amornpan's picture
Update README.md
13be1ce verified
|
raw
history blame
8.56 kB
metadata
base_model:
  - openthaigpt/openthaigpt1.5-7b-instruct
datasets:
  - Thaweewat/thai-med-pack
language:
  - th
  - en
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
tags:
  - text-generation-inference
  - sft
  - trl
  - 4-bit precision
  - bitsandbytes
  - LoRA
  - Fine-Tuning with LoRA
  - LLM
  - GenAI
  - NT GenAI
  - ntgenai
  - lahnmah
  - NT Thai GPT
  - ntthaigpt
  - medical
  - medtech
  - HealthGPT
new_version: Aekanun/openthaigpt-MedChatModelv5.1

🇹🇭 Model Card for openthaigpt1.5-7b-medical-tuned

This model is fine-tuned from openthaigpt1.5-7b-instruct using Supervised Fine-Tuning (SFT) on the Thaweewat/thai-med-pack dataset. The model is designed for medical question-answering tasks in Thai, specializing in providing accurate and contextual answers based on medical information.

👤 Developed and Fine-tuned by:

  • Amornpan Phornchaicharoen
  • Aekanun Thongtae

Model Description

This model was fine-tuned using Supervised Fine-Tuning (SFT) to optimize it for medical question answering in Thai. The base model is openthaigpt1.5-7b-instruct, and it has been enhanced with domain-specific knowledge using the Thaweewat/thai-med-pack dataset.

  • Model type: Causal Language Model (AutoModelForCausalLM)
  • Language(s): Thai
  • License: Apache License 2.0
  • Fine-tuned from model: openthaigpt1.5-7b-instruct
  • Dataset used for fine-tuning: Thaweewat/thai-med-pack

Model Sources

Uses

Direct Use

The model can be directly used for generating medical responses in Thai. It has been optimized for:

  • Medical question-answering
  • Providing clinical information
  • Health-related dialogue generation

Downstream Use

This model can be used as a foundational model for medical assistance systems, chatbots, and applications related to healthcare, specifically in the Thai language.

Out-of-Scope Use

  • This model should not be used for real-time diagnosis or emergency medical scenarios.
  • Avoid using it for critical clinical decisions without human oversight, as the model is not intended to replace professional medical advice.

Bias, Risks, and Limitations

Bias

  • The model might reflect biases present in the dataset, particularly when addressing underrepresented medical conditions or topics.

Risks

  • Responses may contain inaccuracies due to the inherent limitations of the model and the dataset used for fine-tuning.
  • This model should not be used as the sole source of medical advice.

Limitations

  • Limited to the medical domain.
  • The model is sensitive to prompts and may generate off-topic responses for non-medical queries.

Model Training Results:

image/png image/png image/png image/png image/png image/png image/png image/png image/png

How to Get Started with the Model

Here’s how to load and use the model for generating medical responses in Thai:

1. Install the Required Packages

First, ensure you have installed the required libraries by running:

pip install torch transformers bitsandbytes

2. Load the Model and Tokenizer

You can load the model and tokenizer directly from Hugging Face using the following code:

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig

Define the model path

model_path = 'amornpan/openthaigpt-MedChatModelv11'

Load the tokenizer and model

tokenizer = AutoTokenizer.from_pretrained(model_path) tokenizer.pad_token = tokenizer.eos_token

3. Prepare Your Input (Custom Prompt)

Create a custom medical prompt that you want the model to respond to:

custom_prompt = "โปรดอธิบายลักษณะช่องปากที่เป็นมะเร็งในระยะเริ่มต้น"
PROMPT = f'[INST] <You are a question answering assistant. Answer the question as truthfully and helpfully as possible. คุณคือผู้ช่วยตอบคำถาม จงตอบคำถามอย่างถูกต้องและมีประโยชน์ที่สุด<>{custom_prompt}[/INST]'

# Tokenize the input prompt
inputs = tokenizer(PROMPT, return_tensors="pt", padding=True, truncation=True)

4. Configure the Model for Efficient Loading (4-bit Quantization)

The model uses 4-bit precision for efficient inference. Here’s how to set up the configuration:

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.float16
)

5. Load the Model with Quantization Support

Now, load the model with the 4-bit quantization settings:

model = AutoModelForCausalLM.from_pretrained(
    model_path,
    quantization_config=bnb_config,
    trust_remote_code=True
)

6. Move the Model and Inputs to the GPU (prefer GPU)

For faster inference, move the model and input tensors to a GPU, if available:

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
inputs = {k: v.to(device) for k, v in inputs.items()}

7. Generate a Response from the Model

Now, generate the medical response by running the model:

outputs = model.generate(**inputs, max_new_tokens=200, do_sample=True)

8. Decode the Generated Text

Finally, decode and print the response from the model:

generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(generated_text)

9. Output

[INST] <You are a question answering assistant. Answer the question as truthfully and helpfully as possible. คุณคือผู้ช่วยตอบคำถาม จงตอบคำถามอย่างถูกต้องและมีประโยชน์ที่สุด<>โปรดอธิบายลักษณะช่องปากที่เป็นมะเร็งในระยะเริ่มต้น[/INST] มะเร็งช่องปากเป็นมะเร็งเพียงชนิดเดียวที่ได้รับผลกระทบจากนิโคติน มันคือผู้ชายกลุ่มอายุ 6075 คน คุณจะแสดงอาการและเกิดขึ้นอย่างรวดเร็วหากเกิดมะเร็งช่องปาก คุณจะสังเกตเห็นปื้นแพร่กระจายของเนื้องอก ส่วนใหญ่ในช่องปาก เนื้องอกแสดงว่าเป็นเจ้าแห่ที่กำลังทำลายเยียวยา ค้นหาทั้งภายในและภายนอกลิ้นที่อยู่ติดกางเกงป่อง มะเร็งกระเพาะปัสสาวะหรือมะเร็งกล้ามเนื้อกระเพาะ

Authors