147
- "grad_norm": 0.5844917297363281,
148
- "learning_rate": 1.2666666666666667e-05,
149
- "loss": 0.4368,
150
- "step": 19
151
- },
152
- {
153
- "epoch": 0.11816838995568685,
154
- "grad_norm": 0.5807573795318604,
155
- "learning_rate": 1.3333333333333333e-05,
156
- "loss": 0.4965,
157
- "step": 20
158
- },
159
- {
160
- "epoch": 0.1240768094534712,
161
- "grad_norm": 0.5376399755477905,
162
- "learning_rate": 1.4e-05,
163
- "loss": 0.4841,
164
- "step": 21
165
- },
166
- {
167
- "epoch": 0.12998522895125553,
168
- "grad_norm": 0.5053263902664185,
169
- "learning_rate": 1.4666666666666666e-05,
170
- "loss": 0.4573,
171
- "step": 22
172
- },
173
- {
174
- "epoch": 0.1358936484490399,
175
- "grad_norm": 0.5155225396156311,
176
- "learning_rate": 1.5333333333333334e-05,
177
- "loss": 0.451,
178
- "step": 23
179
- },
180
- {
181
- "epoch": 0.14180206794682423,
182
- "grad_norm": 0.52030348777771,
183
- "learning_rate": 1.6000000000000003e-05,
184
- "loss": 0.4199,
185
- "step": 24
186
- },
187
- {
188
- "epoch": 0.14771048744460857,
189
- "grad_norm": 0.5321907997131348,
190
- "learning_rate": 1.6666666666666667e-05,
191
- "loss": 0.4532,
192
- "step": 25
193
- },
194
- {
195
- "epoch": 0.1536189069423929,
196
- "grad_norm": 0.5318155288696289,
197
- "learning_rate": 1.7333333333333336e-05,
198
- "loss": 0.4813,
199
- "step": 26
200
- },
201
- {
202
- "epoch": 0.15952732644017725,
203
- "grad_norm": 0.5176340937614441,
204
- "learning_rate": 1.8e-05,
205
- "loss": 0.4288,
206
- "step": 27
207
- },
208
- {
209
- "epoch": 0.1654357459379616,
210
- "grad_norm": 0.43893975019454956,
211
- "learning_rate": 1.866666666666667e-05,
212
- "loss": 0.3766,
213
- "step": 28
214
- },
215
- {
216
- "epoch": 0.17134416543574593,
217
- "grad_norm": 0.43830162286758423,
218
- "learning_rate": 1.9333333333333333e-05,
219
- "loss": 0.4159,
220
- "step": 29
221
- },
222
- {
223
- "epoch": 0.17725258493353027,
224
- "grad_norm": 0.45950719714164734,
225
- "learning_rate": 2e-05,
226
- "loss": 0.4505,
227
- "step": 30
228
- },
229
- {
230
- "epoch": 0.1831610044313146,
231
- "grad_norm": 0.40500667691230774,
232
- "learning_rate": 1.9999783114048658e-05,
233
- "loss": 0.3726,
234
- "step": 31
235
- },
236
- {
237
- "epoch": 0.18906942392909898,
238
- "grad_norm": 0.43435147404670715,
239
- "learning_rate": 1.9999132465602526e-05,
240
- "loss": 0.442,
241
- "step": 32
242
- },
243
- {
244
- "epoch": 0.19497784342688332,
245
- "grad_norm": 0.44813328981399536,
246
- "learning_rate": 1.999804808288491e-05,
247
- "loss": 0.437,
248
- "step": 33
249
- },
250
- {
251
- "epoch": 0.20088626292466766,
252
- "grad_norm": 0.48166996240615845,
253
- "learning_rate": 1.9996530012933285e-05,
254
- "loss": 0.4107,
255
- "step": 34
256
- },
257
- {
258
- "epoch": 0.206794682422452,
259
- "grad_norm": 0.398764044046402,
260
- "learning_rate": 1.9994578321597258e-05,
261
- "loss": 0.3882,
262
- "step": 35
263
- },
264
- {
265
- "epoch": 0.21270310192023634,
266
- "grad_norm": 0.44229164719581604,
267
- "learning_rate": 1.999219309353572e-05,
268
- "loss": 0.4154,
269
- "step": 36
270
- },
271
- {
272
- "epoch": 0.21861152141802068,
273
- "grad_norm": 0.44369620084762573,
274
- "learning_rate": 1.998937443221316e-05,
275
- "loss": 0.3863,
276
- "step": 37
277
- },
278
- {
279
- "epoch": 0.22451994091580502,
280
- "grad_norm": 0.44270017743110657,
281
- "learning_rate": 1.9986122459895182e-05,
282
- "loss": 0.3945,
283
- "step": 38
284
- },
285
- {
286
- "epoch": 0.23042836041358936,
287
- "grad_norm": 0.42152372002601624,
288
- "learning_rate": 1.9982437317643218e-05,
289
- "loss": 0.4094,
290
- "step": 39
291
- },
292
- {
293
- "epoch": 0.2363367799113737,
294
- "grad_norm": 0.4120837450027466,
295
- "learning_rate": 1.9978319165308373e-05,
296
- "loss": 0.4411,
297
- "step": 40
298
- },
299
- {
300
- "epoch": 0.24224519940915806,
301
- "grad_norm": 0.4064903259277344,
302
- "learning_rate": 1.997376818152453e-05,
303
- "loss": 0.3818,
304
- "step": 41
305
- },
306
- {
307
- "epoch": 0.2481536189069424,
308
- "grad_norm": 0.3692624270915985,
309
- "learning_rate": 1.9968784563700586e-05,
310
- "loss": 0.3874,
311
- "step": 42
312
- },
313
- {
314
- "epoch": 0.25406203840472674,
315
- "grad_norm": 0.4399218261241913,
316
- "learning_rate": 1.9963368528011867e-05,
317
- "loss": 0.3749,
318
- "step": 43
319
- },
320
- {
321
- "epoch": 0.25997045790251105,
322
- "grad_norm": 0.3779003620147705,
323
- "learning_rate": 1.9957520309390786e-05,
324
- "loss": 0.3656,
325
- "step": 44
326
- },
327
- {
328
- "epoch": 0.2658788774002954,
329
- "grad_norm": 0.3946981132030487,
330
- "learning_rate": 1.9951240161516643e-05,
331
- "loss": 0.3612,
332
- "step": 45
333
- },
334
- {
335
- "epoch": 0.2717872968980798,
336
- "grad_norm": 0.3969726264476776,
337
- "learning_rate": 1.99445283568046e-05,
338
- "loss": 0.3932,
339
- "step": 46
340
- },
341
- {
342
- "epoch": 0.2776957163958641,
343
- "grad_norm": 0.4239075183868408,
344
- "learning_rate": 1.9937385186393888e-05,
345
- "loss": 0.387,
346
- "step": 47
347
- },
348
- {
349
- "epoch": 0.28360413589364847,
350
- "grad_norm": 0.3688453733921051,
351
- "learning_rate": 1.992981096013517e-05,
352
- "loss": 0.3524,
353
- "step": 48
354
- },
355
- {
356
- "epoch": 0.2895125553914328,
357
- "grad_norm": 0.4294806718826294,
358
- "learning_rate": 1.9921806006577102e-05,
359
- "loss": 0.3787,
360
- "step": 49
361
- },
362
- {
363
- "epoch": 0.29542097488921715,
364
- "grad_norm": 0.3867166042327881,
365
- "learning_rate": 1.9913370672952074e-05,
366
- "loss": 0.3756,
367
- "step": 50
368
- },
369
- {
370
- "epoch": 0.30132939438700146,
371
- "grad_norm": 0.43365901708602905,
372
- "learning_rate": 1.990450532516116e-05,
373
- "loss": 0.3896,
374
- "step": 51
375
- },
376
- {
377
- "epoch": 0.3072378138847858,
378
- "grad_norm": 0.38658151030540466,
379
- "learning_rate": 1.9895210347758233e-05,
380
- "loss": 0.3703,
381
- "step": 52
382
- },
383
- {
384
- "epoch": 0.31314623338257014,
385
- "grad_norm": 0.37093815207481384,
386
- "learning_rate": 1.98854861439333e-05,
387
- "loss": 0.3763,
388
- "step": 53
389
- },
390
- {
391
- "epoch": 0.3190546528803545,
392
- "grad_norm": 0.40044137835502625,
393
- "learning_rate": 1.9875333135495e-05,
394
- "loss": 0.3752,
395
- "step": 54
396
- },
397
- {
398
- "epoch": 0.3249630723781389,
399
- "grad_norm": 0.39133360981941223,
400
- "learning_rate": 1.986475176285232e-05,
401
- "loss": 0.3589,
402
- "step": 55
403
- },
404
- {
405
- "epoch": 0.3308714918759232,
406
- "grad_norm": 0.38397374749183655,
407
- "learning_rate": 1.985374248499546e-05,
408
- "loss": 0.3701,
409
- "step": 56
410
- },
411
- {
412
- "epoch": 0.33677991137370755,
413
- "grad_norm": 0.3795414865016937,
414
- "learning_rate": 1.984230577947597e-05,
415
- "loss": 0.3584,
416
- "step": 57
417
- },
418
- {
419
- "epoch": 0.33677991137370755,
420
- "eval_loss": 0.3953791558742523,
421
- "eval_runtime": 4.6385,
422
- "eval_samples_per_second": 11.857,
423
- "eval_steps_per_second": 1.509,
424
- "step": 57
425
- },
426
- {
427
- "epoch": 0.34268833087149186,
428
- "grad_norm": 0.3709493577480316,
429
- "learning_rate": 1.9830442142386e-05,
430
- "loss": 0.3647,
431
- "step": 58
432
- },
433
- {
434
- "epoch": 0.34859675036927623,
435
- "grad_norm": 0.35005033016204834,
436
- "learning_rate": 1.9818152088336786e-05,
437
- "loss": 0.3317,
438
- "step": 59
439
- },
440
- {
441
- "epoch": 0.35450516986706054,
442
- "grad_norm": 0.3652004599571228,
443
- "learning_rate": 1.9805436150436352e-05,
444
- "loss": 0.3394,
445
- "step": 60
446
- },
447
- {
448
- "epoch": 0.3604135893648449,
449
- "grad_norm": 0.3940984904766083,
450
- "learning_rate": 1.9792294880266346e-05,
451
- "loss": 0.3711,
452
- "step": 61
453
- },
454
- {
455
- "epoch": 0.3663220088626292,
456
- "grad_norm": 0.35634928941726685,
457
- "learning_rate": 1.977872884785815e-05,
458
- "loss": 0.3455,
459
- "step": 62
460
- },
461
- {
462
- "epoch": 0.3722304283604136,
463
- "grad_norm": 0.3972924053668976,
464
- "learning_rate": 1.9764738641668137e-05,
465
- "loss": 0.3652,
466
- "step": 63
467
- },
468
- {
469
- "epoch": 0.37813884785819796,
470
- "grad_norm": 0.40372708439826965,
471
- "learning_rate": 1.9750324868552133e-05,
472
- "loss": 0.3662,
473
- "step": 64
474
- },
475
- {
476
- "epoch": 0.38404726735598227,
477
- "grad_norm": 0.396133691072464,
478
- "learning_rate": 1.9735488153739128e-05,
479
- "loss": 0.3726,
480
- "step": 65
481
- },
482
- {
483
- "epoch": 0.38995568685376664,
484
- "grad_norm": 0.398989737033844,
485
- "learning_rate": 1.972022914080411e-05,
486
- "loss": 0.3595,
487
- "step": 66
488
- },
489
- {
490
- "epoch": 0.39586410635155095,
491
- "grad_norm": 0.4102807939052582,
492
- "learning_rate": 1.9704548491640195e-05,
493
- "loss": 0.3308,
494
- "step": 67
495
- },
496
- {
497
- "epoch": 0.4017725258493353,
498
- "grad_norm": 0.344397634267807,
499
- "learning_rate": 1.9688446886429885e-05,
500
- "loss": 0.3653,
501
- "step": 68
502
- },
503
- {
504
- "epoch": 0.4076809453471196,
505
- "grad_norm": 0.3550814390182495,
506
- "learning_rate": 1.9671925023615572e-05,
507
- "loss": 0.3412,
508
- "step": 69
509
- },
510
- {
511
- "epoch": 0.413589364844904,
512
- "grad_norm": 0.4047009348869324,
513
- "learning_rate": 1.9654983619869242e-05,
514
- "loss": 0.3578,
515
- "step": 70
516
- },
517
- {
518
- "epoch": 0.4194977843426883,
519
- "grad_norm": 0.41112563014030457,
520
- "learning_rate": 1.9637623410061392e-05,
521
- "loss": 0.3694,
522
- "step": 71
523
- },
524
- {
525
- "epoch": 0.4254062038404727,
526
- "grad_norm": 0.3775319755077362,
527
- "learning_rate": 1.961984514722914e-05,
528
- "loss": 0.3571,
529
- "step": 72
530
- },
531
- {
532
- "epoch": 0.43131462333825704,
533
- "grad_norm": 0.3610381782054901,
534
- "learning_rate": 1.960164960254358e-05,
535
- "loss": 0.3713,
536
- "step": 73
537
- },
538
- {
539
- "epoch": 0.43722304283604135,
540
- "grad_norm": 0.38662371039390564,
541
- "learning_rate": 1.9583037565276314e-05,
542
- "loss": 0.311,
543
- "step": 74
544
- },
545
- {
546
- "epoch": 0.4431314623338257,
547
- "grad_norm": 0.3574771285057068,
548
- "learning_rate": 1.9564009842765225e-05,
549
- "loss": 0.3353,
550
- "step": 75
551
- },
552
- {
553
- "epoch": 0.44903988183161003,
554
- "grad_norm": 0.3932562470436096,
555
- "learning_rate": 1.9544567260379455e-05,
556
- "loss": 0.3536,
557
- "step": 76
558
- },
559
- {
560
- "epoch": 0.4549483013293944,
561
- "grad_norm": 0.3974682092666626,
562
- "learning_rate": 1.9524710661483594e-05,
563
- "loss": 0.3556,
564
- "step": 77
565
- },
566
- {
567
- "epoch": 0.4608567208271787,
568
- "grad_norm": 0.37172290682792664,
569
- "learning_rate": 1.9504440907401113e-05,
570
- "loss": 0.3568,
571
- "step": 78
572
- },
573
- {
574
- "epoch": 0.4667651403249631,
575
- "grad_norm": 0.37170422077178955,
576
- "learning_rate": 1.948375887737699e-05,
577
- "loss": 0.3556,
578
- "step": 79
579
- },
580
- {
581
- "epoch": 0.4726735598227474,
582
- "grad_norm": 0.3596966862678528,
583
- "learning_rate": 1.9462665468539582e-05,
584
- "loss": 0.332,
585
- "step": 80
586
- },
587
- {
588
- "epoch": 0.47858197932053176,
589
- "grad_norm": 0.35934680700302124,
590
- "learning_rate": 1.944116159586169e-05,
591
- "loss": 0.3276,
592
- "step": 81
593
- },
594
- {
595
- "epoch": 0.4844903988183161,
596
- "grad_norm": 0.40984946489334106,
597
- "learning_rate": 1.94192481921209e-05,
598
- "loss": 0.3685,
599
- "step": 82
600
- },
601
- {
602
- "epoch": 0.49039881831610044,
603
- "grad_norm": 0.3622114658355713,
604
- "learning_rate": 1.9396926207859085e-05,
605
- "loss": 0.3336,
606
- "step": 83
607
- },
608
- {
609
- "epoch": 0.4963072378138848,
610
- "grad_norm": 0.34888842701911926,
611
- "learning_rate": 1.9374196611341212e-05,
612
- "loss": 0.3625,
613
- "step": 84
614
- },
615
- {
616
- "epoch": 0.5022156573116692,
617
- "grad_norm": 0.37125518918037415,
618
- "learning_rate": 1.9351060388513304e-05,
619
- "loss": 0.3304,
620
- "step": 85
621
- },
622
- {
623
- "epoch": 0.5081240768094535,
624
- "grad_norm": 0.4107120931148529,
625
- "learning_rate": 1.9327518542959717e-05,
626
- "loss": 0.3755,
627
- "step": 86
628
- },
629
- {
630
- "epoch": 0.5140324963072378,
631
- "grad_norm": 0.3420109748840332,
632
- "learning_rate": 1.9303572095859545e-05,
633
- "loss": 0.3457,
634
- "step": 87
635
- },
636
- {
637
- "epoch": 0.5199409158050221,
638
- "grad_norm": 0.35079535841941833,
639
- "learning_rate": 1.9279222085942396e-05,
640
- "loss": 0.3454,
641
- "step": 88
642
- },
643
- {
644
- "epoch": 0.5258493353028065,
645
- "grad_norm": 0.3775666058063507,
646
- "learning_rate": 1.9254469569443274e-05,
647
- "loss": 0.3501,
648
- "step": 89
649
- },
650
- {
651
- "epoch": 0.5317577548005908,
652
- "grad_norm": 0.3327409625053406,
653
- "learning_rate": 1.9229315620056805e-05,
654
- "loss": 0.3507,
655
- "step": 90
656
- },
657
- {
658
- "epoch": 0.5376661742983752,
659
- "grad_norm": 0.37142789363861084,
660
- "learning_rate": 1.9203761328890626e-05,
661
- "loss": 0.3453,
662
- "step": 91
663
- },
664
- {
665
- "epoch": 0.5435745937961596,
666
- "grad_norm": 0.36256077885627747,
667
- "learning_rate": 1.91778078044181e-05,
668
- "loss": 0.3588,
669
- "step": 92
670
- },
671
- {
672
- "epoch": 0.5494830132939439,
