Instella-VL-1B ✨

Welcome to the official repository for Instella-VL-1B, AMD's first ever Vision-Language Model (VLM). This repository provides a detailed guide for training and inference with Instella-VL-1B. Developed from AMD's Instella-1B (previously known as AMD OLMo 1B SFT LLM), this model is fully open-source, with both model weights and training code available for AMD GPUs (MI300). Its compact size aims to make it accessible to a broad spectrum of researchers, developers, and enthusiasts, enabling them to build upon, modify, and integrate it into their own projects.

[GitHub][Blog]

Main Results

We compare our model with models which only releases the model weights (with * in the below table) and also models which releases weights, data curvation and all training details.

DeepSeek-VL-1.3B * InternVL2-1B * InternVL2.5-1B * TinyLLaVA-2.4B TinyLLaVA-1.5B llava-onevision-1b MiniCPM-V-2 Instella-VL-1B
GQA -- 55.06 56.66 61.58 60.28 57.95 -- 61.52
SQA 64.52 89.54 93.90 64.30 59.69 59.25 76.10 83.74
POPE 85.80 87.40 89.95 85.66 84.77 87.17 86.56 86.73
MM-Bench 64.34 61.70 68.40 58.16 51.28 44.60 70.44 69.17
seedbench 65.94 65.90 71.30 63.30 60.04 65.43 66.90 68.47
MMMU 28.67 32.40 35.60 32.11 29.89 30.90 38.55 29.30
realworldqa 50.20 51.90 58.30 52.42 46.67 51.63 55.03 58.82
mmstar 38.30 46.18 47.93 37.17 31.87 37.38 40.93 43.21
Average - 61.26 65.26 56.84 53.06 54.29 - 62.62
ocrbench 41.40 74.40 74.20 28.90 34.40 43.00 60.00 67.90
TextVQA 57.54 69.60 72.96 47.05 49.54 49.54 74.23 71.23
AI2D 51.13 62.40 67.58 49.58 43.10 57.35 64.40 66.65
ChartQA 47.40 71.52 75.76 12.96 15.24 61.24 59.80 72.52
DocVQA 35.70 80.94 82.76 25.82 30.38 71.22 69.54 80.30
InfoVQA 20.52 46.30 53.62 21.35 24.46 41.18 38.24 46.40
OCR Average 42.28 67.53 71.15 30.94 32.85 53.92 61.04 67.50

Quick Start

Follow below packages list for setting up the inference environment.

pip==25.0
wheel==0.45.1
setuptools==75.8.0
torch==2.6.0
torchvision==0.21.0
transformers==4.49.0
einops==0.8.0
import torch
from transformers import AutoTokenizer, AutoProcessor, AutoConfig, AutoModelForCausalLM

from PIL import Image
import requests
from io import BytesIO

def load_image(image_file):
    if image_file.startswith("http") or image_file.startswith("https"):
        response = requests.get(image_file)
        image = Image.open(BytesIO(response.content)).convert("RGB")
    else:
        image = Image.open(image_file).convert("RGB")
    return image


config = AutoConfig.from_pretrained("amd/Instella-VL-1B", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("amd/Instella-VL-1B", config=config, trust_remote_code=True)
processor = AutoProcessor.from_pretrained("amd/Instella-VL-1B", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("amd/Instella-VL-1B", trust_remote_code=True).to('cuda') # or 'cpu'
model.eval()
  
# For single image and text
query="Describe the image."
image=load_image("path/to/your_image") # can be a https:// url
out = processor.encode(query, image, model.get_vision_tower().image_processor, tokenizer, config)
inputs = {k: v.to(model.device) for k, v in out.items() if isinstance(v, torch.Tensor)}
with torch.inference_mode():
    output_ids = model.generate(inputs["input_ids"], images=inputs['image_tensor'], image_sizes=out['image_sizes'], do_sample=True, num_beams=1, temperature=0.2, max_new_tokens=1024, use_cache=True, stopping_criteria=out['stopping_criteria'], eos_token_id=out['eos_token_id'])
outputs = processor.decode(output_ids)
print("InstellaVL: ", outputs)

# For batch of images and text.
query=["Describe the image.", "What is the color of the dog?"]
image=[load_image("../assets/images/instellavl.png"), load_image("../assets/images/example2_dog.jpg")]
outs = processor.batch_encode(query, image, model.get_vision_tower().image_processor, tokenizer, config)

for idx, o in enumerate(outs):
    ins = {k: v.to(model.device) for k, v in o.items() if isinstance(v, torch.Tensor)}
    with torch.inference_mode():
        output_ids = model.generate(ins["input_ids"],
                                    images=ins['image_tensor'],
                                    image_sizes=o['image_sizes'],
                                    do_sample=True,
                                    num_beams=1,
                                    temperature=0.2,
                                    max_new_tokens=1024,
                                    use_cache=True,
                                    stopping_criteria=o['stopping_criteria'],
                                    eos_token_id=o['eos_token_id'])
    outputs = processor.decode(output_ids)
    print("Query: ", query[idx])
    print("InstellaVL: ", outputs)
TL;DR: Loading from locally saved checkpoint

