whisper-small-hi / README.md
amitkayal's picture
update model card README.md
3064951
---
language:
- hi
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: whisper-small-hi
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: hi
split: test
args: hi
metrics:
- name: Wer
type: wer
value: 21.749971340135275
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-small-hi
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5191
- Wer: 21.7500
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 3000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0055 | 7.02 | 1000 | 0.4214 | 22.0939 |
| 0.0003 | 14.03 | 2000 | 0.4978 | 21.7070 |
| 0.0002 | 22.0 | 3000 | 0.5191 | 21.7500 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.10.0
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2