673
- "grad_norm": 0.3861102759838104,
674
- "learning_rate": 1.9151456172430186e-05,
675
- "loss": 0.3479,
676
- "step": 93
677
- },
678
- {
679
- "epoch": 0.5553914327917282,
680
- "grad_norm": 0.3359353542327881,
681
- "learning_rate": 1.9124707575986642e-05,
682
- "loss": 0.318,
683
- "step": 94
684
- },
685
- {
686
- "epoch": 0.5612998522895125,
687
- "grad_norm": 0.33662593364715576,
688
- "learning_rate": 1.909756317536643e-05,
689
- "loss": 0.3421,
690
- "step": 95
691
- },
692
- {
693
- "epoch": 0.5672082717872969,
694
- "grad_norm": 0.35831600427627563,
695
- "learning_rate": 1.9070024148017375e-05,
696
- "loss": 0.3409,
697
- "step": 96
698
- },
699
- {
700
- "epoch": 0.5731166912850812,
701
- "grad_norm": 0.39858701825141907,
702
- "learning_rate": 1.9042091688505104e-05,
703
- "loss": 0.3319,
704
- "step": 97
705
- },
706
- {
707
- "epoch": 0.5790251107828656,
708
- "grad_norm": 0.3343643546104431,
709
- "learning_rate": 1.9013767008461236e-05,
710
- "loss": 0.3352,
711
- "step": 98
712
- },
713
- {
714
- "epoch": 0.5849335302806499,
715
- "grad_norm": 0.3519919216632843,
716
- "learning_rate": 1.89850513365308e-05,
717
- "loss": 0.3634,
718
- "step": 99
719
- },
720
- {
721
- "epoch": 0.5908419497784343,
722
- "grad_norm": 0.32900717854499817,
723
- "learning_rate": 1.895594591831896e-05,
724
- "loss": 0.3415,
725
- "step": 100
726
- },
727
- {
728
- "epoch": 0.5967503692762186,
729
- "grad_norm": 0.34432175755500793,
730
- "learning_rate": 1.8926452016336987e-05,
731
- "loss": 0.3169,
732
- "step": 101
733
- },
734
- {
735
- "epoch": 0.6026587887740029,
736
- "grad_norm": 0.33144107460975647,
737
- "learning_rate": 1.8896570909947477e-05,
738
- "loss": 0.3431,
739
- "step": 102
740
- },
741
- {
742
- "epoch": 0.6085672082717873,
743
- "grad_norm": 0.3299802839756012,
744
- "learning_rate": 1.8866303895308856e-05,
745
- "loss": 0.3411,
746
- "step": 103
747
- },
748
- {
749
- "epoch": 0.6144756277695717,
750
- "grad_norm": 0.30740225315093994,
751
- "learning_rate": 1.883565228531919e-05,
752
- "loss": 0.3355,
753
- "step": 104
754
- },
755
- {
756
- "epoch": 0.620384047267356,
757
- "grad_norm": 0.34325993061065674,
758
- "learning_rate": 1.88046174095592e-05,
759
- "loss": 0.3188,
760
- "step": 105
761
- },
762
- {
763
- "epoch": 0.6262924667651403,
764
- "grad_norm": 0.3394065797328949,
765
- "learning_rate": 1.8773200614234587e-05,
766
- "loss": 0.3153,
767
- "step": 106
768
- },
769
- {
770
- "epoch": 0.6322008862629247,
771
- "grad_norm": 0.35468512773513794,
772
- "learning_rate": 1.874140326211766e-05,
773
- "loss": 0.3387,
774
- "step": 107
775
- },
776
- {
777
- "epoch": 0.638109305760709,
778
- "grad_norm": 0.36726799607276917,
779
- "learning_rate": 1.8709226732488216e-05,
780
- "loss": 0.3457,
781
- "step": 108
782
- },
783
- {
784
- "epoch": 0.6440177252584933,
785
- "grad_norm": 0.3223711848258972,
786
- "learning_rate": 1.86766724210737e-05,
787
- "loss": 0.3588,
788
- "step": 109
789
- },
790
- {
791
- "epoch": 0.6499261447562777,
792
- "grad_norm": 0.3537541925907135,
793
- "learning_rate": 1.8643741739988672e-05,
794
- "loss": 0.3506,
795
- "step": 110
796
- },
797
- {
798
- "epoch": 0.6558345642540621,
799
- "grad_norm": 0.3755073845386505,
800
- "learning_rate": 1.8610436117673557e-05,
801
- "loss": 0.3221,
802
- "step": 111
803
- },
804
- {
805
- "epoch": 0.6617429837518464,
806
- "grad_norm": 0.31778833270072937,
807
- "learning_rate": 1.8576756998832667e-05,
808
- "loss": 0.3161,
809
- "step": 112
810
- },
811
- {
812
- "epoch": 0.6676514032496307,
813
- "grad_norm": 0.3517738878726959,
814
- "learning_rate": 1.8542705844371544e-05,
815
- "loss": 0.3442,
816
- "step": 113
817
- },
818
- {
819
- "epoch": 0.6735598227474151,
820
- "grad_norm": 0.3254755139350891,
821
- "learning_rate": 1.8508284131333604e-05,
822
- "loss": 0.3372,
823
- "step": 114
824
- },
825
- {
826
- "epoch": 0.6735598227474151,
827
- "eval_loss": 0.363791823387146,
828
- "eval_runtime": 4.0908,
829
- "eval_samples_per_second": 13.445,
830
- "eval_steps_per_second": 1.711,
831
- "step": 114
832
- },
833
- {
834
- "epoch": 0.6794682422451994,
835
- "grad_norm": 0.3458060622215271,
836
- "learning_rate": 1.8473493352836032e-05,
837
- "loss": 0.3329,
838
- "step": 115
839
- },
840
- {
841
- "epoch": 0.6853766617429837,
842
- "grad_norm": 0.33962881565093994,
843
- "learning_rate": 1.8438335018005052e-05,
844
- "loss": 0.3478,
845
- "step": 116
846
- },
847
- {
848
- "epoch": 0.691285081240768,
849
- "grad_norm": 0.33980926871299744,
850
- "learning_rate": 1.8402810651910444e-05,
851
- "loss": 0.3484,
852
- "step": 117
853
- },
854
- {
855
- "epoch": 0.6971935007385525,
856
- "grad_norm": 0.355694979429245,
857
- "learning_rate": 1.8366921795499394e-05,
858
- "loss": 0.3686,
859
- "step": 118
860
- },
861
- {
862
- "epoch": 0.7031019202363368,
863
- "grad_norm": 0.3415476083755493,
864
- "learning_rate": 1.8330670005529657e-05,
865
- "loss": 0.3204,
866
- "step": 119
867
- },
868
- {
869
- "epoch": 0.7090103397341211,
870
- "grad_norm": 0.3336890935897827,
871
- "learning_rate": 1.829405685450202e-05,
872
- "loss": 0.3323,
873
- "step": 120
874
- },
875
- {
876
- "epoch": 0.7149187592319055,
877
- "grad_norm": 0.34337785840034485,
878
- "learning_rate": 1.8257083930592102e-05,
879
- "loss": 0.3283,
880
- "step": 121
881
- },
882
- {
883
- "epoch": 0.7208271787296898,
884
- "grad_norm": 0.3578524887561798,
885
- "learning_rate": 1.8219752837581466e-05,
886
- "loss": 0.3326,
887
- "step": 122
888
- },
889
- {
890
- "epoch": 0.7267355982274741,
891
- "grad_norm": 0.32392922043800354,
892
- "learning_rate": 1.8182065194788024e-05,
893
- "loss": 0.3141,
894
- "step": 123
895
- },
896
- {
897
- "epoch": 0.7326440177252584,
898
- "grad_norm": 0.36127492785453796,
899
- "learning_rate": 1.814402263699584e-05,
900
- "loss": 0.3461,
901
- "step": 124
902
- },
903
- {
904
- "epoch": 0.7385524372230429,
905
- "grad_norm": 0.33812931180000305,
906
- "learning_rate": 1.8105626814384173e-05,
907
- "loss": 0.3404,
908
- "step": 125
909
- },
910
- {
911
- "epoch": 0.7444608567208272,
912
- "grad_norm": 0.3138431906700134,
913
- "learning_rate": 1.8066879392455932e-05,
914
- "loss": 0.3237,
915
- "step": 126
916
- },
917
- {
918
- "epoch": 0.7503692762186115,
919
- "grad_norm": 0.33033978939056396,
920
- "learning_rate": 1.8027782051965408e-05,
921
- "loss": 0.3416,
922
- "step": 127
923
- },
924
- {
925
- "epoch": 0.7562776957163959,
926
- "grad_norm": 0.3907163143157959,
927
- "learning_rate": 1.7988336488845374e-05,
928
- "loss": 0.3352,
929
- "step": 128
930
- },
931
- {
932
- "epoch": 0.7621861152141802,
933
- "grad_norm": 0.315248042345047,
934
- "learning_rate": 1.7948544414133534e-05,
935
- "loss": 0.3225,
936
- "step": 129
937
- },
938
- {
939
- "epoch": 0.7680945347119645,
940
- "grad_norm": 0.3284492790699005,
941
- "learning_rate": 1.7908407553898282e-05,
942
- "loss": 0.3217,
943
- "step": 130
944
- },
945
- {
946
- "epoch": 0.7740029542097489,
947
- "grad_norm": 0.3439176082611084,
948
- "learning_rate": 1.7867927649163838e-05,
949
- "loss": 0.3367,
950
- "step": 131
951
- },
952
- {
953
- "epoch": 0.7799113737075333,
954
- "grad_norm": 0.31954073905944824,
955
- "learning_rate": 1.782710645583473e-05,
956
- "loss": 0.3133,
957
- "step": 132
958
- },
959
- {
960
- "epoch": 0.7858197932053176,
961
- "grad_norm": 0.38416293263435364,
962
- "learning_rate": 1.7785945744619642e-05,
963
- "loss": 0.3484,
964
- "step": 133
965
- },
966
- {
967
- "epoch": 0.7917282127031019,
968
- "grad_norm": 0.34139737486839294,
969
- "learning_rate": 1.774444730095456e-05,
970
- "loss": 0.3042,
971
- "step": 134
972
- },
973
- {
974
- "epoch": 0.7976366322008862,
975
- "grad_norm": 0.3623535931110382,
976
- "learning_rate": 1.7702612924925377e-05,
977
- "loss": 0.3318,
978
- "step": 135
979
- },
980
- {
981
- "epoch": 0.8035450516986706,
982
- "grad_norm": 0.32973209023475647,
983
- "learning_rate": 1.766044443118978e-05,
984
- "loss": 0.3092,
985
- "step": 136
986
- },
987
- {
988
- "epoch": 0.8094534711964549,
989
- "grad_norm": 0.30704402923583984,
990
- "learning_rate": 1.761794364889855e-05,
991
- "loss": 0.321,
992
- "step": 137
993
- },
994
- {
995
- "epoch": 0.8153618906942393,
996
- "grad_norm": 0.34877485036849976,
997
- "learning_rate": 1.7575112421616203e-05,
998
- "loss": 0.3266,
999
- "step": 138
1000
- },
1001
- {
1002
- "epoch": 0.8212703101920237,
1003
- "grad_norm": 0.3538282811641693,
1004
- "learning_rate": 1.7531952607241033e-05,
1005
- "loss": 0.3703,
1006
- "step": 139
1007
- },
1008
- {
1009
- "epoch": 0.827178729689808,
1010
- "grad_norm": 0.35590365529060364,
1011
- "learning_rate": 1.7488466077924525e-05,
1012
- "loss": 0.3506,
1013
- "step": 140
1014
- },
1015
- {
1016
- "epoch": 0.8330871491875923,
1017
- "grad_norm": 0.33215418457984924,
1018
- "learning_rate": 1.7444654719990128e-05,
1019
- "loss": 0.3207,
1020
- "step": 141
1021
- },
1022
- {
1023
- "epoch": 0.8389955686853766,
1024
- "grad_norm": 0.3381923735141754,
1025
- "learning_rate": 1.7400520433851457e-05,
1026
- "loss": 0.3237,
1027
- "step": 142
1028
- },
1029
- {
1030
- "epoch": 0.844903988183161,
1031
- "grad_norm": 0.3371356129646301,
1032
- "learning_rate": 1.735606513392984e-05,
1033
- "loss": 0.3394,
1034
- "step": 143
1035
- },
1036
- {
1037
- "epoch": 0.8508124076809453,
1038
- "grad_norm": 0.344291627407074,
1039
- "learning_rate": 1.7311290748571273e-05,
1040
- "loss": 0.3604,
1041
- "step": 144
1042
- },
1043
- {
1044
- "epoch": 0.8567208271787297,
1045
- "grad_norm": 0.3567575216293335,
1046
- "learning_rate": 1.72661992199628e-05,
1047
- "loss": 0.3518,
1048
- "step": 145
1049
- },
1050
- {
1051
- "epoch": 0.8626292466765141,
1052
- "grad_norm": 0.33762165904045105,
1053
- "learning_rate": 1.7220792504048227e-05,
1054
- "loss": 0.3146,
1055
- "step": 146
1056
- },
1057
- {
1058
- "epoch": 0.8685376661742984,
1059
- "grad_norm": 0.3404117822647095,
1060
- "learning_rate": 1.717507257044331e-05,
1061
- "loss": 0.3192,
1062
- "step": 147
1063
- },
1064
- {
1065
- "epoch": 0.8744460856720827,
1066
- "grad_norm": 0.3535095751285553,
1067
- "learning_rate": 1.7129041402350317e-05,
1068
- "loss": 0.3364,
1069
- "step": 148
1070
- },
1071
- {
1072
- "epoch": 0.880354505169867,
1073
- "grad_norm": 0.3418992757797241,
1074
- "learning_rate": 1.708270099647198e-05,
1075
- "loss": 0.3327,
1076
- "step": 149
1077
- },
1078
- {
1079
- "epoch": 0.8862629246676514,
1080
- "grad_norm": 0.3172495663166046,
1081
- "learning_rate": 1.7036053362924896e-05,
1082
- "loss": 0.3404,
1083
- "step": 150
1084
- },
1085
- {
1086
- "epoch": 0.8921713441654358,
1087
- "grad_norm": 0.3307952284812927,
1088
- "learning_rate": 1.6989100525152346e-05,
1089
- "loss": 0.3279,
1090
- "step": 151
1091
- },
1092
- {
1093
- "epoch": 0.8980797636632201,
1094
- "grad_norm": 0.29014381766319275,
1095
- "learning_rate": 1.694184451983651e-05,
1096
- "loss": 0.3027,
1097
- "step": 152
1098
- },
1099
- {
1100
- "epoch": 0.9039881831610044,
1101
- "grad_norm": 0.3290538191795349,
1102
- "learning_rate": 1.689428739681012e-05,
1103
- "loss": 0.3297,
1104
- "step": 153
1105
- },
1106
- {
1107
- "epoch": 0.9098966026587888,
1108
- "grad_norm": 0.3165034353733063,
1109
- "learning_rate": 1.684643121896755e-05,
1110
- "loss": 0.3225,
1111
- "step": 154
1112
- },
1113
- {
1114
- "epoch": 0.9158050221565731,
1115
- "grad_norm": 0.3677435517311096,
1116
- "learning_rate": 1.679827806217533e-05,
1117
- "loss": 0.328,
1118
- "step": 155
1119
- },
1120
- {
1121
- "epoch": 0.9217134416543574,
1122
- "grad_norm": 0.3617594242095947,
1123
- "learning_rate": 1.6749830015182106e-05,
1124
- "loss": 0.3299,
1125
- "step": 156
1126
- },
1127
- {
1128
- "epoch": 0.9276218611521418,
1129
- "grad_norm": 0.31069889664649963,
1130
- "learning_rate": 1.6701089179528032e-05,
1131
- "loss": 0.3146,
1132
- "step": 157
1133
- },
1134
- {
1135
- "epoch": 0.9335302806499262,
1136
- "grad_norm": 0.3610530197620392,
1137
- "learning_rate": 1.6652057669453606e-05,
1138
- "loss": 0.3223,
1139
- "step": 158
1140
- },
1141
- {
1142
- "epoch": 0.9394387001477105,
1143
- "grad_norm": 0.3169001638889313,
1144
- "learning_rate": 1.6602737611807975e-05,
1145
- "loss": 0.3194,
1146
- "step": 159
1147
- },
1148
- {
1149
- "epoch": 0.9453471196454948,
1150
- "grad_norm": 0.33033737540245056,
1151
- "learning_rate": 1.655313114595666e-05,
1152
- "loss": 0.3317,
1153
- "step": 160
1154
- },
1155
- {
1156
- "epoch": 0.9512555391432792,
1157
- "grad_norm": 0.35510334372520447,
1158
- "learning_rate": 1.6503240423688768e-05,
1159
- "loss": 0.3249,
1160
- "step": 161
1161
- },
1162
- {
1163
- "epoch": 0.9571639586410635,
1164
- "grad_norm": 0.356079638004303,
1165
- "learning_rate": 1.6453067609123656e-05,
1166
- "loss": 0.3274,
1167
- "step": 162
1168
- },
1169
- {
1170
- "epoch": 0.9630723781388478,
1171
- "grad_norm": 0.36350899934768677,
1172
- "learning_rate": 1.6402614878617037e-05,
1173
- "loss": 0.3553,
1174
- "step": 163
1175
- },
1176
- {
1177
- "epoch": 0.9689807976366323,
1178
- "grad_norm": 0.3371831476688385,
1179
- "learning_rate": 1.6351884420666616e-05,
1180
- "loss": 0.3245,
1181
- "step": 164
1182
- },
1183
- {
1184
- "epoch": 0.9748892171344166,
1185
- "grad_norm": 0.3398657739162445,
1186