Note: Do pip install -e . --no-deps to register/include for InstellaVL repo as instellavl package into Python package list.

import torch

# Import essential modules
from instellavl.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
from instellavl.conversation import conv_templates, SeparatorStyle
from instellavl.model.builder import load_pretrained_model
from instellavl.utils import disable_torch_init
from instellavl.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path

from PIL import Image

import requests
from io import BytesIO

# Login into HF Hub
from huggingface_hub import login
login(token = "<Your HFtoken id>") # Enter your token 

def load_image(image_file):
    if image_file.startswith("http") or image_file.startswith("https"):
        response = requests.get(image_file)
        image = Image.open(BytesIO(response.content)).convert("RGB")
    else:
        image = Image.open(image_file).convert("RGB")
    return image

#
# ========= CHANGE IMAGE and Query only HERE ============
image_file = '/path/to/Instella-VL-repo/assets/images/example2_dog.jpg' # Enter the test image path
query = 'Describe this image.'
# =======================================================

disable_torch_init()
conv_mode = 'instella'

# Model loading
model_path = '<path/to/model-checkpoint-saved-locally>' # Enter your model path, should contain instellavl substring in the name.
model_name = get_model_name_from_path(model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name, False, False)
model.eval()
model = model.to('cuda') # change to 'cpu' if not 'cuda'

# Image pre-processing
image = load_image(image_file)
image_tensor = process_images([image], image_processor, model.config)
image_tensor = image_processor.preprocess(image, return_tensors="pt")["pixel_values"].to(model.dtype)

# Text pre-processing - follow the below logic too when there is no Image:
# if images is not None and len(image_tensor) != 0 and DEFAULT_IMAGE_TOKEN not in text:
#     question = DEFAULT_IMAGE_TOKEN + "\n" + text
# else:
#     question = text
query = query.replace(DEFAULT_IMAGE_TOKEN, "").strip()
question = DEFAULT_IMAGE_TOKEN + "\n" + query
conv = conv_templates[conv_mode].copy()
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()

# Final arrangements required
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0)
keywords = [conv.sep]
image_sizes = [image.size]
stopping_criteria = [KeywordsStoppingCriteria(keywords, tokenizer, input_ids)]
terminators = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("|||IP_ADDRESS|||")]

with torch.inference_mode():
    output_ids = model.generate(input_ids.to(model.device), images=image_tensor.to(model.device), image_sizes=image_sizes, do_sample=True, num_beams=1, temperature=0.2, max_new_tokens=1024, use_cache=True, stopping_criteria=stopping_criteria, eos_token_id=terminators)

outputs = tokenizer.decode(output_ids[0, input_ids.shape[1] :]).strip()
print("InstellaVL: ", outputs)

Model Architecture

Parts Parameter size Number of layers Number of heads Hidden size Patch Size
Vision Encoder 300M 24 16 1024 14
MLP 6.3M 2 - 2048 -
LM 1.2B 16 16 2048 -

We initialize the vision encoder from CLIP-ViT-L/14@336 and initialize LM from AMD OLMo 1B SFT

Training Stages

Stages MLP Warmup Pretraining Instruction Tuning
Tunable Parts Adapter Entire Model Entire Model

Hardware

Training was conducted with up to 4 nodes, totaling 32 GPUs. Each node comprises 8 AMD Instinct™ MI300X GPUs

MLP warmup: 1 node
Pretraining: 2 nodes
Finetune: 4 nodes

Datasets

MLP Warmup

BLIP558K

Pretraining Stage

Domain Datasets Num of Examples Licenses
Image Captions BLIP150K, COCO118K, CC3M-Recap, Pixmo_Cap 3.52M BSD 3-Clause for BLIP150K, COCO118K; Apache 2 for CC3M-Recap; ODC-BY-1.0 for Pixmo_Cap; see source materials for CC3M-Recap
OCR SynthDog_EN, SynthDog_ZH, UReader, ART, COCO-Text, HierText, Uber-Text, TextOCR, OpenVINO, MLT-17 913K Apache 2 for SynthDog_EN, SynthDog_ZH, UReader, TextOCR, OpenVINO; CC By 4.0 for COCO-Text; CC BY-SA 4.0 for HierText, Uber-Text; See source materials for ART, MLT-17
Doc DocVQA, DocStruct4M 410K Apache 2
Table & Chart & Plot Chart2Text, UniChart, PlotQA, WidgetCaption, Screen2Words, SciGraphQA-295K, Paper2Fig100K, MMC Instruction, M-Paper 1.97M GPL-3.0 for Chart2Text; MIT for UniChart, SciGraphQA-295K; Apache 2 for PlotQA, M-Paper; CC By 4.0 for WidgetCaption, Screen2Words, Paper2Fig100K; CC BY-SA 4.0 for MMC Instruction
Text Only Evol-Instruct-GPT-4 70K Apache 2