- "learning_rate": 1.6300878435817115e-05,
1187
- "loss": 0.3043,
1188
- "step": 165
1189
- },
1190
- {
1191
- "epoch": 0.9807976366322009,
1192
- "grad_norm": 0.34537115693092346,
1193
- "learning_rate": 1.6249599136564837e-05,
1194
- "loss": 0.349,
1195
- "step": 166
1196
- },
1197
- {
1198
- "epoch": 0.9867060561299852,
1199
- "grad_norm": 0.31506776809692383,
1200
- "learning_rate": 1.619804874726171e-05,
1201
- "loss": 0.315,
1202
- "step": 167
1203
- },
1204
- {
1205
- "epoch": 0.9926144756277696,
1206
- "grad_norm": 0.32844215631484985,
1207
- "learning_rate": 1.6146229504018777e-05,
1208
- "loss": 0.3247,
1209
- "step": 168
1210
- },
1211
- {
1212
- "epoch": 0.9985228951255539,
1213
- "grad_norm": 0.3447742760181427,
1214
- "learning_rate": 1.609414365460921e-05,
1215
- "loss": 0.3193,
1216
- "step": 169
1217
- },
1218
- {
1219
- "epoch": 1.0,
1220
- "grad_norm": 0.3447742760181427,
1221
- "learning_rate": 1.6041793458370812e-05,
1222
- "loss": 0.3359,
1223
- "step": 170
1224
- },
1225
- {
1226
- "epoch": 1.0059084194977843,
1227
- "grad_norm": 0.27635836601257324,
1228
- "learning_rate": 1.5989181186108003e-05,
1229
- "loss": 0.2579,
1230
- "step": 171
1231
- },
1232
- {
1233
- "epoch": 1.0059084194977843,
1234
- "eval_loss": 0.3496532440185547,
1235
- "eval_runtime": 4.0258,
1236
- "eval_samples_per_second": 13.662,
1237
- "eval_steps_per_second": 1.739,
1238
- "step": 171
1239
- },
1240
- {
1241
- "epoch": 1.0118168389955686,
1242
- "grad_norm": 0.27547529339790344,
1243
- "learning_rate": 1.5936309119993333e-05,
1244
- "loss": 0.2532,
1245
- "step": 172
1246
- },
1247
- {
1248
- "epoch": 1.017725258493353,
1249
- "grad_norm": 0.2674752473831177,
1250
- "learning_rate": 1.5883179553468465e-05,
1251
- "loss": 0.2413,
1252
- "step": 173
1253
- },
1254
- {
1255
- "epoch": 1.0236336779911375,
1256
- "grad_norm": 0.3056715428829193,
1257
- "learning_rate": 1.5829794791144723e-05,
1258
- "loss": 0.2418,
1259
- "step": 174
1260
- },
1261
- {
1262
- "epoch": 1.0295420974889218,
1263
- "grad_norm": 0.27895164489746094,
1264
- "learning_rate": 1.5776157148703094e-05,
1265
- "loss": 0.2516,
1266
- "step": 175
1267
- },
1268
- {
1269
- "epoch": 1.035450516986706,
1270
- "grad_norm": 0.2935872972011566,
1271
- "learning_rate": 1.5722268952793806e-05,
1272
- "loss": 0.254,
1273
- "step": 176
1274
- },
1275
- {
1276
- "epoch": 1.0413589364844904,
1277
- "grad_norm": 0.28329288959503174,
1278
- "learning_rate": 1.566813254093538e-05,
1279
- "loss": 0.2356,
1280
- "step": 177
1281
- },
1282
- {
1283
- "epoch": 1.0472673559822747,
1284
- "grad_norm": 0.29026728868484497,
1285
- "learning_rate": 1.5613750261413256e-05,
1286
- "loss": 0.2404,
1287
- "step": 178
1288
- },
1289
- {
1290
- "epoch": 1.053175775480059,
1291
- "grad_norm": 0.3126751780509949,
1292
- "learning_rate": 1.555912447317792e-05,
1293
- "loss": 0.2303,
1294
- "step": 179
1295
- },
1296
- {
1297
- "epoch": 1.0590841949778433,
1298
- "grad_norm": 0.26517724990844727,
1299
- "learning_rate": 1.5504257545742585e-05,
1300
- "loss": 0.2175,
1301
- "step": 180
1302
- },
1303
- {
1304
- "epoch": 1.0649926144756279,
1305
- "grad_norm": 0.26433265209198,
1306
- "learning_rate": 1.5449151859080395e-05,
1307
- "loss": 0.2169,
1308
- "step": 181
1309
- },
1310
- {
1311
- "epoch": 1.0709010339734122,
1312
- "grad_norm": 0.2908313274383545,
1313
- "learning_rate": 1.5393809803521213e-05,
1314
- "loss": 0.2236,
1315
- "step": 182
1316
- },
1317
- {
1318
- "epoch": 1.0768094534711965,
1319
- "grad_norm": 0.2951337397098541,
1320
- "learning_rate": 1.533823377964791e-05,
1321
- "loss": 0.2305,
1322
- "step": 183
1323
- },
1324
- {
1325
- "epoch": 1.0827178729689808,
1326
- "grad_norm": 0.29755067825317383,
1327
- "learning_rate": 1.528242619819224e-05,
1328
- "loss": 0.2385,
1329
- "step": 184
1330
- },
1331
- {
1332
- "epoch": 1.0886262924667651,
1333
- "grad_norm": 0.2879098355770111,
1334
- "learning_rate": 1.5226389479930296e-05,
1335
- "loss": 0.2377,
1336
- "step": 185
1337
- },
1338
- {
1339
- "epoch": 1.0945347119645494,
1340
- "grad_norm": 0.2590835392475128,
1341
- "learning_rate": 1.517012605557746e-05,
1342
- "loss": 0.2312,
1343
- "step": 186
1344
- },
1345
- {
1346
- "epoch": 1.1004431314623337,
1347
- "grad_norm": 0.2694130837917328,
1348
- "learning_rate": 1.5113638365682996e-05,
1349
- "loss": 0.2347,
1350
- "step": 187
1351
- },
1352
- {
1353
- "epoch": 1.106351550960118,
1354
- "grad_norm": 0.29442402720451355,
1355
- "learning_rate": 1.5056928860524181e-05,
1356
- "loss": 0.2428,
1357
- "step": 188
1358
- },
1359
- {
1360
- "epoch": 1.1122599704579026,
1361
- "grad_norm": 0.29042768478393555,
1362
- "learning_rate": 1.5000000000000002e-05,
1363
- "loss": 0.2501,
1364
- "step": 189
1365
- },
1366
- {
1367
- "epoch": 1.118168389955687,
1368
- "grad_norm": 0.2620311975479126,
1369
- "learning_rate": 1.4942854253524479e-05,
1370
- "loss": 0.2395,
1371
- "step": 190
1372
- },
1373
- {
1374
- "epoch": 1.1240768094534712,
1375
- "grad_norm": 0.26113441586494446,
1376
- "learning_rate": 1.488549409991953e-05,
1377
- "loss": 0.2532,
1378
- "step": 191
1379
- },
1380
- {
1381
- "epoch": 1.1299852289512555,
1382
- "grad_norm": 0.2995262145996094,
1383
- "learning_rate": 1.482792202730745e-05,
1384
- "loss": 0.2319,
1385
- "step": 192
1386
- },
1387
- {
1388
- "epoch": 1.1358936484490398,
1389
- "grad_norm": 0.27327674627304077,
1390
- "learning_rate": 1.477014053300299e-05,
1391
- "loss": 0.2348,
1392
- "step": 193
1393
- },
1394
- {
1395
- "epoch": 1.1418020679468242,
1396
- "grad_norm": 0.26245003938674927,
1397
- "learning_rate": 1.4712152123405018e-05,
1398
- "loss": 0.228,
1399
- "step": 194
1400
- },
1401
- {
1402
- "epoch": 1.1477104874446087,
1403
- "grad_norm": 0.28888335824012756,
1404
- "learning_rate": 1.4653959313887813e-05,
1405
- "loss": 0.2436,
1406
- "step": 195
1407
- },
1408
- {
1409
- "epoch": 1.153618906942393,
1410
- "grad_norm": 0.2724781632423401,
1411
- "learning_rate": 1.4595564628691944e-05,
1412
- "loss": 0.2442,
1413
- "step": 196
1414
- },
1415
- {
1416
- "epoch": 1.1595273264401773,
1417
- "grad_norm": 0.2921780049800873,
1418
- "learning_rate": 1.4536970600814789e-05,
1419
- "loss": 0.2412,
1420
- "step": 197
1421
- },
1422
- {
1423
- "epoch": 1.1654357459379616,
1424
- "grad_norm": 0.27938568592071533,
1425
- "learning_rate": 1.4478179771900634e-05,
1426
- "loss": 0.2465,
1427
- "step": 198
1428
- },
1429
- {
1430
- "epoch": 1.171344165435746,
1431
- "grad_norm": 0.29516273736953735,
1432
- "learning_rate": 1.4419194692130453e-05,
1433
- "loss": 0.2415,
1434
- "step": 199
1435
- },
1436
- {
1437
- "epoch": 1.1772525849335302,
1438
- "grad_norm": 0.27947136759757996,
1439
- "learning_rate": 1.436001792011128e-05,
1440
- "loss": 0.2295,
1441
- "step": 200
1442
- },
1443
- {
1444
- "epoch": 1.1831610044313146,
1445
- "grad_norm": 0.26482367515563965,
1446
- "learning_rate": 1.4300652022765207e-05,
1447
- "loss": 0.2273,
1448
- "step": 201
1449
- },
1450
- {
1451
- "epoch": 1.1890694239290989,
1452
- "grad_norm": 0.2728091776371002,
1453
- "learning_rate": 1.424109957521806e-05,
1454
- "loss": 0.2227,
1455
- "step": 202
1456
- },
1457
- {
1458
- "epoch": 1.1949778434268834,
1459
- "grad_norm": 0.28748828172683716,
1460
- "learning_rate": 1.4181363160687693e-05,
1461
- "loss": 0.2402,
1462
- "step": 203
1463
- },
1464
- {
1465
- "epoch": 1.2008862629246677,
1466
- "grad_norm": 0.2891993820667267,
1467
- "learning_rate": 1.4121445370371922e-05,
1468
- "loss": 0.224,
1469
- "step": 204
1470
- },
1471
- {
1472
- "epoch": 1.206794682422452,
1473
- "grad_norm": 0.24767152965068817,
1474
- "learning_rate": 1.4061348803336135e-05,
1475
- "loss": 0.221,
1476
- "step": 205
1477
- },
1478
- {
1479
- "epoch": 1.2127031019202363,
1480
- "grad_norm": 0.2819165885448456,
1481
- "learning_rate": 1.400107606640056e-05,
1482
- "loss": 0.2231,
1483
- "step": 206
1484
- },
1485
- {
1486
- "epoch": 1.2186115214180206,
1487
- "grad_norm": 0.27328819036483765,
1488
- "learning_rate": 1.394062977402717e-05,
1489
- "loss": 0.229,
1490
- "step": 207
1491
- },
1492
- {
1493
- "epoch": 1.224519940915805,
1494
- "grad_norm": 0.2674582302570343,
1495
- "learning_rate": 1.3880012548206292e-05,
1496
- "loss": 0.2155,
1497
- "step": 208
1498
- },
1499
- {
1500
- "epoch": 1.2304283604135893,
1501
- "grad_norm": 0.2989075481891632,
1502
- "learning_rate": 1.3819227018342865e-05,
1503
- "loss": 0.2184,
1504
- "step": 209
1505
- },
1506
- {
1507
- "epoch": 1.2363367799113738,
1508
- "grad_norm": 0.30796098709106445,
1509
- "learning_rate": 1.3758275821142382e-05,
1510
- "loss": 0.2288,
1511
- "step": 210
1512
- },
1513
- {
1514
- "epoch": 1.2422451994091581,
1515
- "grad_norm": 0.29833805561065674,
1516
- "learning_rate": 1.3697161600496525e-05,
1517
- "loss": 0.2368,
1518
- "step": 211
1519
- },
1520
- {
1521
- "epoch": 1.2481536189069424,
1522
- "grad_norm": 0.26458829641342163,
1523
- "learning_rate": 1.3635887007368467e-05,
1524
- "loss": 0.2376,
1525
- "step": 212
1526
- },
1527
- {
1528
- "epoch": 1.2540620384047267,
1529
- "grad_norm": 0.2781698703765869,
1530
- "learning_rate": 1.3574454699677893e-05,
1531
- "loss": 0.2167,
1532
- "step": 213
1533
- },
1534
- {
1535
- "epoch": 1.259970457902511,
1536
- "grad_norm": 0.268433153629303,
1537
- "learning_rate": 1.3512867342185705e-05,
1538
- "loss": 0.2229,
1539
- "step": 214
1540
- },
1541
- {
1542
- "epoch": 1.2658788774002954,
1543
- "grad_norm": 0.2726047933101654,
1544
- "learning_rate": 1.3451127606378425e-05,
1545
- "loss": 0.223,
1546
- "step": 215
1547
- },
1548
- {
1549
- "epoch": 1.2717872968980797,
1550
- "grad_norm": 0.29567429423332214,
1551
- "learning_rate": 1.3389238170352318e-05,
1552
- "loss": 0.2105,
1553
- "step": 216
1554
- },
1555
- {
1556
- "epoch": 1.277695716395864,
1557
- "grad_norm": 0.30303359031677246,
1558
- "learning_rate": 1.3327201718697232e-05,
1559
- "loss": 0.2602,
1560
- "step": 217
1561
- },
1562
- {
1563
- "epoch": 1.2836041358936485,
1564
- "grad_norm": 0.27332380414009094,
1565
- "learning_rate": 1.326502094238013e-05,
1566
- "loss": 0.2288,
1567
- "step": 218
1568
- },
1569
- {
1570
- "epoch": 1.2895125553914328,
1571
- "grad_norm": 0.2703614830970764,
1572
- "learning_rate": 1.3202698538628376e-05,
1573
- "loss": 0.2308,
1574
- "step": 219
1575
- },
1576
- {
1577
- "epoch": 1.2954209748892171,
1578
- "grad_norm": 0.2788908779621124,
1579
- "learning_rate": 1.3140237210812741e-05,
1580
- "loss": 0.2254,
1581
- "step": 220
1582
- },
1583
- {
1584
- "epoch": 1.3013293943870015,
1585
- "grad_norm": 0.27442580461502075,
1586
- "learning_rate": 1.3077639668330124e-05,
1587
- "loss": 0.2158,
1588
- "step": 221
1589
- },
1590
- {
1591
- "epoch": 1.3072378138847858,
1592
- "grad_norm": 0.28895896673202515,
1593
- "learning_rate": 1.3014908626486032e-05,
1594
- "loss": 0.2404,
1595
- "step": 222
1596
- },
1597
- {
1598
- "epoch": 1.31314623338257,
1599
- "grad_norm": 0.24982582032680511,
1600
- "learning_rate": 1.2952046806376806e-05,
1601
- "loss": 0.2201,
1602
- "step": 223
1603
- },
1604
- {
1605
- "epoch": 1.3190546528803546,
1606
- "grad_norm": 0.28909650444984436,
1607
- "learning_rate": 1.2889056934771577e-05,
1608
- "loss": 0.2384,
1609
- "step": 224
1610
- },
1611
- {
1612
- "epoch": 1.324963072378139,
1613
- "grad_norm": 0.28018954396247864,
1614
- "learning_rate": 1.282594174399399e-05,
1615
- "loss": 0.2324,
1616
- "step": 225
1617
- },
1618
- {
1619
- "epoch": 1.3308714918759232,
1620
- "grad_norm": 0.29922735691070557,
1621
- "learning_rate": 1.2762703971803684e-05,
1622
- "loss": 0.2457,
1623
- "step": 226
1624
- },
1625
- {
1626
- "epoch": 1.3367799113737076,
1627
- "grad_norm": 0.289288729429245,
1628
- "learning_rate": 1.2699346361277538e-05,
1629
- "loss": 0.2366,
1630
- "step": 227
1631
- },
1632
- {
1633
- "epoch": 1.3426883308714919,
1634
- "grad_norm": 0.2790012061595917,
1635
- "learning_rate": 1.2635871660690677e-05,
1636
- "loss": 0.2359,
1637
- "step": 228
1638
- },
1639
- {
1640
- "epoch": 1.3426883308714919,
1641
- "eval_loss": 0.35204342007637024,
1642
- "eval_runtime": 4.4578,
1643
- "eval_samples_per_second": 12.338,
1644
- "eval_steps_per_second": 1.57,
1645
- "step": 228
1646
- },
1647
- {
1648
- "epoch": 1.3485967503692762,
1649
- "grad_norm": 0.36030444502830505,
1650
- "learning_rate": 1.2572282623397268e-05,
1651
- "loss": 0.2405,
1652
- "step": 229
1653
- },
1654
- {
1655
- "epoch": 1.3545051698670605,
1656
- "grad_norm": 0.24079382419586182,
1657
- "learning_rate": 1.2508582007711074e-05,
1658
- "loss": 0.2148,
1659
- "step": 230
1660
- },
1661
- {
1662
- "epoch": 1.3604135893648448,
1663
- "grad_norm": 0.26674559712409973,
1664
- "learning_rate": 1.2444772576785828e-05,
1665
- "loss": 0.2457,
1666
- "step": 231
1667
- },
1668
- {
1669
- "epoch": 1.3663220088626291,
1670
- "grad_norm": 0.25345727801322937,
1671
- "learning_rate": 1.2380857098495355e-05,
1672
- "loss": 0.2229,
1673
- "step": 232
1674
- },
1675
- {
1676
- "epoch": 1.3722304283604136,
1677
- "grad_norm": 0.2623337507247925,
1678
- "learning_rate": 1.2316838345313517e-05,
1679
- "loss": 0.231,
1680
- "step": 233
1681
- },
1682
- {
1683
- "epoch": 1.378138847858198,
1684
- "grad_norm": 0.27783095836639404,
1685
- "learning_rate": 1.225271909419395e-05,
1686
- "loss": 0.2251,
1687
- "step": 234
1688
- },
1689
- {
1690
- "epoch": 1.3840472673559823,
1691
- "grad_norm": 0.25021976232528687,
1692
- "learning_rate": 1.2188502126449616e-05,
1693
- "loss": 0.226,
1694
- "step": 235
1695
- },
1696
- {
1697
- "epoch": 1.3899556868537666,
1698
- "grad_norm": 0.2695038318634033,
1699
- "learning_rate": 1.2124190227632138e-05,
1700
- "loss": 0.2438,
1701
- "step": 236
1702
- },
1703
- {
1704
- "epoch": 1.395864106351551,
1705
- "grad_norm": 0.24312005937099457,
1706
- "learning_rate": 1.2059786187410984e-05,
1707
- "loss": 0.2138,
1708
- "step": 237
1709
- },
1710
- {
1711
- "epoch": 1.4017725258493354,
1712
- "grad_norm": 0.2761548161506653,
1713
- "learning_rate": 1.1995292799452472e-05,
1714
- "loss": 0.244,
1715
- "step": 238
1716
- },
1717
- {
1718
- "epoch": 1.4076809453471197,
1719
- "grad_norm": 0.2740529477596283,
1720
- "learning_rate": 1.1930712861298553e-05,
1721
- "loss": 0.2416,
1722
- "step": 239
1723
- },
1724
- {
1725
- "epoch": 1.413589364844904,
1726
- "grad_norm": 0.2605426013469696,
1727
- "learning_rate": 1.186604917424549e-05,
1728
- "loss": 0.2515,
1729
- "step": 240
1730
- },
1731
- {
1732
- "epoch": 1.4194977843426884,
1733
- "grad_norm": 0.27557292580604553,
1734
- "learning_rate": 1.1801304543222349e-05,
1735
- "loss": 0.232,
1736
- "step": 241
1737
- },
1738
- {
1739
- "epoch": 1.4254062038404727,
1740
- "grad_norm": 0.2512328624725342,
1741
- "learning_rate": 1.1736481776669307e-05,
1742
- "loss": 0.2311,
1743
- "step": 242
1744
- },
1745
- {
1746
- "epoch": 1.431314623338257,
1747
- "grad_norm": 0.2634104788303375,
1748
- "learning_rate": 1.1671583686415833e-05,
1749
- "loss": 0.2207,
1750
- "step": 243
1751
- },
1752
- {
1753
- "epoch": 1.4372230428360413,
1754
- "grad_norm": 0.2541881203651428,
1755
- "learning_rate": 1.1606613087558748e-05,
1756
- "loss": 0.2207,
1757
- "step": 244
1758
- },
1759
- {
1760
- "epoch": 1.4431314623338256,
1761
- "grad_norm": 0.24408863484859467,
1762
- "learning_rate": 1.1541572798340076e-05,
1763
- "loss": 0.2155,
1764
- "step": 245
1765
- },
1766
- {
1767
- "epoch": 1.44903988183161,
1768
- "grad_norm": 0.25305289030075073,
1769
- "learning_rate": 1.1476465640024814e-05,
1770
- "loss": 0.2245,
1771
- "step": 246
1772
- },
1773
- {
1774
- "epoch": 1.4549483013293945,
1775
- "grad_norm": 0.26579606533050537,
1776
- "learning_rate": 1.1411294436778562e-05,
1777
- "loss": 0.2295,
1778
- "step": 247
1779
- },
1780
- {
1781
- "epoch": 1.4608567208271788,
1782
- "grad_norm": 0.26332345604896545,
1783
- "learning_rate": 1.1346062015544997e-05,
1784
- "loss": 0.2363,
1785
- "step": 248
1786
- },
1787
- {
1788
- "epoch": 1.466765140324963,
1789
- "grad_norm": 0.2519514262676239,
1790
- "learning_rate": 1.1280771205923269e-05,
1791
- "loss": 0.2215,
1792
- "step": 249
1793
- },
1794
- {
1795
- "epoch": 1.4726735598227474,
1796
- "grad_norm": 0.2569345533847809,
1797
- "learning_rate": 1.1215424840045254e-05,
1798
- "loss": 0.223,
1799
- "step": 250
1800
- },
1801
- {
1802
- "epoch": 1.4785819793205317,
1803
- "grad_norm": 0.25557035207748413,
1804
- "learning_rate": 1.1150025752452693e-05,
1805
- "loss": 0.2511,
1806
- "step": 251
1807
- },
1808
- {
1809
- "epoch": 1.4844903988183162,
1810
- "grad_norm": 0.26646342873573303,
1811
- "learning_rate": 1.1084576779974257e-05,
1812
- "loss": 0.2476,
1813
- "step": 252
1814
- },
1815
- {
1816
- "epoch": 1.4903988183161005,
1817
- "grad_norm": 0.27917614579200745,
1818
- "learning_rate": 1.1019080761602473e-05,
1819
- "loss": 0.2284,
1820
- "step": 253
1821
- },
1822
- {
1823
- "epoch": 1.4963072378138849,
1824
- "grad_norm": 0.2594425082206726,
1825
- "learning_rate": 1.0953540538370591e-05,
1826
- "loss": 0.2319,
1827
- "step": 254
1828
- },
1829
- {
1830
- "epoch": 1.5022156573116692,
1831
- "grad_norm": 0.23648317158222198,
1832
- "learning_rate": 1.0887958953229349e-05,
1833
- "loss": 0.225,
1834
- "step": 255
1835
- },
1836
- {
1837
- "epoch": 1.5081240768094535,
1838
- "grad_norm": 0.24810343980789185,
1839
- "learning_rate": 1.0822338850923644e-05,
1840
- "loss": 0.2222,
1841
- "step": 256
1842
- },
1843
- {
1844
- "epoch": 1.5140324963072378,
1845
- "grad_norm": 0.25305667519569397,
1846
- "learning_rate": 1.0756683077869133e-05,
1847
- "loss": 0.2178,
1848
- "step": 257
1849
- },
1850
- {
1851
- "epoch": 1.519940915805022,
1852
- "grad_norm": 0.23994190990924835,
1853
- "learning_rate": 1.069099448202878e-05,
1854
- "loss": 0.2274,
1855
- "step": 258
1856
- },
1857
- {
1858
- "epoch": 1.5258493353028064,
1859
- "grad_norm": 0.28112536668777466,
1860
- "learning_rate": 1.0625275912789307e-05,
1861
- "loss": 0.2157,
1862
- "step": 259
1863
- },
1864
- {
1865
- "epoch": 1.5317577548005907,
1866
- "grad_norm": 0.2910768687725067,
1867
- "learning_rate": 1.0559530220837593e-05,
1868
- "loss": 0.2337,
1869
- "step": 260
1870
- },
1871
- {
1872
- "epoch": 1.537666174298375,
1873
- "grad_norm": 0.26320862770080566,
1874
- "learning_rate": 1.049376025803703e-05,
1875
- "loss": 0.2156,
1876
- "step": 261
1877
- },
1878
- {
1879
- "epoch": 1.5435745937961596,
1880
- "grad_norm": 0.2653874456882477,
1881
- "learning_rate": 1.0427968877303809e-05,
1882
- "loss": 0.2269,
1883
- "step": 262
1884
- },
1885
- {
1886
- "epoch": 1.549483013293944,
1887
- "grad_norm": 0.24998469650745392,
1888
- "learning_rate": 1.0362158932483165e-05,
1889
- "loss": 0.2252,
1890
- "step": 263
1891
- },
1892
- {
1893
- "epoch": 1.5553914327917282,
1894
- "grad_norm": 0.25920990109443665,
1895
- "learning_rate": 1.0296333278225599e-05,
1896
- "loss": 0.2274,
1897
- "step": 264
1898
- },
1899
- {
1900
- "epoch": 1.5612998522895125,
1901
- "grad_norm": 0.2827723026275635,
1902
- "learning_rate": 1.023049476986304e-05,
1903
- "loss": 0.248,
1904
- "step": 265
1905
- },
1906
- {
1907
- "epoch": 1.567208271787297,
1908
- "grad_norm": 0.27848076820373535,
1909
- "learning_rate": 1.0164646263284993e-05,
1910
- "loss": 0.2372,
1911
- "step": 266
1912
- },
1913
- {
1914
- "epoch": 1.5731166912850814,
1915
- "grad_norm": 0.2601296305656433,
1916
- "learning_rate": 1.0098790614814658e-05,
1917
- "loss": 0.212,
1918
- "step": 267
1919
- },
1920
- {
1921
- "epoch": 1.5790251107828657,
1922
- "grad_norm": 0.24360589683055878,
1923
- "learning_rate": 1.0032930681085028e-05,
1924
- "loss": 0.2152,
1925
- "step": 268
1926
- },
1927
- {
1928
- "epoch": 1.58493353028065,
1929
- "grad_norm": 0.3080978989601135,
1930
- "learning_rate": 9.967069318914977e-06,
1931
- "loss": 0.2218,
1932
- "step": 269
1933
- },
1934
- {
1935
- "epoch": 1.5908419497784343,
1936
- "grad_norm": 0.26208099722862244,
1937
- "learning_rate": 9.901209385185345e-06,
1938
- "loss": 0.2184,
1939
- "step": 270
1940
- },
1941
- {
1942
- "epoch": 1.5967503692762186,
1943
- "grad_norm": 0.2984671890735626,
1944
- "learning_rate": 9.835353736715007e-06,
1945
- "loss": 0.2432,
1946
- "step": 271
1947
- },
1948
- {
1949
- "epoch": 1.602658788774003,
1950
- "grad_norm": 0.26782581210136414,
1951
- "learning_rate": 9.769505230136962e-06,
1952
- "loss": 0.2126,
1953
- "step": 272
1954
- },
1955
- {
1956
- "epoch": 1.6085672082717872,
1957
- "grad_norm": 0.28440967202186584,
1958
- "learning_rate": 9.703666721774403e-06,
1959
- "loss": 0.2214,
1960
- "step": 273
1961
- },
1962
- {
1963
- "epoch": 1.6144756277695715,
1964
- "grad_norm": 0.2926226854324341,
1965
- "learning_rate": 9.637841067516837e-06,
1966
- "loss": 0.2256,
1967
- "step": 274
1968
- },
1969
- {
1970
- "epoch": 1.6203840472673559,
1971
- "grad_norm": 0.25548121333122253,
1972
- "learning_rate": 9.572031122696196e-06,
1973
- "loss": 0.2304,
1974
- "step": 275
1975
- },
1976
- {
1977
- "epoch": 1.6262924667651402,
1978
- "grad_norm": 0.28455373644828796,
1979
- "learning_rate": 9.506239741962971e-06,
1980
- "loss": 0.2299,
1981
- "step": 276
1982
- },
1983
- {
1984
- "epoch": 1.6322008862629247,
1985
- "grad_norm": 0.262614369392395,
1986
- "learning_rate": 9.440469779162407e-06,
1987
- "loss": 0.2251,
1988
- "step": 277
1989
- },
1990
- {
1991
- "epoch": 1.638109305760709,
1992
- "grad_norm": 0.27394819259643555,
1993
- "learning_rate": 9.374724087210698e-06,
1994
- "loss": 0.2117,
1995
- "step": 278
1996
- },
1997
- {
1998
- "epoch": 1.6440177252584933,
1999
- "grad_norm": 0.2843812108039856,
2000
- "learning_rate": 9.309005517971222e-06,
2001
- "loss": 0.2268,
2002
- "step": 279
2003
- },
2004
- {
2005
- "epoch": 1.6499261447562779,
2006
- "grad_norm": 0.25647154450416565,
2007
- "learning_rate": 9.24331692213087e-06,
2008
- "loss": 0.2187,
2009
- "step": 280
2010
- },
2011
- {
2012
- "epoch": 1.6558345642540622,
2013
- "grad_norm": 0.27861371636390686,
2014
- "learning_rate": 9.17766114907636e-06,
2015
- "loss": 0.2311,
2016
- "step": 281
2017
- },
2018
- {
2019
- "epoch": 1.6617429837518465,
2020
- "grad_norm": 0.270049512386322,
2021
- "learning_rate": 9.112041046770653e-06,
2022
- "loss": 0.2265,
2023
- "step": 282
2024
- },
2025
- {
2026
- "epoch": 1.6676514032496308,
2027
- "grad_norm": 0.2750328779220581,
2028
- "learning_rate": 9.04645946162941e-06,
2029
- "loss": 0.2253,
2030
- "step": 283
2031
- },
2032
- {
2033
- "epoch": 1.673559822747415,
2034
- "grad_norm": 0.2412230521440506,
2035
- "learning_rate": 8.980919238397532e-06,
2036
- "loss": 0.2394,
2037
- "step": 284
2038
- },
2039
- {
2040
- "epoch": 1.6794682422451994,
2041
- "grad_norm": 0.2524693012237549,
2042
- "learning_rate": 8.915423220025747e-06,
2043
- "loss": 0.2258,
2044
- "step": 285
2045
- },
2046
- {
2047
- "epoch": 1.6794682422451994,
2048
- "eval_loss": 0.3460842967033386,
2049
- "eval_runtime": 4.0784,
2050
- "eval_samples_per_second": 13.486,
2051
- "eval_steps_per_second": 1.716,
2052
- "step": 285
2053
- },
2054
- {
2055
- "epoch": 1.6853766617429837,
2056
- "grad_norm": 0.25439098477363586,
2057
- "learning_rate": 8.849974247547307e-06,
2058
- "loss": 0.2266,
2059
- "step": 286
2060
- },
2061
- {
2062
- "epoch": 1.691285081240768,
2063
- "grad_norm": 0.257929265499115,
2064
- "learning_rate": 8.784575159954748e-06,
2065
- "loss": 0.2133,
2066
- "step": 287
2067
- },
2068
- {
2069
- "epoch": 1.6971935007385524,
2070
- "grad_norm": 0.24912972748279572,
2071
- "learning_rate": 8.719228794076733e-06,
2072
- "loss": 0.2129,
2073
- "step": 288
2074
- },
2075
- {
2076
- "epoch": 1.7031019202363367,
2077
- "grad_norm": 0.27103564143180847,
2078
- "learning_rate": 8.653937984455007e-06,
2079
- "loss": 0.2276,
2080
- "step": 289
2081
- },
2082
- {
2083
- "epoch": 1.709010339734121,
2084
- "grad_norm": 0.2718878984451294,
2085
- "learning_rate": 8.588705563221444e-06,
2086
- "loss": 0.2276,
2087
- "step": 290
2088
- },
2089
- {
2090
- "epoch": 1.7149187592319055,
2091
- "grad_norm": 0.26431816816329956,
2092
- "learning_rate": 8.52353435997519e-06,
2093
- "loss": 0.2328,
2094
- "step": 291
2095
- },
2096
- {
2097
- "epoch": 1.7208271787296898,
2098
- "grad_norm": 0.2725984752178192,
2099
- "learning_rate": 8.458427201659926e-06,
2100
- "loss": 0.2292,
2101
- "step": 292
2102
- },
2103
- {
2104
- "epoch": 1.7267355982274741,
2105
- "grad_norm": 0.2515108585357666,
2106
- "learning_rate": 8.393386912441257e-06,
2107
- "loss": 0.226,
2108
- "step": 293
2109
- },
2110
- {
2111
- "epoch": 1.7326440177252584,
2112
- "grad_norm": 0.2476361244916916,
2113
- "learning_rate": 8.328416313584169e-06,
2114
- "loss": 0.2277,
2115
- "step": 294
2116
- },
2117
- {
2118
- "epoch": 1.738552437223043,
2119
- "grad_norm": 0.25414201617240906,
2120
- "learning_rate": 8.263518223330698e-06,
2121
- "loss": 0.2268,
2122
- "step": 295
2123
- },
2124
- {
2125
- "epoch": 1.7444608567208273,
2126
- "grad_norm": 0.26264503598213196,
2127
- "learning_rate": 8.198695456777653e-06,
2128
- "loss": 0.2193,
2129
- "step": 296
2130
- },
2131
- {
2132
- "epoch": 1.7503692762186116,
2133
- "grad_norm": 0.26917147636413574,
2134
- "learning_rate": 8.133950825754511e-06,
2135
- "loss": 0.2251,
2136
- "step": 297
2137
- },
2138
- {
2139
- "epoch": 1.756277695716396,
2140
- "grad_norm": 0.2692192792892456,
2141
- "learning_rate": 8.069287138701452e-06,
2142
- "loss": 0.232,
2143
- "step": 298
2144
- },
2145
- {
2146
- "epoch": 1.7621861152141802,
2147
- "grad_norm": 0.27494263648986816,
2148
- "learning_rate": 8.004707200547534e-06,
2149
- "loss": 0.2461,
2150
- "step": 299
2151
- },
2152
- {
2153
- "epoch": 1.7680945347119645,
2154
- "grad_norm": 0.28247448801994324,
2155
- "learning_rate": 7.940213812589018e-06,
2156
- "loss": 0.2226,
2157
- "step": 300
2158
- },
2159
- {
2160
- "epoch": 1.7740029542097489,
2161
- "grad_norm": 0.2632560133934021,
2162
- "learning_rate": 7.875809772367867e-06,
2163
- "loss": 0.216,
2164
- "step": 301
2165
- },
2166
- {
2167
- "epoch": 1.7799113737075332,
2168
- "grad_norm": 0.26561063528060913,
2169
- "learning_rate": 7.81149787355039e-06,
2170
- "loss": 0.2286,
2171
- "step": 302
2172
- },
2173
- {
2174
- "epoch": 1.7858197932053175,
2175
- "grad_norm": 0.24065916240215302,
2176
- "learning_rate": 7.747280905806051e-06,
2177
- "loss": 0.2201,
2178
- "step": 303
2179
- },
2180
- {
2181
- "epoch": 1.7917282127031018,
2182
- "grad_norm": 0.288473904132843,
2183
- "learning_rate": 7.683161654686486e-06,
2184
- "loss": 0.2179,
2185
- "step": 304
2186
- },
2187
- {
2188
- "epoch": 1.797636632200886,
2189
- "grad_norm": 0.27798035740852356,
2190
- "learning_rate": 7.619142901504649e-06,
2191