Instruction-tuning Stage

Domain Datasets Num of Examples Licenses
General AOKVQA, CLEVR, Hateful Memes, Image Textualization, OKVQA, ScienceQA, ShareGPT-4V, TallyQA, Visual7W, VizWiz, VQAv2, WebSight, ALLaVA Instruct, Cambrian, COCO Caption, IconQA, LLaVA-158K, LLaVAR, RefCOCO, ShareGPT-4O, Vision FLAN, VisText, VQARAD, VSR, InterGPS, Image-Paragraph-Captioning, ImageNet, COCO-GOI, COCO-ITM, Visual Dialog, SNLI-VE, Web-Landmark, Web-Celebrity, SAM, LAION-GPT-4V-Dataset, OODVQA, Pixmo_Cap, Pixmo_Count, Pixmo_Points, Pixmo_Ask_Model_Anything, SVIT_Core_150K, Localized Narratives 2.66M see source materials for Image-Paragraph-Captioning, ImageNet, COCO-GOI, COCO-ITM, Visual Dialog, SNLI-VE; ODC-BY-1.0 for Pixmo_Cap, Pixmo_Count, Pixmo_Points, Pixmo_Ask_Model_Anything; CC By 4.0 for SVIT_Core_150K, Localized Narratives; Apache 2 for rest of the datasets;
Table & Chart & Screen AI2D, ChartQA, DocVQA, FigureQA, InfographicVQA, RoBUT-SQA, RoBUT-WTQ, TQA, UReader IE, UReader QA, Chart2Text, , Diagram Image2Text, DVQA, HiTab, LRV Chart, RoBUT WikiSQL, Screen2Words, UReader Caption, UReader KG, VisualMRC, TinyChartData 866K Apache 2
Doc ArxivQA, DocDownstream-1.0, DocReason25K, DocStruct4M, Pixmo_Docs 522K CC BY-SA 4.0 for ArxivQA; Apache 2 for DocDownstream-1.0, DocReason25K, DocStruct4M; ODC-BY-1.0 for Pixmo_Docs
General OCR ChromeWriting, IIIT5K, K12 Printing, Rendered Text, TextCaps, HME100K, IAM, TextOCR-GPT-4V, SynthDog-EN 84K Apache 2
Math & Reasoning MAVIS Manual Collection, CLEVR-Math, Geo170K QA, GEOS, GeoMVerse, MapQA, Super-CLEVR, UniGeo, LRV Normal, Visual Genome, MAVIS Data Engine, Geo170K Align, Geometry3K, GeoQA+, TabMWP, GQA, RAVEN, MathVision, KVQA, VCR, FinQA, Design2Code, IDK 460K CC By 4.0 for FinQA; Apache 2 for rest of the datasets
Others IQA, MOCHEG, Shapes, ALFWorld, Q-Instruct-DB 479K see source materials for IQA, MOCHEG, Shapes; Apache 2 for ALFWorld, Q-Instruct-DB
Text Only MathQA, Magpie Pro (L3 MT), Magpie Pro (Qwen2 ST), Magpie Pro (L3 ST) 480K Apache 2

Further, to strengthen model’s understanding of science-based and general reasoning questions, as identified through error analysis, we oversampled (almost doubled the volume) specific datasets from the SFT dataset pool as detailed below.

Oversampled (~2x sampling rate): ScienceQA, AI2D, PMC-VQA, Cambrian, and TQA

Further information concerning the training datasets, including applicable licensing terms and use restrictions, may be located at the linked source location.

For the details of training hyperparameters, please check our github repo

Contributors

Core contributors: Ximeng Sun, Aditya Kumar Singh, Gowtham Ramesh, Zicheng Liu

Contributors: Pratik Prabhanjan Brahma, Ze Wang, Jiang Liu, Jialian Wu, Prakamya Mishra, Xiaodong Yu, Yusheng Su, Sudhanshu Ranjan, Emad Barsoum

Bias, Risks, and Limitations

This model is made accessible without any safety guarantees. Users should be aware that the model may generate outputs that are sensitive, inaccurate, harmful, biased, or otherwise objectionable based on user prompts. It is crucial for users to conduct comprehensive safety evaluations, implement safety filtering, and verify the model's outputs to mitigate these risks.

License

See Files for license and any notices.

Citing

@misc{Instella-VL-1B, 
    title = {Instella-VL-1B: First AMD Vision Language Model}, 
    url = {https://huggingface.co./amd/Instella-VL-1B}, 
    author = {Ximeng Sun, Aditya Singh, Gowtham Ramesh, Jiang Liu, Ze Wang, Sudhanshu Ranjan, Pratik Prabhanjan Brahma, Prakamya Mishra,  Jialian Wu, Xiaodong Yu, Yusheng Su, Emad Barsoum, Zicheng Liu}, 
    month = {March}, 
    year = {2025} 
} 
Downloads last month
80
Safetensors
Model size
1.49B params
Tensor type
FP16
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Collection including amd/Instella-VL-1B