- "loss": 0.2341,
2192
- "step": 305
2193
- },
2194
- {
2195
- "epoch": 1.8035450516986706,
2196
- "grad_norm": 0.28387168049812317,
2197
- "learning_rate": 7.555227423214174e-06,
2198
- "loss": 0.226,
2199
- "step": 306
2200
- },
2201
- {
2202
- "epoch": 1.809453471196455,
2203
- "grad_norm": 0.28974682092666626,
2204
- "learning_rate": 7.491417992288927e-06,
2205
- "loss": 0.2296,
2206
- "step": 307
2207
- },
2208
- {
2209
- "epoch": 1.8153618906942393,
2210
- "grad_norm": 0.26052042841911316,
2211
- "learning_rate": 7.427717376602739e-06,
2212
- "loss": 0.2002,
2213
- "step": 308
2214
- },
2215
- {
2216
- "epoch": 1.8212703101920238,
2217
- "grad_norm": 0.29558730125427246,
2218
- "learning_rate": 7.364128339309326e-06,
2219
- "loss": 0.263,
2220
- "step": 309
2221
- },
2222
- {
2223
- "epoch": 1.827178729689808,
2224
- "grad_norm": 0.24457122385501862,
2225
- "learning_rate": 7.300653638722463e-06,
2226
- "loss": 0.224,
2227
- "step": 310
2228
- },
2229
- {
2230
- "epoch": 1.8330871491875924,
2231
- "grad_norm": 0.2517196834087372,
2232
- "learning_rate": 7.2372960281963165e-06,
2233
- "loss": 0.2134,
2234
- "step": 311
2235
- },
2236
- {
2237
- "epoch": 1.8389955686853767,
2238
- "grad_norm": 0.27632561326026917,
2239
- "learning_rate": 7.174058256006012e-06,
2240
- "loss": 0.2229,
2241
- "step": 312
2242
- },
2243
- {
2244
- "epoch": 1.844903988183161,
2245
- "grad_norm": 0.2603515684604645,
2246
- "learning_rate": 7.110943065228425e-06,
2247
- "loss": 0.2299,
2248
- "step": 313
2249
- },
2250
- {
2251
- "epoch": 1.8508124076809453,
2252
- "grad_norm": 0.24517123401165009,
2253
- "learning_rate": 7.047953193623195e-06,
2254
- "loss": 0.2096,
2255
- "step": 314
2256
- },
2257
- {
2258
- "epoch": 1.8567208271787297,
2259
- "grad_norm": 0.24135427176952362,
2260
- "learning_rate": 6.985091373513972e-06,
2261
- "loss": 0.2072,
2262
- "step": 315
2263
- },
2264
- {
2265
- "epoch": 1.862629246676514,
2266
- "grad_norm": 0.2676647901535034,
2267
- "learning_rate": 6.92236033166988e-06,
2268
- "loss": 0.2173,
2269
- "step": 316
2270
- },
2271
- {
2272
- "epoch": 1.8685376661742983,
2273
- "grad_norm": 0.2504200041294098,
2274
- "learning_rate": 6.859762789187259e-06,
2275
- "loss": 0.2192,
2276
- "step": 317
2277
- },
2278
- {
2279
- "epoch": 1.8744460856720826,
2280
- "grad_norm": 0.26364269852638245,
2281
- "learning_rate": 6.797301461371626e-06,
2282
- "loss": 0.2193,
2283
- "step": 318
2284
- },
2285
- {
2286
- "epoch": 1.880354505169867,
2287
- "grad_norm": 0.24448218941688538,
2288
- "learning_rate": 6.734979057619873e-06,
2289
- "loss": 0.2208,
2290
- "step": 319
2291
- },
2292
- {
2293
- "epoch": 1.8862629246676514,
2294
- "grad_norm": 0.24706940352916718,
2295
- "learning_rate": 6.67279828130277e-06,
2296
- "loss": 0.2211,
2297
- "step": 320
2298
- },
2299
- {
2300
- "epoch": 1.8921713441654358,
2301
- "grad_norm": 0.24761930108070374,
2302
- "learning_rate": 6.610761829647685e-06,
2303
- "loss": 0.2222,
2304
- "step": 321
2305
- },
2306
- {
2307
- "epoch": 1.89807976366322,
2308
- "grad_norm": 0.2566414475440979,
2309
- "learning_rate": 6.548872393621578e-06,
2310
- "loss": 0.2136,
2311
- "step": 322
2312
- },
2313
- {
2314
- "epoch": 1.9039881831610044,
2315
- "grad_norm": 0.2611066401004791,
2316
- "learning_rate": 6.487132657814297e-06,
2317
- "loss": 0.2146,
2318
- "step": 323
2319
- },
2320
- {
2321
- "epoch": 1.909896602658789,
2322
- "grad_norm": 0.27130842208862305,
2323
- "learning_rate": 6.4255453003221115e-06,
2324
- "loss": 0.2184,
2325
- "step": 324
2326
- },
2327
- {
2328
- "epoch": 1.9158050221565732,
2329
- "grad_norm": 0.2548243999481201,
2330
- "learning_rate": 6.364112992631537e-06,
2331
- "loss": 0.2299,
2332
- "step": 325
2333
- },
2334
- {
2335
- "epoch": 1.9217134416543575,
2336
- "grad_norm": 0.2533697187900543,
2337
- "learning_rate": 6.302838399503477e-06,
2338
- "loss": 0.2043,
2339
- "step": 326
2340
- },
2341
- {
2342
- "epoch": 1.9276218611521418,
2343
- "grad_norm": 0.2540424168109894,
2344
- "learning_rate": 6.241724178857621e-06,
2345
- "loss": 0.2039,
2346
- "step": 327
2347
- },
2348
- {
2349
- "epoch": 1.9335302806499262,
2350
- "grad_norm": 0.2535569965839386,
2351
- "learning_rate": 6.180772981657139e-06,
2352
- "loss": 0.2019,
2353
- "step": 328
2354
- },
2355
- {
2356
- "epoch": 1.9394387001477105,
2357
- "grad_norm": 0.29982754588127136,
2358
- "learning_rate": 6.119987451793711e-06,
2359
- "loss": 0.2228,
2360
- "step": 329
2361
- },
2362
- {
2363
- "epoch": 1.9453471196454948,
2364
- "grad_norm": 0.23110415041446686,
2365
- "learning_rate": 6.059370225972834e-06,
2366
- "loss": 0.2188,
2367
- "step": 330
2368
- },
2369
- {
2370
- "epoch": 1.951255539143279,
2371
- "grad_norm": 0.2608148753643036,
2372
- "learning_rate": 5.998923933599443e-06,
2373
- "loss": 0.2236,
2374
- "step": 331
2375
- },
2376
- {
2377
- "epoch": 1.9571639586410634,
2378
- "grad_norm": 0.26010897755622864,
2379
- "learning_rate": 5.938651196663865e-06,
2380
- "loss": 0.2032,
2381
- "step": 332
2382
- },
2383
- {
2384
- "epoch": 1.9630723781388477,
2385
- "grad_norm": 0.26297712326049805,
2386
- "learning_rate": 5.878554629628081e-06,
2387
- "loss": 0.2224,
2388
- "step": 333
2389
- },
2390
- {
2391
- "epoch": 1.9689807976366323,
2392
- "grad_norm": 0.2658803164958954,
2393
- "learning_rate": 5.818636839312309e-06,
2394
- "loss": 0.2153,
2395
- "step": 334
2396
- },
2397
- {
2398
- "epoch": 1.9748892171344166,
2399
- "grad_norm": 0.23885361850261688,
2400
- "learning_rate": 5.758900424781939e-06,
2401
- "loss": 0.2029,
2402
- "step": 335
2403
- },
2404
- {
2405
- "epoch": 1.9807976366322009,
2406
- "grad_norm": 0.2604767978191376,
2407
- "learning_rate": 5.699347977234799e-06,
2408
- "loss": 0.2059,
2409
- "step": 336
2410
- },
2411
- {
2412
- "epoch": 1.9867060561299852,
2413
- "grad_norm": 0.2535778284072876,
2414
- "learning_rate": 5.6399820798887266e-06,
2415
- "loss": 0.2204,
2416
- "step": 337
2417
- },
2418
- {
2419
- "epoch": 1.9926144756277697,
2420
- "grad_norm": 0.2699243128299713,
2421
- "learning_rate": 5.580805307869549e-06,
2422
- "loss": 0.2158,
2423
- "step": 338
2424
- },
2425
- {
2426
- "epoch": 1.998522895125554,
2427
- "grad_norm": 0.26384735107421875,
2428
- "learning_rate": 5.5218202280993725e-06,
2429
- "loss": 0.214,
2430
- "step": 339
2431
- },
2432
- {
2433
- "epoch": 2.0,
2434
- "grad_norm": 0.26384735107421875,
2435
- "learning_rate": 5.463029399185217e-06,
2436
- "loss": 0.1985,
2437
- "step": 340
2438
- },
2439
- {
2440
- "epoch": 2.0059084194977843,
2441
- "grad_norm": 0.18516932427883148,
2442
- "learning_rate": 5.4044353713080565e-06,
2443
- "loss": 0.1713,
2444
- "step": 341
2445
- },
2446
- {
2447
- "epoch": 2.0118168389955686,
2448
- "grad_norm": 0.17721563577651978,
2449
- "learning_rate": 5.346040686112189e-06,
2450
- "loss": 0.1673,
2451
- "step": 342
2452
- },
2453
- {
2454
- "epoch": 2.0118168389955686,
2455
- "eval_loss": 0.3410823345184326,
2456
- "eval_runtime": 4.1795,
2457
- "eval_samples_per_second": 13.159,
2458
- "eval_steps_per_second": 1.675,
2459
- "step": 342
2460
- },
2461
- {
2462
- "epoch": 2.017725258493353,
2463
- "grad_norm": 0.16970044374465942,
2464
- "learning_rate": 5.287847876594984e-06,
2465
- "loss": 0.1616,
2466
- "step": 343
2467
- },
2468
- {
2469
- "epoch": 2.0236336779911372,
2470
- "grad_norm": 0.1735972911119461,
2471
- "learning_rate": 5.229859466997012e-06,
2472
- "loss": 0.1728,
2473
- "step": 344
2474
- },
2475
- {
2476
- "epoch": 2.0295420974889216,
2477
- "grad_norm": 0.19104275107383728,
2478
- "learning_rate": 5.172077972692553e-06,
2479
- "loss": 0.1698,
2480
- "step": 345
2481
- },
2482
- {
2483
- "epoch": 2.035450516986706,
2484
- "grad_norm": 0.18335483968257904,
2485
- "learning_rate": 5.114505900080473e-06,
2486
- "loss": 0.1696,
2487
- "step": 346
2488
- },
2489
- {
2490
- "epoch": 2.04135893648449,
2491
- "grad_norm": 0.20804759860038757,
2492
- "learning_rate": 5.0571457464755226e-06,
2493
- "loss": 0.1741,
2494
- "step": 347
2495
- },
2496
- {
2497
- "epoch": 2.047267355982275,
2498
- "grad_norm": 0.2059069722890854,
2499
- "learning_rate": 5.000000000000003e-06,
2500
- "loss": 0.1836,
2501
- "step": 348
2502
- },
2503
- {
2504
- "epoch": 2.0531757754800593,
2505
- "grad_norm": 0.1589411050081253,
2506
- "learning_rate": 4.943071139475824e-06,
2507
- "loss": 0.157,
2508
- "step": 349
2509
- },
2510
- {
2511
- "epoch": 2.0590841949778436,
2512
- "grad_norm": 0.1627541333436966,
2513
- "learning_rate": 4.886361634317004e-06,
2514
- "loss": 0.1501,
2515
- "step": 350
2516
- },
2517
- {
2518
- "epoch": 2.064992614475628,
2519
- "grad_norm": 0.1882375329732895,
2520
- "learning_rate": 4.829873944422544e-06,
2521
- "loss": 0.1668,
2522
- "step": 351
2523
- },
2524
- {
2525
- "epoch": 2.070901033973412,
2526
- "grad_norm": 0.2041175663471222,
2527
- "learning_rate": 4.773610520069706e-06,
2528
- "loss": 0.1704,
2529
- "step": 352
2530
- },
2531
- {
2532
- "epoch": 2.0768094534711965,
2533
- "grad_norm": 0.1791360229253769,
2534
- "learning_rate": 4.71757380180776e-06,
2535
- "loss": 0.1643,
2536
- "step": 353
2537
- },
2538
- {
2539
- "epoch": 2.082717872968981,
2540
- "grad_norm": 0.20541523396968842,
2541
- "learning_rate": 4.661766220352098e-06,
2542
- "loss": 0.1718,
2543
- "step": 354
2544
- },
2545
- {
2546
- "epoch": 2.088626292466765,
2547
- "grad_norm": 0.19179703295230865,
2548
- "learning_rate": 4.60619019647879e-06,
2549
- "loss": 0.1708,
2550
- "step": 355
2551
- },
2552
- {
2553
- "epoch": 2.0945347119645494,
2554
- "grad_norm": 0.20276720821857452,
2555
- "learning_rate": 4.550848140919606e-06,
2556
- "loss": 0.1666,
2557
- "step": 356
2558
- },
2559
- {
2560
- "epoch": 2.1004431314623337,
2561
- "grad_norm": 0.19465772807598114,
2562
- "learning_rate": 4.495742454257418e-06,
2563
- "loss": 0.1862,
2564
- "step": 357
2565
- },
2566
- {
2567
- "epoch": 2.106351550960118,
2568
- "grad_norm": 0.16890497505664825,
2569
- "learning_rate": 4.440875526822081e-06,
2570
- "loss": 0.149,
2571
- "step": 358
2572
- },
2573
- {
2574
- "epoch": 2.1122599704579024,
2575
- "grad_norm": 0.1986568123102188,
2576
- "learning_rate": 4.386249738586744e-06,
2577
- "loss": 0.1697,
2578
- "step": 359
2579
- },
2580
- {
2581
- "epoch": 2.1181683899556867,
2582
- "grad_norm": 0.19477416574954987,
2583
- "learning_rate": 4.331867459064623e-06,
2584
- "loss": 0.1618,
2585
- "step": 360
2586
- },
2587
- {
2588
- "epoch": 2.124076809453471,
2589
- "grad_norm": 0.22632195055484772,
2590
- "learning_rate": 4.277731047206197e-06,
2591
- "loss": 0.1828,
2592
- "step": 361
2593
- },
2594
- {
2595
- "epoch": 2.1299852289512557,
2596
- "grad_norm": 0.1845085322856903,
2597
- "learning_rate": 4.223842851296907e-06,
2598
- "loss": 0.1657,
2599
- "step": 362
2600
- },
2601
- {
2602
- "epoch": 2.13589364844904,
2603
- "grad_norm": 0.194486603140831,
2604
- "learning_rate": 4.170205208855281e-06,
2605
- "loss": 0.1623,
2606
- "step": 363
2607
- },
2608
- {
2609
- "epoch": 2.1418020679468244,
2610
- "grad_norm": 0.2163761556148529,
2611
- "learning_rate": 4.116820446531538e-06,
2612
- "loss": 0.1764,
2613
- "step": 364
2614
- },
2615
- {
2616
- "epoch": 2.1477104874446087,
2617
- "grad_norm": 0.20544861257076263,
2618
- "learning_rate": 4.063690880006671e-06,
2619
- "loss": 0.1679,
2620
- "step": 365
2621
- },
2622
- {
2623
- "epoch": 2.153618906942393,
2624
- "grad_norm": 0.1972535252571106,
2625
- "learning_rate": 4.010818813892e-06,
2626
- "loss": 0.1544,
2627
- "step": 366
2628
- },
2629
- {
2630
- "epoch": 2.1595273264401773,
2631
- "grad_norm": 0.18971310555934906,
2632
- "learning_rate": 3.9582065416291926e-06,
2633
- "loss": 0.1717,
2634
- "step": 367
2635
- },
2636
- {
2637
- "epoch": 2.1654357459379616,
2638
- "grad_norm": 0.20705726742744446,
2639
- "learning_rate": 3.905856345390793e-06,
2640
- "loss": 0.1652,
2641
- "step": 368
2642
- },
2643
- {
2644
- "epoch": 2.171344165435746,
2645
- "grad_norm": 0.22809135913848877,
2646
- "learning_rate": 3.85377049598123e-06,
2647
- "loss": 0.1813,
2648
- "step": 369
2649
- },
2650
- {
2651
- "epoch": 2.1772525849335302,
2652
- "grad_norm": 0.18757998943328857,
2653
- "learning_rate": 3.801951252738295e-06,
2654
- "loss": 0.1528,
2655
- "step": 370
2656
- },
2657
- {
2658
- "epoch": 2.1831610044313146,
2659
- "grad_norm": 0.20911292731761932,
2660
- "learning_rate": 3.750400863435166e-06,
2661
- "loss": 0.1552,
2662
- "step": 371
2663
- },
2664
- {
2665
- "epoch": 2.189069423929099,
2666
- "grad_norm": 0.18819110095500946,
2667
- "learning_rate": 3.6991215641828903e-06,
2668
- "loss": 0.1485,
2669
- "step": 372
2670
- },
2671
- {
2672
- "epoch": 2.194977843426883,
2673
- "grad_norm": 0.172776997089386,
2674
- "learning_rate": 3.6481155793333855e-06,
2675
- "loss": 0.1424,
2676
- "step": 373
2677
- },
2678
- {
2679
- "epoch": 2.2008862629246675,
2680
- "grad_norm": 0.1909414380788803,
2681
- "learning_rate": 3.597385121382961e-06,
2682
- "loss": 0.1623,
2683
- "step": 374
2684
- },
2685
- {
2686
- "epoch": 2.206794682422452,
2687
- "grad_norm": 0.1874598264694214,
2688
- "learning_rate": 3.5469323908763507e-06,
2689
- "loss": 0.1586,
2690
- "step": 375
2691
- },
2692
- {
2693
- "epoch": 2.212703101920236,
2694
- "grad_norm": 0.19938765466213226,
2695
- "learning_rate": 3.496759576311235e-06,
2696
- "loss": 0.1502,
2697
- "step": 376
2698
- },
2699
- {
2700
- "epoch": 2.218611521418021,
2701
- "grad_norm": 0.18535371124744415,
2702
- "learning_rate": 3.4468688540433425e-06,
2703
- "loss": 0.161,
2704
- "step": 377
2705
- },
2706
- {
2707
- "epoch": 2.224519940915805,
2708
- "grad_norm": 0.1729782521724701,
2709
- "learning_rate": 3.3972623881920296e-06,
2710
- "loss": 0.1545,
2711
- "step": 378
2712
- },
2713
- {
2714
- "epoch": 2.2304283604135895,
2715
- "grad_norm": 0.18002398312091827,
2716
- "learning_rate": 3.3479423305463953e-06,
2717
- "loss": 0.1641,
2718
- "step": 379
2719
- },
2720
- {
2721
- "epoch": 2.236336779911374,
2722
- "grad_norm": 0.19208411872386932,
2723
- "learning_rate": 3.29891082047197e-06,
2724
- "loss": 0.1681,
2725
- "step": 380
2726
- },
2727
- {
2728
- "epoch": 2.242245199409158,
2729
- "grad_norm": 0.18353241682052612,
2730
- "learning_rate": 3.250169984817897e-06,
2731
- "loss": 0.1746,
2732
- "step": 381
2733
- },
2734
- {
2735
- "epoch": 2.2481536189069424,
2736
- "grad_norm": 0.18757563829421997,
2737
- "learning_rate": 3.2017219378246734e-06,
2738
- "loss": 0.1585,
2739
- "step": 382
2740
- },
2741
- {
2742
- "epoch": 2.2540620384047267,
2743
- "grad_norm": 0.1865403950214386,
2744
- "learning_rate": 3.1535687810324523e-06,
2745
- "loss": 0.1663,
2746
- "step": 383
2747
- },
2748
- {
2749
- "epoch": 2.259970457902511,
2750
- "grad_norm": 0.18189610540866852,
2751
- "learning_rate": 3.1057126031898843e-06,
2752
- "loss": 0.1551,
2753
- "step": 384
2754
- },
2755
- {
2756
- "epoch": 2.2658788774002954,
2757
- "grad_norm": 0.19876545667648315,
2758
- "learning_rate": 3.0581554801634927e-06,
2759
- "loss": 0.1633,
2760
- "step": 385
2761
- },
2762
- {
2763
- "epoch": 2.2717872968980797,
2764
- "grad_norm": 0.2080075889825821,
2765
- "learning_rate": 3.010899474847655e-06,
2766
- "loss": 0.1558,
2767
- "step": 386
2768
- },
2769
- {
2770
- "epoch": 2.277695716395864,
2771
- "grad_norm": 0.1996547430753708,
2772
- "learning_rate": 2.963946637075107e-06,
2773
- "loss": 0.1644,
2774
- "step": 387
2775
- },
2776
- {
2777
- "epoch": 2.2836041358936483,
2778
- "grad_norm": 0.18584613502025604,
2779
- "learning_rate": 2.9172990035280237e-06,
2780
- "loss": 0.1554,
2781
- "step": 388
2782
- },
2783
- {
2784
- "epoch": 2.2895125553914326,
2785
- "grad_norm": 0.19063319265842438,
2786
- "learning_rate": 2.8709585976496825e-06,
2787
- "loss": 0.1571,
2788
- "step": 389
2789
- },
2790
- {
2791
- "epoch": 2.2954209748892174,
2792
- "grad_norm": 0.17684786021709442,
2793
- "learning_rate": 2.8249274295566863e-06,
2794
- "loss": 0.1628,
2795
- "step": 390
2796
- },
2797
- {
2798
- "epoch": 2.3013293943870012,
2799
- "grad_norm": 0.19308146834373474,
2800
- "learning_rate": 2.7792074959517755e-06,
2801
- "loss": 0.1691,
2802
- "step": 391
2803
- },
2804
- {
2805
- "epoch": 2.307237813884786,
2806
- "grad_norm": 0.21937772631645203,
2807
- "learning_rate": 2.7338007800372024e-06,
2808
- "loss": 0.167,
2809
- "step": 392
2810
- },
2811
- {
2812
- "epoch": 2.3131462333825703,
2813
- "grad_norm": 0.20198598504066467,
2814
- "learning_rate": 2.688709251428725e-06,
2815
- "loss": 0.1754,
2816
- "step": 393
2817
- },
2818
- {
2819
- "epoch": 2.3190546528803546,
2820
- "grad_norm": 0.23595987260341644,
2821
- "learning_rate": 2.6439348660701634e-06,
2822
- "loss": 0.1787,
2823
- "step": 394
2824
- },
2825
- {
2826
- "epoch": 2.324963072378139,
2827
- "grad_norm": 0.21454961597919464,
2828
- "learning_rate": 2.599479566148544e-06,
2829
- "loss": 0.1768,
2830
- "step": 395
2831
- },
2832
- {
2833
- "epoch": 2.3308714918759232,
2834
- "grad_norm": 0.1733299344778061,
2835
- "learning_rate": 2.555345280009872e-06,
2836
- "loss": 0.1599,
2837
- "step": 396
2838
- },
2839
- {
2840
- "epoch": 2.3367799113737076,
2841
- "grad_norm": 0.2002709060907364,
2842
- "learning_rate": 2.5115339220754796e-06,
2843
- "loss": 0.1786,
2844
- "step": 397
2845
- },
2846
- {
2847
- "epoch": 2.342688330871492,
2848
- "grad_norm": 0.1906365305185318,
2849
- "learning_rate": 2.468047392758969e-06,
2850
- "loss": 0.1663,
2851
- "step": 398
2852
- },
2853
- {
2854
- "epoch": 2.348596750369276,
2855
- "grad_norm": 0.18185663223266602,
2856
- "learning_rate": 2.424887578383799e-06,
2857
- "loss": 0.1567,
2858
- "step": 399
2859
- },
2860
- {
2861
- "epoch": 2.348596750369276,
2862
- "eval_loss": 0.3546862304210663,
2863
- "eval_runtime": 4.1539,
2864
- "eval_samples_per_second": 13.24,
2865
- "eval_steps_per_second": 1.685,
2866
- "step": 399
2867
- },
2868
- {
2869
- "epoch": 2.3545051698670605,
2870
- "grad_norm": 0.21199966967105865,
2871
- "learning_rate": 2.382056351101454e-06,
2872
- "loss": 0.1655,
2873
- "step": 400
2874
- },
2875
- {
2876
- "epoch": 2.360413589364845,
2877
- "grad_norm": 0.2161186933517456,
2878
- "learning_rate": 2.339555568810221e-06,
2879
- "loss": 0.1595,
2880
- "step": 401
2881
- },
2882
- {
2883
- "epoch": 2.366322008862629,
2884
- "grad_norm": 0.1725192368030548,
2885
- "learning_rate": 2.2973870750746253e-06,
2886
- "loss": 0.1422,
2887
- "step": 402
2888
- },
2889
- {
2890
- "epoch": 2.3722304283604134,
2891
- "grad_norm": 0.19487659633159637,
2892
- "learning_rate": 2.2555526990454413e-06,
2893
- "loss": 0.1523,
2894
- "step": 403
2895
- },
2896
- {
2897
- "epoch": 2.3781388478581977,
2898
- "grad_norm": 0.19125092029571533,
2899
- "learning_rate": 2.21405425538036e-06,
2900
- "loss": 0.1689,
2901
- "step": 404
2902
- },
2903
- {
2904
- "epoch": 2.3840472673559825,
2905
- "grad_norm": 0.19150255620479584,
2906
- "learning_rate": 2.1728935441652687e-06,
2907
- "loss": 0.1547,
2908
- "step": 405
2909
- },
2910
- {
2911
- "epoch": 2.389955686853767,
2912
- "grad_norm": 0.20558638870716095,
2913
- "learning_rate": 2.132072350836164e-06,
2914
- "loss": 0.1563,
2915
- "step": 406
2916
- },
2917
- {
2918
- "epoch": 2.395864106351551,
2919
- "grad_norm": 0.19711565971374512,
2920
- "learning_rate": 2.09159244610172e-06,
2921
- "loss": 0.1639,
2922
- "step": 407
2923
- },
2924
- {
2925
- "epoch": 2.4017725258493354,
2926
- "grad_norm": 0.18662165105342865,
2927
- "learning_rate": 2.0514555858664663e-06,
2928
- "loss": 0.1553,
2929
- "step": 408
2930
- },
2931
- {
2932
- "epoch": 2.4076809453471197,
2933
- "grad_norm": 0.21406234800815582,
2934
- "learning_rate": 2.011663511154628e-06,
2935
- "loss": 0.1685,
2936
- "step": 409
2937
- },
2938
- {
2939
- "epoch": 2.413589364844904,
2940
- "grad_norm": 0.17959684133529663,
2941
- "learning_rate": 1.972217948034596e-06,
2942
- "loss": 0.1577,
2943
- "step": 410
2944
- },
2945
- {
2946
- "epoch": 2.4194977843426884,
2947
- "grad_norm": 0.19959183037281036,
2948
- "learning_rate": 1.93312060754407e-06,
2949
- "loss": 0.1517,
2950
- "step": 411
2951
- },
2952
- {
2953
- "epoch": 2.4254062038404727,
2954
- "grad_norm": 0.19815929234027863,
2955
- "learning_rate": 1.8943731856158299e-06,
2956
- "loss": 0.1621,
2957
- "step": 412
2958
- },
2959
- {
2960
- "epoch": 2.431314623338257,
2961
- "grad_norm": 0.20002977550029755,
2962
- "learning_rate": 1.8559773630041632e-06,
2963
- "loss": 0.1498,
2964
- "step": 413
2965
- },
2966
- {
2967
- "epoch": 2.4372230428360413,
2968
- "grad_norm": 0.185770645737648,
2969
- "learning_rate": 1.817934805211976e-06,
2970
- "loss": 0.1514,
2971
- "step": 414
2972
- },
2973
- {
2974
- "epoch": 2.4431314623338256,
2975
- "grad_norm": 0.18705467879772186,
2976
- "learning_rate": 1.7802471624185392e-06,
2977
- "loss": 0.1519,
2978
- "step": 415
2979
- },
2980
- {
2981
- "epoch": 2.44903988183161,
2982
- "grad_norm": 0.2045048624277115,
2983
- "learning_rate": 1.7429160694078983e-06,
2984
- "loss": 0.1593,
2985
- "step": 416
2986
- },
2987
- {
2988
- "epoch": 2.4549483013293942,
2989
- "grad_norm": 0.16726355254650116,
2990
- "learning_rate": 1.7059431454979825e-06,
2991
- "loss": 0.1555,
2992
- "step": 417
2993
- },
2994
- {
2995
- "epoch": 2.4608567208271785,
2996
- "grad_norm": 0.19943858683109283,
2997
- "learning_rate": 1.6693299944703479e-06,
2998
- "loss": 0.1619,
2999
- "step": 418
3000
- },
3001
- {
3002
- "epoch": 2.466765140324963,
3003
- "grad_norm": 0.18971259891986847,
3004
- "learning_rate": 1.6330782045006088e-06,
3005
- "loss": 0.1564,
3006
- "step": 419
3007
- },
3008
- {
3009
- "epoch": 2.4726735598227476,
3010
- "grad_norm": 0.18785475194454193,
3011
- "learning_rate": 1.5971893480895583e-06,
3012
- "loss": 0.1549,
3013
- "step": 420
3014
- },
3015
- {
3016
- "epoch": 2.478581979320532,
3017
- "grad_norm": 0.19187363982200623,
3018
- "learning_rate": 1.5616649819949492e-06,
3019
- "loss": 0.1662,
3020
- "step": 421
3021
- },
3022
- {
3023
- "epoch": 2.4844903988183162,
3024
- "grad_norm": 0.19647090137004852,
3025
- "learning_rate": 1.5265066471639701e-06,
3026
- "loss": 0.1659,
3027
- "step": 422
3028
- },
3029
- {
3030
- "epoch": 2.4903988183161005,
3031
- "grad_norm": 0.1751798689365387,
3032
- "learning_rate": 1.4917158686663992e-06,
3033
- "loss": 0.1623,
3034
- "step": 423
3035
- },
3036
- {
3037
- "epoch": 2.496307237813885,
3038
- "grad_norm": 0.207882359623909,
3039
- "learning_rate": 1.457294155628457e-06,
3040
- "loss": 0.1614,
3041
- "step": 424
3042
- },
3043
- {
3044
- "epoch": 2.502215657311669,
3045
- "grad_norm": 0.18520741164684296,
3046
- "learning_rate": 1.423243001167337e-06,
3047
- "loss": 0.1591,
3048
- "step": 425
3049
- },
3050
- {
3051
- "epoch": 2.5081240768094535,
3052
- "grad_norm": 0.19832998514175415,
3053
- "learning_rate": 1.3895638823264447e-06,
3054
- "loss": 0.1736,
3055
- "step": 426
3056
- },
3057
- {
3058
- "epoch": 2.514032496307238,
3059
- "grad_norm": 0.20617903769016266,
3060
- "learning_rate": 1.3562582600113295e-06,
3061
- "loss": 0.1578,
3062
- "step": 427
3063
- },
3064
- {
3065
- "epoch": 2.519940915805022,
3066
- "grad_norm": 0.17708441615104675,
3067
- "learning_rate": 1.3233275789263034e-06,
3068
- "loss": 0.1527,
3069
- "step": 428
3070
- },
3071
- {
3072
- "epoch": 2.5258493353028064,
3073
- "grad_norm": 0.18367134034633636,
3074
- "learning_rate": 1.2907732675117878e-06,
3075
- "loss": 0.1527,
3076
- "step": 429
3077
- },
3078
- {
3079
- "epoch": 2.5317577548005907,
3080
- "grad_norm": 0.20006564259529114,
3081
- "learning_rate": 1.258596737882345e-06,
3082
- "loss": 0.1659,
3083
- "step": 430
3084
- },
3085
- {
3086
- "epoch": 2.537666174298375,
3087
- "grad_norm": 0.18874911963939667,
3088
- "learning_rate": 1.2267993857654182e-06,
3089
- "loss": 0.1597,
3090
- "step": 431
3091
- },
3092
- {
3093
- "epoch": 2.5435745937961594,
3094
- "grad_norm": 0.17660176753997803,
3095
- "learning_rate": 1.1953825904408033e-06,
3096
- "loss": 0.1557,
3097
- "step": 432
3098
- },
3099
- {
3100
- "epoch": 2.549483013293944,
3101
- "grad_norm": 0.18326181173324585,
3102
- "learning_rate": 1.1643477146808092e-06,
3103
- "loss": 0.1416,
3104
- "step": 433
3105
- },
3106
- {
3107
- "epoch": 2.555391432791728,
3108
- "grad_norm": 0.1885116845369339,
3109
- "learning_rate": 1.1336961046911443e-06,
3110
- "loss": 0.164,
3111
- "step": 434
3112
- },
3113
- {
3114
- "epoch": 2.5612998522895127,
3115
- "grad_norm": 0.18039266765117645,
3116
- "learning_rate": 1.1034290900525279e-06,
3117
- "loss": 0.1536,
3118
- "step": 435
3119
- },
3120
- {
3121
- "epoch": 2.567208271787297,
3122
- "grad_norm": 0.19202165305614471,
3123
- "learning_rate": 1.0735479836630136e-06,
3124
- "loss": 0.1582,
3125
- "step": 436
3126
- },
3127
- {
3128
- "epoch": 2.5731166912850814,
3129
- "grad_norm": 0.1921052783727646,
3130
- "learning_rate": 1.0440540816810395e-06,
3131
- "loss": 0.1634,
3132
- "step": 437
3133
- },
3134
- {
3135
- "epoch": 2.5790251107828657,
3136
- "grad_norm": 0.20912404358386993,
3137
- "learning_rate": 1.0149486634692019e-06,
3138
- "loss": 0.1635,
3139
- "step": 438
3140
- },
3141
- {
3142
- "epoch": 2.58493353028065,
3143
- "grad_norm": 0.19391915202140808,
3144
- "learning_rate": 9.862329915387669e-07,
3145
- "loss": 0.1591,
3146
- "step": 439
3147
- },
3148
- {
3149
- "epoch": 2.5908419497784343,
3150
- "grad_norm": 0.190352201461792,
3151
- "learning_rate": 9.57908311494896e-07,
3152
- "loss": 0.1603,
3153
- "step": 440
3154
- },
3155
- {
3156
- "epoch": 2.5967503692762186,
3157
- "grad_norm": 0.22487477958202362,
3158
- "learning_rate": 9.299758519826274e-07,
3159
- "loss": 0.1618,
3160
- "step": 441
3161
- },
3162
- {
3163
- "epoch": 2.602658788774003,
3164
- "grad_norm": 0.19770359992980957,
3165
- "learning_rate": 9.024368246335735e-07,
3166
- "loss": 0.1753,
3167
- "step": 442
3168
- },
3169
- {
3170
- "epoch": 2.6085672082717872,
3171
- "grad_norm": 0.1729031354188919,
3172
- "learning_rate": 8.752924240133587e-07,
3173
- "loss": 0.1402,
3174
- "step": 443
3175
- },
3176
- {
3177
- "epoch": 2.6144756277695715,
3178
- "grad_norm": 0.1834450215101242,
3179
- "learning_rate": 8.485438275698154e-07,
3180
- "loss": 0.1566,
3181
- "step": 444
3182
- },
3183
- {
3184
- "epoch": 2.620384047267356,
3185
- "grad_norm": 0.182594433426857,
3186
- "learning_rate": 8.221921955819035e-07,
3187
- "loss": 0.147,
3188
- "step": 445
3189
- },
3190
- {
3191
- "epoch": 2.62629246676514,
3192
- "grad_norm": 0.1812487244606018,
3193
- "learning_rate": 7.96238671109374e-07,
3194
- "loss": 0.1495,
3195
- "step": 446
3196
- },
3197
- {
3198
- "epoch": 2.6322008862629245,
3199
- "grad_norm": 0.18065108358860016,
3200
- "learning_rate": 7.706843799431985e-07,
3201
- "loss": 0.1586,
3202
- "step": 447
3203
- },
3204
- {
3205
- "epoch": 2.6381093057607092,
3206
- "grad_norm": 0.18765750527381897,
3207
- "learning_rate": 7.455304305567279e-07,
3208
- "loss": 0.1531,
3209
- "step": 448
3210
- },
3211
- {
3212
- "epoch": 2.644017725258493,
3213
- "grad_norm": 0.18097743391990662,
3214
- "learning_rate": 7.207779140576066e-07,
3215
- "loss": 0.163,
3216
- "step": 449
3217
- },
3218
- {
3219
- "epoch": 2.649926144756278,
3220
- "grad_norm": 0.1995679885149002,
3221
- "learning_rate": 6.964279041404553e-07,
3222
- "loss": 0.1541,
3223
- "step": 450
3224
- },
3225
- {
3226
- "epoch": 2.655834564254062,
3227
- "grad_norm": 0.1919400990009308,
3228
- "learning_rate": 6.724814570402871e-07,
3229
- "loss": 0.1547,
3230
- "step": 451
3231
- },
3232
- {
3233
- "epoch": 2.6617429837518465,
3234
- "grad_norm": 0.17543965578079224,
3235
- "learning_rate": 6.489396114866942e-07,
3236
- "loss": 0.1612,
3237
- "step": 452
3238
- },
3239
- {
3240
- "epoch": 2.667651403249631,
3241
- "grad_norm": 0.19605553150177002,
3242
- "learning_rate": 6.258033886587911e-07,
3243
- "loss": 0.1582,
3244
- "step": 453
3245
- },
3246
- {
3247
- "epoch": 2.673559822747415,
3248
- "grad_norm": 0.19919288158416748,
3249
- "learning_rate": 6.030737921409169e-07,
3250
- "loss": 0.1562,
3251
- "step": 454
3252
- },
3253
- {
3254
- "epoch": 2.6794682422451994,
3255
- "grad_norm": 0.18255572021007538,
3256
- "learning_rate": 5.80751807879103e-07,
3257
- "loss": 0.1483,
3258
- "step": 455
3259
- },
3260
- {
3261
- "epoch": 2.6853766617429837,
3262
- "grad_norm": 0.18179580569267273,
3263
- "learning_rate": 5.588384041383089e-07,
3264
- "loss": 0.1571,
3265
- "step": 456
3266
- },
3267
- {
3268
- "epoch": 2.6853766617429837,
3269
- "eval_loss": 0.3530711829662323,
3270
- "eval_runtime": 4.2457,
3271
- "eval_samples_per_second": 12.954,
3272
- "eval_steps_per_second": 1.649,
3273
- "step": 456
3274
- },
3275
- {
3276
- "epoch": 2.691285081240768,
3277
- "grad_norm": 0.21133022010326385,
3278
- "learning_rate": 5.373345314604206e-07,
3279
- "loss": 0.1439,
3280
- "step": 457
3281
- },
3282
- {
3283
- "epoch": 2.6971935007385524,
3284
- "grad_norm": 0.19411684572696686,
3285
- "learning_rate": 5.162411226230102e-07,
3286
- "loss": 0.1586,
3287
- "step": 458
3288
- },
3289
- {
3290
- "epoch": 2.7031019202363367,
3291
- "grad_norm": 0.17610496282577515,
3292
- "learning_rate": 4.955590925988896e-07,
3293
- "loss": 0.1503,
3294
- "step": 459
3295
- },
3296
- {
3297
- "epoch": 2.709010339734121,
3298
- "grad_norm": 0.1826782077550888,
3299
- "learning_rate": 4.7528933851641036e-07,
3300
- "loss": 0.1507,
3301
- "step": 460
3302
- },
3303
- {
3304
- "epoch": 2.7149187592319057,
3305
- "grad_norm": 0.18727242946624756,
3306
- "learning_rate": 4.5543273962054934e-07,
3307
- "loss": 0.1727,
3308
- "step": 461
3309
- },
3310
- {
3311
- "epoch": 2.7208271787296896,
3312
- "grad_norm": 0.19949719309806824,
3313
- "learning_rate": 4.359901572347758e-07,
3314
- "loss": 0.1667,
3315
- "step": 462
3316
- },
3317
- {
3318
- "epoch": 2.7267355982274744,
3319
- "grad_norm": 0.1877647191286087,
3320
- "learning_rate": 4.169624347236878e-07,
3321
- "loss": 0.1536,
3322
- "step": 463
3323
- },
3324
- {
3325
- "epoch": 2.7326440177252582,
3326
- "grad_norm": 0.1849421262741089,
3327
- "learning_rate": 3.983503974564229e-07,
3328
- "loss": 0.1585,
3329
- "step": 464
3330
- },
3331
- {
3332
- "epoch": 2.738552437223043,
3333
- "grad_norm": 0.1909538358449936,
3334
- "learning_rate": 3.801548527708621e-07,
3335
- "loss": 0.1607,
3336
- "step": 465
3337
- },
3338
- {
3339
- "epoch": 2.7444608567208273,
3340
- "grad_norm": 0.18393336236476898,
3341
- "learning_rate": 3.6237658993861114e-07,
3342
- "loss": 0.1518,
3343
- "step": 466
3344
- },
3345
- {
3346
- "epoch": 2.7503692762186116,
3347
- "grad_norm": 0.20774975419044495,
3348
- "learning_rate": 3.450163801307582e-07,
3349
- "loss": 0.1654,
3350
- "step": 467
3351
- },
3352
- {
3353
- "epoch": 2.756277695716396,
3354
- "grad_norm": 0.20085738599300385,
3355
- "learning_rate": 3.280749763844293e-07,
3356
- "loss": 0.1601,
3357
- "step": 468
3358
- },
3359
- {
3360
- "epoch": 2.7621861152141802,
3361
- "grad_norm": 0.20334100723266602,
3362
- "learning_rate": 3.115531135701155e-07,
3363
- "loss": 0.1658,
3364
- "step": 469
3365
- },
3366
- {
3367
- "epoch": 2.7680945347119645,
3368
- "grad_norm": 0.17381995916366577,
3369
- "learning_rate": 2.954515083598064e-07,
3370
- "loss": 0.1429,
3371
- "step": 470
3372
- },
3373
- {
3374
- "epoch": 2.774002954209749,
3375
- "grad_norm": 0.18408989906311035,
3376
- "learning_rate": 2.7977085919589253e-07,
3377
- "loss": 0.1543,
3378
- "step": 471
3379
- },
3380
- {
3381
- "epoch": 2.779911373707533,
3382
- "grad_norm": 0.18627220392227173,
3383
- "learning_rate": 2.6451184626087646e-07,
3384
- "loss": 0.1539,
3385
- "step": 472
3386
- },
3387
- {
3388
- "epoch": 2.7858197932053175,
3389
- "grad_norm": 0.26321884989738464,
3390
- "learning_rate": 2.4967513144786736e-07,
3391
- "loss": 0.149,
3392
- "step": 473
3393
- },
3394
- {
3395
- "epoch": 2.791728212703102,
3396
- "grad_norm": 0.19109995663166046,
3397
- "learning_rate": 2.3526135833186527e-07,
3398
- "loss": 0.1721,
3399
- "step": 474
3400
- },
3401
- {
3402
- "epoch": 2.797636632200886,
3403
- "grad_norm": 0.18221734464168549,
3404
- "learning_rate": 2.2127115214184868e-07,
3405
- "loss": 0.1494,
3406
- "step": 475
3407
- },
3408
- {
3409
- "epoch": 2.803545051698671,
3410
- "grad_norm": 0.18527840077877045,
3411
- "learning_rate": 2.0770511973365436e-07,
3412
- "loss": 0.1429,
3413
- "step": 476
3414
- },
3415
- {
3416
- "epoch": 2.8094534711964547,
3417
- "grad_norm": 0.19647812843322754,
3418
- "learning_rate": 1.9456384956365149e-07,
3419
- "loss": 0.1617,
3420
- "step": 477
3421
- },
3422
- {
3423
- "epoch": 2.8153618906942395,
3424
- "grad_norm": 0.18623670935630798,
3425
- "learning_rate": 1.8184791166321546e-07,
3426
- "loss": 0.1533,
3427
- "step": 478
3428
- },
3429
- {
3430
- "epoch": 2.821270310192024,
3431
- "grad_norm": 0.17866790294647217,
3432
- "learning_rate": 1.6955785761400444e-07,
3433
- "loss": 0.1484,
3434
- "step": 479
3435
- },
3436
- {
3437
- "epoch": 2.827178729689808,
3438
- "grad_norm": 0.20726434886455536,
3439
- "learning_rate": 1.5769422052403172e-07,
3440
- "loss": 0.1725,
3441
- "step": 480
3442
- },
3443
- {
3444
- "epoch": 2.8330871491875924,
3445
- "grad_norm": 0.19879738986492157,
3446
- "learning_rate": 1.462575150045409e-07,
3447
- "loss": 0.1597,
3448
- "step": 481
3449
- },
3450
- {
3451
- "epoch": 2.8389955686853767,
3452
- "grad_norm": 0.18986207246780396,
3453
- "learning_rate": 1.3524823714768375e-07,
3454
- "loss": 0.1555,
3455
- "step": 482
3456
- },
3457
- {
3458
- "epoch": 2.844903988183161,
3459
- "grad_norm": 0.18916821479797363,
3460
- "learning_rate": 1.2466686450499866e-07,
3461
- "loss": 0.1535,
3462
- "step": 483
3463
- },
3464
- {
3465
- "epoch": 2.8508124076809453,
3466
- "grad_norm": 0.1795819252729416,
3467
- "learning_rate": 1.145138560667003e-07,
3468
- "loss": 0.1551,
3469
- "step": 484
3470
- },
3471
- {
3472
- "epoch": 2.8567208271787297,
3473
- "grad_norm": 0.19261349737644196,
3474
- "learning_rate": 1.0478965224176907e-07,
3475
- "loss": 0.1718,
3476
- "step": 485
3477
- },
3478
- {
3479
- "epoch": 2.862629246676514,
3480
- "grad_norm": 0.19459344446659088,
3481
- "learning_rate": 9.549467483884412e-08,
3482
- "loss": 0.1634,
3483
- "step": 486
3484
- },
3485
- {
3486
- "epoch": 2.8685376661742983,
3487
- "grad_norm": 0.1787070482969284,
3488
- "learning_rate": 8.662932704792793e-08,
3489
- "loss": 0.1505,
3490
- "step": 487
3491
- },
3492
- {
3493
- "epoch": 2.8744460856720826,
3494
- "grad_norm": 0.17719818651676178,
3495
- "learning_rate": 7.819399342290034e-08,
3496
- "loss": 0.1443,
3497
- "step": 488
3498
- },
3499
- {
3500
- "epoch": 2.880354505169867,
3501
- "grad_norm": 0.1904664784669876,
3502
- "learning_rate": 7.018903986483083e-08,
3503
- "loss": 0.1533,
3504
- "step": 489
3505
- },
3506
- {
3507
- "epoch": 2.886262924667651,
3508
- "grad_norm": 0.17149882018566132,
3509
- "learning_rate": 6.261481360611332e-08,
3510
- "loss": 0.1441,
3511
- "step": 490
3512
- },
3513
- {
3514
- "epoch": 2.892171344165436,
3515
- "grad_norm": 0.19712674617767334,
3516
- "learning_rate": 5.547164319540277e-08,
3517
- "loss": 0.1539,
3518
- "step": 491
3519
- },
3520
- {
3521
- "epoch": 2.89807976366322,
3522
- "grad_norm": 0.1919722855091095,
3523
- "learning_rate": 4.8759838483358745e-08,
3524
- "loss": 0.1586,
3525
- "step": 492
3526
- },
3527
- {
3528
- "epoch": 2.9039881831610046,
3529
- "grad_norm": 0.19245754182338715,
3530
- "learning_rate": 4.2479690609213976e-08,
3531
- "loss": 0.1595,
3532
- "step": 493
3533
- },
3534
- {
3535
- "epoch": 2.909896602658789,
3536
- "grad_norm": 0.17940041422843933,
3537
- "learning_rate": 3.663147198813666e-08,
3538
- "loss": 0.1489,
3539
- "step": 494
3540
- },
3541
- {
3542
- "epoch": 2.9158050221565732,
3543
- "grad_norm": 0.19435949623584747,
3544
- "learning_rate": 3.12154362994177e-08,
3545
- "loss": 0.161,
3546
- "step": 495
3547
- },
3548
- {
3549
- "epoch": 2.9217134416543575,
3550
- "grad_norm": 0.19207920134067535,
3551
- "learning_rate": 2.6231818475468407e-08,
3552
- "loss": 0.1587,
3553
- "step": 496
3554
- },
3555
- {
3556
- "epoch": 2.927621861152142,
3557
- "grad_norm": 0.18945875763893127,
3558
- "learning_rate": 2.1680834691628627e-08,
3559
- "loss": 0.1647,
3560
- "step": 497
3561
- },
3562
- {
3563
- "epoch": 2.933530280649926,
3564
- "grad_norm": 0.1606532335281372,
3565
- "learning_rate": 1.7562682356786488e-08,
3566
- "loss": 0.1479,
3567
- "step": 498
3568
- },
3569
- {
3570
- "epoch": 2.9394387001477105,
3571
- "grad_norm": 0.19565951824188232,
3572
- "learning_rate": 1.3877540104818566e-08,
3573
- "loss": 0.1499,
3574
- "step": 499
3575
- },
3576
- {
3577
- "epoch": 2.945347119645495,
3578
- "grad_norm": 0.18852145969867706,
3579
- "learning_rate": 1.062556778684276e-08,
3580
- "loss": 0.1627,
3581
- "step": 500
3582
- },
3583
- {
3584
- "epoch": 2.951255539143279,
3585
- "grad_norm": 0.21597710251808167,
3586
- "learning_rate": 7.806906464281617e-09,
3587
- "loss": 0.1611,
3588
- "step": 501
3589
- },
3590
- {
3591
- "epoch": 2.9571639586410634,
3592
- "grad_norm": 0.1838308870792389,
3593
- "learning_rate": 5.421678402741659e-09,
3594
- "loss": 0.1573,
3595
- "step": 502
3596
- },
3597
- {
3598
- "epoch": 2.9630723781388477,
3599
- "grad_norm": 0.17066508531570435,
3600
- "learning_rate": 3.4699870667165292e-09,
3601
- "loss": 0.155,
3602
- "step": 503
3603
- },
3604
- {
3605
- "epoch": 2.9689807976366325,
3606
- "grad_norm": 0.1644657701253891,
3607
- "learning_rate": 1.951917115091684e-09,
3608
- "loss": 0.1425,
3609
- "step": 504
3610
- },
3611
- {
3612
- "epoch": 2.9748892171344163,
3613
- "grad_norm": 0.20272395014762878,
3614
- "learning_rate": 8.675343974762219e-10,
3615
- "loss": 0.1622,
3616
- "step": 505
3617
- },
3618
- {
3619
- "epoch": 2.980797636632201,
3620
- "grad_norm": 0.17617884278297424,
3621
- "learning_rate": 2.1688595134516932e-10,
3622
- "loss": 0.1558,
3623
- "step": 506
3624
- },
3625
- {
3626
- "epoch": 2.986706056129985,
3627
- "grad_norm": 0.17983730137348175,
3628
- "learning_rate": 0.0,
3629
- "loss": 0.1573,
3630
- "step": 507
3631
- }
3632
- ],
3633
- "logging_steps": 1,
3634
- "max_steps": 507,
3635
- "num_input_tokens_seen": 0,
3636
- "num_train_epochs": 3,
3637
- "save_steps": 169,
3638
- "stateful_callbacks": {
3639
- "TrainerControl": {
3640
- "args": {
3641
- "should_epoch_stop": false,
3642
- "should_evaluate": false,
3643
- "should_log": false,
3644
- "should_save": true,
3645
- "should_training_stop": true
3646
- },
3647
- "attributes": {}
3648
- }
3649
- },
3650
- "total_flos": 8.666031360248381e+17,
3651
- "train_batch_size": 8,
3652
- "trial_name": null,
3653
- "trial_params": null
3654
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b-mb_qwen/checkpoint-507/training_args.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:0d657c9786dc6c8c08c64e914a96a01397e0a80c1d965337767408bc8f80e5cf
3
- size 10744
 
 
 
 
3b-mb_qwen/checkpoint-507/vocab.json DELETED
The diff for this file is too large to render. See raw diff
 
3b-mb_qwen/checkpoint-507/zero_to_fp32.py DELETED
@@ -1,760 +0,0 @@
1
- #!/usr/bin/env python
2
-
3
- # Copyright (c) Microsoft Corporation.
4
- # SPDX-License-Identifier: Apache-2.0
5
-
6
- # DeepSpeed Team
7
-
8
- # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
- # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
- # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
- # application.
12
- #
13
- # example:
14
- # python zero_to_fp32.py . output_dir/
15
- # or
16
- # python zero_to_fp32.py . output_dir/ --safe_serialization
17
-
18
- import argparse
19
- import torch
20
- import glob
21
- import math
22
- import os
23
- import re
24
- import gc
25
- import json
26
- import numpy as np
27
- from tqdm import tqdm
28
- from collections import OrderedDict
29
- from dataclasses import dataclass
30
-
31
- # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
- # DeepSpeed data structures it has to be available in the current python environment.
33
- from deepspeed.utils import logger
34
- from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
- FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
- FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
-
38
-
39
- @dataclass
40
- class zero_model_state:
41
- buffers: dict()
42
- param_shapes: dict()
43
- shared_params: list
44
- ds_version: int
45
- frozen_param_shapes: dict()
46
- frozen_param_fragments: dict()
47
-
48
-
49
- debug = 0
50
-
51
- # load to cpu
52
- device = torch.device('cpu')
53
-
54
-
55
- def atoi(text):
56
- return int(text) if text.isdigit() else text
57
-
58
-
59
- def natural_keys(text):
60
- '''
61
- alist.sort(key=natural_keys) sorts in human order
62
- http://nedbatchelder.com/blog/200712/human_sorting.html
63
- (See Toothy's implementation in the comments)
64
- '''
65
- return [atoi(c) for c in re.split(r'(\d+)', text)]
66
-
67
-
68
- def get_model_state_file(checkpoint_dir, zero_stage):
69
- if not os.path.isdir(checkpoint_dir):
70
- raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
-
72
- # there should be only one file
73
- if zero_stage <= 2:
74
- file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
- elif zero_stage == 3:
76
- file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
-
78
- if not os.path.exists(file):
79
- raise FileNotFoundError(f"can't find model states file at '{file}'")
80
-
81
- return file
82
-
83
-
84
- def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
- # XXX: need to test that this simple glob rule works for multi-node setup too
86
- ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
-
88
- if len(ckpt_files) == 0:
89
- raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
-
91
- return ckpt_files
92
-
93
-
94
- def get_optim_files(checkpoint_dir):
95
- return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
-
97
-
98
- def get_model_state_files(checkpoint_dir):
99
- return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
-
101
-
102
- def parse_model_states(files):
103
- zero_model_states = []
104
- for file in files:
105
- state_dict = torch.load(file, map_location=device, weights_only=False)
106
-
107
- if BUFFER_NAMES not in state_dict:
108
- raise ValueError(f"{file} is not a model state checkpoint")
109
- buffer_names = state_dict[BUFFER_NAMES]
110
- if debug:
111
- print("Found buffers:", buffer_names)
112
-
113
- # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
- buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
- param_shapes = state_dict[PARAM_SHAPES]
116
-
117
- # collect parameters that are included in param_shapes
118
- param_names = []
119
- for s in param_shapes:
120
- for name in s.keys():
121
- param_names.append(name)
122
-
123
- # update with frozen parameters
124
- frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
- if frozen_param_shapes is not None:
126
- if debug:
127
- print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
- param_names += list(frozen_param_shapes.keys())
129
-
130
- # handle shared params
131
- shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
-
133
- ds_version = state_dict.get(DS_VERSION, None)
134
-
135
- frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
-
137
- z_model_state = zero_model_state(buffers=buffers,
138
- param_shapes=param_shapes,
139
- shared_params=shared_params,
140
- ds_version=ds_version,
141
- frozen_param_shapes=frozen_param_shapes,
142
- frozen_param_fragments=frozen_param_fragments)
143
- zero_model_states.append(z_model_state)
144
-
145
- return zero_model_states
146
-
147
-
148
- def parse_optim_states(files, ds_checkpoint_dir):
149
- total_files = len(files)
150
- state_dicts = []
151
- for f in tqdm(files, desc='Loading checkpoint shards'):
152
- state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
- # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
- # and also handle the case where it was already removed by another helper script
155
- state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
- state_dicts.append(state_dict)
157
-
158
- if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
- raise ValueError(f"{files[0]} is not a zero checkpoint")
160
- zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
- world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
-
163
- # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
- # parameters can be different from data parallelism for non-expert parameters. So we can just
165
- # use the max of the partition_count to get the dp world_size.
166
-
167
- if type(world_size) is list:
168
- world_size = max(world_size)
169
-
170
- if world_size != total_files:
171
- raise ValueError(
172
- f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
- "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
- )
175
-
176
- # the groups are named differently in each stage
177
- if zero_stage <= 2:
178
- fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
- elif zero_stage == 3:
180
- fp32_groups_key = FP32_FLAT_GROUPS
181
- else:
182
- raise ValueError(f"unknown zero stage {zero_stage}")
183
-
184
- fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
- return zero_stage, world_size, fp32_flat_groups
186
-
187
-
188
- def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
- """
190
- Returns fp32 state_dict reconstructed from ds checkpoint
191
-
192
- Args:
193
- - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
-
195
- """
196
- print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
-
198
- optim_files = get_optim_files(ds_checkpoint_dir)
199
- zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
- print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
-
202
- model_files = get_model_state_files(ds_checkpoint_dir)
203
-
204
- zero_model_states = parse_model_states(model_files)
205
- print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
-
207
- if zero_stage <= 2:
208
- return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
- exclude_frozen_parameters)
210
- elif zero_stage == 3:
211
- return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
- exclude_frozen_parameters)
213
-
214
-
215
- def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
- if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
- return
218
-
219
- frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
- frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
-
222
- if debug:
223
- num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
- print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
-
226
- wanted_params = len(frozen_param_shapes)
227
- wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
- avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
- print(f'Frozen params: Have {avail_numel} numels to process.')
230
- print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
-
232
- total_params = 0
233
- total_numel = 0
234
- for name, shape in frozen_param_shapes.items():
235
- total_params += 1
236
- unpartitioned_numel = shape.numel()
237
- total_numel += unpartitioned_numel
238
-
239
- state_dict[name] = frozen_param_fragments[name]
240
-
241
- if debug:
242
- print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
-
244
- print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
-
246
-
247
- def _has_callable(obj, fn):
248
- attr = getattr(obj, fn, None)
249
- return callable(attr)
250
-
251
-
252
- def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
- param_shapes = zero_model_states[0].param_shapes
254
-
255
- # Reconstruction protocol:
256
- #
257
- # XXX: document this
258
-
259
- if debug:
260
- for i in range(world_size):
261
- for j in range(len(fp32_flat_groups[0])):
262
- print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
-
264
- # XXX: memory usage doubles here (zero2)
265
- num_param_groups = len(fp32_flat_groups[0])
266
- merged_single_partition_of_fp32_groups = []
267
- for i in range(num_param_groups):
268
- merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
- full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
- merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
- avail_numel = sum(
272
- [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
-
274
- if debug:
275
- wanted_params = sum([len(shapes) for shapes in param_shapes])
276
- wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
- # not asserting if there is a mismatch due to possible padding
278
- print(f"Have {avail_numel} numels to process.")
279
- print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
-
281
- # params
282
- # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
- # out-of-core computing solution
284
- total_numel = 0
285
- total_params = 0
286
- for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
- offset = 0
288
- avail_numel = full_single_fp32_vector.numel()
289
- for name, shape in shapes.items():
290
-
291
- unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
- total_numel += unpartitioned_numel
293
- total_params += 1
294
-
295
- if debug:
296
- print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
- state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
- offset += unpartitioned_numel
299
-
300
- # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
- # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
- # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
- # live optimizer object, so we are checking that the numbers are within the right range
304
- align_to = 2 * world_size
305
-
306
- def zero2_align(x):
307
- return align_to * math.ceil(x / align_to)
308
-
309
- if debug:
310
- print(f"original offset={offset}, avail_numel={avail_numel}")
311
-
312
- offset = zero2_align(offset)
313
- avail_numel = zero2_align(avail_numel)
314
-
315
- if debug:
316
- print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
-
318
- # Sanity check
319
- if offset != avail_numel:
320
- raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
-
322
- print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
-
324
-
325
- def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
- exclude_frozen_parameters):
327
- state_dict = OrderedDict()
328
-
329
- # buffers
330
- buffers = zero_model_states[0].buffers
331
- state_dict.update(buffers)
332
- if debug:
333
- print(f"added {len(buffers)} buffers")
334
-
335
- if not exclude_frozen_parameters:
336
- _zero2_merge_frozen_params(state_dict, zero_model_states)
337
-
338
- _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
-
340
- # recover shared parameters
341
- for pair in zero_model_states[0].shared_params:
342
- if pair[1] in state_dict:
343
- state_dict[pair[0]] = state_dict[pair[1]]
344
-
345
- return state_dict
346
-
347
-
348
- def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
- remainder = unpartitioned_numel % world_size
350
- padding_numel = (world_size - remainder) if remainder else 0
351
- partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
- return partitioned_numel, padding_numel
353
-
354
-
355
- def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
- if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
- return
358
-
359
- if debug:
360
- for i in range(world_size):
361
- num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
- print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
-
364
- frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
- wanted_params = len(frozen_param_shapes)
366
- wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
- avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
- print(f'Frozen params: Have {avail_numel} numels to process.')
369
- print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
-
371
- total_params = 0
372
- total_numel = 0
373
- for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
- total_params += 1
375
- unpartitioned_numel = shape.numel()
376
- total_numel += unpartitioned_numel
377
-
378
- param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
- state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
-
381
- partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
-
383
- if debug:
384
- print(
385
- f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
- )
387
-
388
- print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
-
390
-
391
- class GatheredTensor:
392
- """
393
- A pseudo tensor that collects partitioned weights.
394
- It is more memory efficient when there are multiple groups.
395
- """
396
-
397
- def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
- self.flat_groups = flat_groups
399
- self.flat_groups_offset = flat_groups_offset
400
- self.offset = offset
401
- self.partitioned_numel = partitioned_numel
402
- self.shape = shape
403
- self.dtype = self.flat_groups[0][0].dtype
404
-
405
- def contiguous(self):
406
- """
407
- Merge partitioned weights from flat_groups into a single tensor.
408
- """
409
- end_idx = self.offset + self.partitioned_numel
410
- world_size = len(self.flat_groups)
411
- pad_flat_param_chunks = []
412
-
413
- for rank_i in range(world_size):
414
- # for each rank, we need to collect weights from related group/groups
415
- flat_groups_at_rank_i = self.flat_groups[rank_i]
416
- start_group_id = None
417
- end_group_id = None
418
- for group_id in range(len(self.flat_groups_offset)):
419
- if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
- start_group_id = group_id
421
- if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
- end_group_id = group_id
423
- break
424
- # collect weights from related group/groups
425
- for group_id in range(start_group_id, end_group_id + 1):
426
- flat_tensor = flat_groups_at_rank_i[group_id]
427
- start_offset = self.offset - self.flat_groups_offset[group_id]
428
- end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
- pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
-
431
- # collect weights from all ranks
432
- pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
- param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
- return param
435
-
436
-
437
- def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
- param_shapes = zero_model_states[0].param_shapes
439
- avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
-
441
- # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
- # param, re-consolidating each param, while dealing with padding if any
443
-
444
- # merge list of dicts, preserving order
445
- param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
-
447
- if debug:
448
- for i in range(world_size):
449
- print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
-
451
- wanted_params = len(param_shapes)
452
- wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
- # not asserting if there is a mismatch due to possible padding
454
- avail_numel = fp32_flat_groups[0].numel() * world_size
455
- print(f"Trainable params: Have {avail_numel} numels to process.")
456
- print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
-
458
- # params
459
- # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
- # out-of-core computing solution
461
- offset = 0
462
- total_numel = 0
463
- total_params = 0
464
- flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
- for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
- unpartitioned_numel = shape.numel()
467
- total_numel += unpartitioned_numel
468
- total_params += 1
469
- partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
-
471
- if debug:
472
- print(
473
- f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
- )
475
-
476
- # memory efficient tensor
477
- tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
- state_dict[name] = tensor
479
- offset += partitioned_numel
480
-
481
- offset *= world_size
482
-
483
- # Sanity check
484
- if offset != avail_numel:
485
- raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
-
487
- print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
-
489
-
490
- def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
- exclude_frozen_parameters):
492
- state_dict = OrderedDict()
493
-
494
- # buffers
495
- buffers = zero_model_states[0].buffers
496
- state_dict.update(buffers)
497
- if debug:
498
- print(f"added {len(buffers)} buffers")
499
-
500
- if not exclude_frozen_parameters:
501
- _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
-
503
- _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
-
505
- # recover shared parameters
506
- for pair in zero_model_states[0].shared_params:
507
- if pair[1] in state_dict:
508
- state_dict[pair[0]] = state_dict[pair[1]]
509
-
510
- return state_dict
511
-
512
-
513
- def to_torch_tensor(state_dict, return_empty_tensor=False):
514
- """
515
- Convert state_dict of GatheredTensor to torch tensor
516
- """
517
- torch_state_dict = {}
518
- converted_tensors = {}
519
- for name, tensor in state_dict.items():
520
- tensor_id = id(tensor)
521
- if tensor_id in converted_tensors: # shared tensors
522
- shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
- torch_state_dict[name] = shared_tensor
524
- else:
525
- converted_tensors[tensor_id] = name
526
- if return_empty_tensor:
527
- torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
- else:
529
- torch_state_dict[name] = tensor.contiguous()
530
- return torch_state_dict
531
-
532
-
533
- def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
- tag=None,
535
- exclude_frozen_parameters=False,
536
- lazy_mode=False):
537
- """
538
- Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
- ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
- via a model hub.
541
-
542
- Args:
543
- - ``checkpoint_dir``: path to the desired checkpoint folder
544
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
- - ``exclude_frozen_parameters``: exclude frozen parameters
546
- - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
- Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
-
549
- Returns:
550
- - pytorch ``state_dict``
551
-
552
- A typical usage might be ::
553
-
554
- from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
- # do the training and checkpoint saving
556
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
- model = model.cpu() # move to cpu
558
- model.load_state_dict(state_dict)
559
- # submit to model hub or save the model to share with others
560
-
561
- In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
- application. i.e. you will need to re-initialize the deepspeed engine, since
563
- ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
-
565
- If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
-
567
- Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
- You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
- the checkpoint. Or you can load state_dict in lazy mode ::
570
-
571
- from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
- for name, lazy_tensor in state_dict.item():
574
- tensor = lazy_tensor.contiguous() # to cpu
575
- print(name, tensor)
576
- # del tensor to release memory if it no longer in use
577
- """
578
- if tag is None:
579
- latest_path = os.path.join(checkpoint_dir, 'latest')
580
- if os.path.isfile(latest_path):
581
- with open(latest_path, 'r') as fd:
582
- tag = fd.read().strip()
583
- else:
584
- raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
-
586
- ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
-
588
- if not os.path.isdir(ds_checkpoint_dir):
589
- raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
-
591
- state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
- if lazy_mode:
593
- return state_dict
594
- else:
595
- return to_torch_tensor(state_dict)
596
-
597
-
598
- def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
- output_dir,
600
- max_shard_size="5GB",
601
- safe_serialization=False,
602
- tag=None,
603
- exclude_frozen_parameters=False):
604
- """
605
- Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
- loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
-
608
- Args:
609
- - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
- - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
- - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
- - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
- - ``exclude_frozen_parameters``: exclude frozen parameters
615
- """
616
-
617
- # Dependency pre-check
618
- if safe_serialization:
619
- try:
620
- from safetensors.torch import save_file
621
- except ImportError:
622
- print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
- raise
624
- if max_shard_size is not None:
625
- try:
626
- from huggingface_hub import split_torch_state_dict_into_shards
627
- except ImportError:
628
- print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
- raise
630
-
631
- # Convert zero checkpoint to state_dict
632
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
- tag,
634
- exclude_frozen_parameters,
635
- lazy_mode=True)
636
-
637
- # Shard the model if it is too big.
638
- weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
- if max_shard_size is not None:
640
- filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
- # an memory-efficient approach for sharding
642
- empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
- state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
- filename_pattern=filename_pattern,
645
- max_shard_size=max_shard_size)
646
- else:
647
- from collections import namedtuple
648
- StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
- state_dict_split = StateDictSplit(is_sharded=False,
650
- filename_to_tensors={weights_name: list(state_dict.keys())})
651
-
652
- # Save the model by shard
653
- os.makedirs(output_dir, exist_ok=True)
654
- filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
- for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
- shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
- shard_state_dict = to_torch_tensor(shard_state_dict)
658
- output_path = os.path.join(output_dir, shard_file)
659
- if safe_serialization:
660
- save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
- else:
662
- torch.save(shard_state_dict, output_path)
663
- # release the memory of current shard
664
- for tensor_name in list(shard_state_dict.keys()):
665
- del state_dict[tensor_name]
666
- del shard_state_dict[tensor_name]
667
- del shard_state_dict
668
- gc.collect()
669
-
670
- # Save index if sharded
671
- if state_dict_split.is_sharded:
672
- index = {
673
- "metadata": state_dict_split.metadata,
674
- "weight_map": state_dict_split.tensor_to_filename,
675
- }
676
- save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
- save_index_file = os.path.join(output_dir, save_index_file)
678
- with open(save_index_file, "w", encoding="utf-8") as f:
679
- content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
- f.write(content)
681
-
682
-
683
- def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
- """
685
- 1. Put the provided model to cpu
686
- 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
- 3. Load it into the provided model
688
-
689
- Args:
690
- - ``model``: the model object to update
691
- - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
-
694
- Returns:
695
- - ``model`: modified model
696
-
697
- Make sure you have plenty of CPU memory available before you call this function. If you don't
698
- have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
- conveniently placed for you in the checkpoint folder.
700
-
701
- A typical usage might be ::
702
-
703
- from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
- model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
- # submit to model hub or save the model to share with others
706
-
707
- Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
- of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
- ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
-
711
- """
712
- logger.info(f"Extracting fp32 weights")
713
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
-
715
- logger.info(f"Overwriting model with fp32 weights")
716
- model = model.cpu()
717
- model.load_state_dict(state_dict, strict=False)
718
-
719
- return model
720
-
721
-
722
- if __name__ == "__main__":
723
- parser = argparse.ArgumentParser()
724
- parser.add_argument("checkpoint_dir",
725
- type=str,
726
- help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
- parser.add_argument("output_dir",
728
- type=str,
729
- help="directory to the pytorch fp32 state_dict output files"
730
- "(e.g. path/checkpoint-12-output/)")
731
- parser.add_argument(
732
- "--max_shard_size",
733
- type=str,
734
- default="5GB",
735
- help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
- "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
- "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
- "without CPU OOM issues.")
739
- parser.add_argument(
740
- "--safe_serialization",
741
- default=False,
742
- action='store_true',
743
- help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
- parser.add_argument("-t",
745
- "--tag",
746
- type=str,
747
- default=None,
748
- help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
- parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
- parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
- args = parser.parse_args()
752
-
753
- debug = args.debug
754
-
755
- convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
- args.output_dir,
757
- max_shard_size=args.max_shard_size,
758
- safe_serialization=args.safe_serialization,
759
- tag=args.tag,
760
- exclude_frozen_parameters=args.exclude_frozen_parameters)